mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
899 lines
30 KiB
899 lines
30 KiB
/* |
|
* Rate control for video encoders |
|
* |
|
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
/** |
|
* @file ratecontrol.c |
|
* Rate control for video encoders. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "mpegvideo.h" |
|
|
|
#undef NDEBUG // allways check asserts, the speed effect is far too small to disable them |
|
#include <assert.h> |
|
|
|
#ifndef M_E |
|
#define M_E 2.718281828 |
|
#endif |
|
|
|
static int init_pass2(MpegEncContext *s); |
|
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num); |
|
|
|
void ff_write_pass1_stats(MpegEncContext *s){ |
|
snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n", |
|
s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type, |
|
s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, |
|
s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count); |
|
} |
|
|
|
int ff_rate_control_init(MpegEncContext *s) |
|
{ |
|
RateControlContext *rcc= &s->rc_context; |
|
int i; |
|
emms_c(); |
|
|
|
for(i=0; i<5; i++){ |
|
rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0; |
|
rcc->pred[i].count= 1.0; |
|
|
|
rcc->pred[i].decay= 0.4; |
|
rcc->i_cplx_sum [i]= |
|
rcc->p_cplx_sum [i]= |
|
rcc->mv_bits_sum[i]= |
|
rcc->qscale_sum [i]= |
|
rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such |
|
rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5; |
|
} |
|
rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy; |
|
|
|
if(s->flags&CODEC_FLAG_PASS2){ |
|
int i; |
|
char *p; |
|
|
|
/* find number of pics */ |
|
p= s->avctx->stats_in; |
|
for(i=-1; p; i++){ |
|
p= strchr(p+1, ';'); |
|
} |
|
i+= s->max_b_frames; |
|
if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry)) |
|
return -1; |
|
rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry)); |
|
rcc->num_entries= i; |
|
|
|
/* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */ |
|
for(i=0; i<rcc->num_entries; i++){ |
|
RateControlEntry *rce= &rcc->entry[i]; |
|
rce->pict_type= rce->new_pict_type=P_TYPE; |
|
rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2; |
|
rce->misc_bits= s->mb_num + 10; |
|
rce->mb_var_sum= s->mb_num*100; |
|
} |
|
|
|
/* read stats */ |
|
p= s->avctx->stats_in; |
|
for(i=0; i<rcc->num_entries - s->max_b_frames; i++){ |
|
RateControlEntry *rce; |
|
int picture_number; |
|
int e; |
|
char *next; |
|
|
|
next= strchr(p, ';'); |
|
if(next){ |
|
(*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write |
|
next++; |
|
} |
|
e= sscanf(p, " in:%d ", &picture_number); |
|
|
|
assert(picture_number >= 0); |
|
assert(picture_number < rcc->num_entries); |
|
rce= &rcc->entry[picture_number]; |
|
|
|
e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d", |
|
&rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits, |
|
&rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count); |
|
if(e!=12){ |
|
av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); |
|
return -1; |
|
} |
|
p= next; |
|
} |
|
|
|
if(init_pass2(s) < 0) return -1; |
|
} |
|
|
|
if(!(s->flags&CODEC_FLAG_PASS2)){ |
|
|
|
rcc->short_term_qsum=0.001; |
|
rcc->short_term_qcount=0.001; |
|
|
|
rcc->pass1_rc_eq_output_sum= 0.001; |
|
rcc->pass1_wanted_bits=0.001; |
|
|
|
/* init stuff with the user specified complexity */ |
|
if(s->avctx->rc_initial_cplx){ |
|
for(i=0; i<60*30; i++){ |
|
double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num; |
|
RateControlEntry rce; |
|
double q; |
|
|
|
if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE; |
|
else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE; |
|
else rce.pict_type= P_TYPE; |
|
|
|
rce.new_pict_type= rce.pict_type; |
|
rce.mc_mb_var_sum= bits*s->mb_num/100000; |
|
rce.mb_var_sum = s->mb_num; |
|
rce.qscale = FF_QP2LAMBDA * 2; |
|
rce.f_code = 2; |
|
rce.b_code = 1; |
|
rce.misc_bits= 1; |
|
|
|
if(s->pict_type== I_TYPE){ |
|
rce.i_count = s->mb_num; |
|
rce.i_tex_bits= bits; |
|
rce.p_tex_bits= 0; |
|
rce.mv_bits= 0; |
|
}else{ |
|
rce.i_count = 0; //FIXME we do know this approx |
|
rce.i_tex_bits= 0; |
|
rce.p_tex_bits= bits*0.9; |
|
rce.mv_bits= bits*0.1; |
|
} |
|
rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale; |
|
rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale; |
|
rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits; |
|
rcc->frame_count[rce.pict_type] ++; |
|
|
|
bits= rce.i_tex_bits + rce.p_tex_bits; |
|
|
|
q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i); |
|
rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps |
|
} |
|
} |
|
|
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void ff_rate_control_uninit(MpegEncContext *s) |
|
{ |
|
RateControlContext *rcc= &s->rc_context; |
|
emms_c(); |
|
|
|
av_freep(&rcc->entry); |
|
} |
|
|
|
static inline double qp2bits(RateControlEntry *rce, double qp){ |
|
if(qp<=0.0){ |
|
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); |
|
} |
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp; |
|
} |
|
|
|
static inline double bits2qp(RateControlEntry *rce, double bits){ |
|
if(bits<0.9){ |
|
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); |
|
} |
|
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits; |
|
} |
|
|
|
int ff_vbv_update(MpegEncContext *s, int frame_size){ |
|
RateControlContext *rcc= &s->rc_context; |
|
const double fps= 1/av_q2d(s->avctx->time_base); |
|
const int buffer_size= s->avctx->rc_buffer_size; |
|
const double min_rate= s->avctx->rc_min_rate/fps; |
|
const double max_rate= s->avctx->rc_max_rate/fps; |
|
|
|
//printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); |
|
if(buffer_size){ |
|
int left; |
|
|
|
rcc->buffer_index-= frame_size; |
|
if(rcc->buffer_index < 0){ |
|
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); |
|
rcc->buffer_index= 0; |
|
} |
|
|
|
left= buffer_size - rcc->buffer_index - 1; |
|
rcc->buffer_index += clip(left, min_rate, max_rate); |
|
|
|
if(rcc->buffer_index > buffer_size){ |
|
int stuffing= ceil((rcc->buffer_index - buffer_size)/8); |
|
|
|
if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4) |
|
stuffing=4; |
|
rcc->buffer_index -= 8*stuffing; |
|
|
|
if(s->avctx->debug & FF_DEBUG_RC) |
|
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); |
|
|
|
return stuffing; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* modifies the bitrate curve from pass1 for one frame |
|
*/ |
|
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){ |
|
RateControlContext *rcc= &s->rc_context; |
|
AVCodecContext *a= s->avctx; |
|
double q, bits; |
|
const int pict_type= rce->new_pict_type; |
|
const double mb_num= s->mb_num; |
|
int i; |
|
|
|
double const_values[]={ |
|
M_PI, |
|
M_E, |
|
rce->i_tex_bits*rce->qscale, |
|
rce->p_tex_bits*rce->qscale, |
|
(rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale, |
|
rce->mv_bits/mb_num, |
|
rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code, |
|
rce->i_count/mb_num, |
|
rce->mc_mb_var_sum/mb_num, |
|
rce->mb_var_sum/mb_num, |
|
rce->pict_type == I_TYPE, |
|
rce->pict_type == P_TYPE, |
|
rce->pict_type == B_TYPE, |
|
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], |
|
a->qcompress, |
|
/* rcc->last_qscale_for[I_TYPE], |
|
rcc->last_qscale_for[P_TYPE], |
|
rcc->last_qscale_for[B_TYPE], |
|
rcc->next_non_b_qscale,*/ |
|
rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE], |
|
rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE], |
|
rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE], |
|
rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE], |
|
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], |
|
0 |
|
}; |
|
static const char *const_names[]={ |
|
"PI", |
|
"E", |
|
"iTex", |
|
"pTex", |
|
"tex", |
|
"mv", |
|
"fCode", |
|
"iCount", |
|
"mcVar", |
|
"var", |
|
"isI", |
|
"isP", |
|
"isB", |
|
"avgQP", |
|
"qComp", |
|
/* "lastIQP", |
|
"lastPQP", |
|
"lastBQP", |
|
"nextNonBQP",*/ |
|
"avgIITex", |
|
"avgPITex", |
|
"avgPPTex", |
|
"avgBPTex", |
|
"avgTex", |
|
NULL |
|
}; |
|
static double (*func1[])(void *, double)={ |
|
(void *)bits2qp, |
|
(void *)qp2bits, |
|
NULL |
|
}; |
|
static const char *func1_names[]={ |
|
"bits2qp", |
|
"qp2bits", |
|
NULL |
|
}; |
|
|
|
bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce); |
|
|
|
rcc->pass1_rc_eq_output_sum+= bits; |
|
bits*=rate_factor; |
|
if(bits<0.0) bits=0.0; |
|
bits+= 1.0; //avoid 1/0 issues |
|
|
|
/* user override */ |
|
for(i=0; i<s->avctx->rc_override_count; i++){ |
|
RcOverride *rco= s->avctx->rc_override; |
|
if(rco[i].start_frame > frame_num) continue; |
|
if(rco[i].end_frame < frame_num) continue; |
|
|
|
if(rco[i].qscale) |
|
bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it? |
|
else |
|
bits*= rco[i].quality_factor; |
|
} |
|
|
|
q= bits2qp(rce, bits); |
|
|
|
/* I/B difference */ |
|
if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0) |
|
q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset; |
|
else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0) |
|
q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset; |
|
|
|
return q; |
|
} |
|
|
|
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){ |
|
RateControlContext *rcc= &s->rc_context; |
|
AVCodecContext *a= s->avctx; |
|
const int pict_type= rce->new_pict_type; |
|
const double last_p_q = rcc->last_qscale_for[P_TYPE]; |
|
const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type]; |
|
|
|
if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE)) |
|
q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset; |
|
else if(pict_type==B_TYPE && a->b_quant_factor>0.0) |
|
q= last_non_b_q* a->b_quant_factor + a->b_quant_offset; |
|
|
|
/* last qscale / qdiff stuff */ |
|
if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){ |
|
double last_q= rcc->last_qscale_for[pict_type]; |
|
const int maxdiff= FF_QP2LAMBDA * a->max_qdiff; |
|
|
|
if (q > last_q + maxdiff) q= last_q + maxdiff; |
|
else if(q < last_q - maxdiff) q= last_q - maxdiff; |
|
} |
|
|
|
rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring |
|
|
|
if(pict_type!=B_TYPE) |
|
rcc->last_non_b_pict_type= pict_type; |
|
|
|
return q; |
|
} |
|
|
|
/** |
|
* gets the qmin & qmax for pict_type |
|
*/ |
|
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){ |
|
int qmin= s->avctx->lmin; |
|
int qmax= s->avctx->lmax; |
|
|
|
assert(qmin <= qmax); |
|
|
|
if(pict_type==B_TYPE){ |
|
qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); |
|
qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5); |
|
}else if(pict_type==I_TYPE){ |
|
qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); |
|
qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5); |
|
} |
|
|
|
qmin= clip(qmin, 1, FF_LAMBDA_MAX); |
|
qmax= clip(qmax, 1, FF_LAMBDA_MAX); |
|
|
|
if(qmax<qmin) qmax= qmin; |
|
|
|
*qmin_ret= qmin; |
|
*qmax_ret= qmax; |
|
} |
|
|
|
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){ |
|
RateControlContext *rcc= &s->rc_context; |
|
int qmin, qmax; |
|
double bits; |
|
const int pict_type= rce->new_pict_type; |
|
const double buffer_size= s->avctx->rc_buffer_size; |
|
const double fps= 1/av_q2d(s->avctx->time_base); |
|
const double min_rate= s->avctx->rc_min_rate / fps; |
|
const double max_rate= s->avctx->rc_max_rate / fps; |
|
|
|
get_qminmax(&qmin, &qmax, s, pict_type); |
|
|
|
/* modulation */ |
|
if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE) |
|
q*= s->avctx->rc_qmod_amp; |
|
|
|
bits= qp2bits(rce, q); |
|
//printf("q:%f\n", q); |
|
/* buffer overflow/underflow protection */ |
|
if(buffer_size){ |
|
double expected_size= rcc->buffer_index; |
|
double q_limit; |
|
|
|
if(min_rate){ |
|
double d= 2*(buffer_size - expected_size)/buffer_size; |
|
if(d>1.0) d=1.0; |
|
else if(d<0.0001) d=0.0001; |
|
q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); |
|
|
|
q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1)); |
|
if(q > q_limit){ |
|
if(s->avctx->debug&FF_DEBUG_RC){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); |
|
} |
|
q= q_limit; |
|
} |
|
} |
|
|
|
if(max_rate){ |
|
double d= 2*expected_size/buffer_size; |
|
if(d>1.0) d=1.0; |
|
else if(d<0.0001) d=0.0001; |
|
q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity); |
|
|
|
q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1)); |
|
if(q < q_limit){ |
|
if(s->avctx->debug&FF_DEBUG_RC){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); |
|
} |
|
q= q_limit; |
|
} |
|
} |
|
} |
|
//printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity); |
|
if(s->avctx->rc_qsquish==0.0 || qmin==qmax){ |
|
if (q<qmin) q=qmin; |
|
else if(q>qmax) q=qmax; |
|
}else{ |
|
double min2= log(qmin); |
|
double max2= log(qmax); |
|
|
|
q= log(q); |
|
q= (q - min2)/(max2-min2) - 0.5; |
|
q*= -4.0; |
|
q= 1.0/(1.0 + exp(q)); |
|
q= q*(max2-min2) + min2; |
|
|
|
q= exp(q); |
|
} |
|
|
|
return q; |
|
} |
|
|
|
//---------------------------------- |
|
// 1 Pass Code |
|
|
|
static double predict_size(Predictor *p, double q, double var) |
|
{ |
|
return p->coeff*var / (q*p->count); |
|
} |
|
|
|
/* |
|
static double predict_qp(Predictor *p, double size, double var) |
|
{ |
|
//printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size); |
|
return p->coeff*var / (size*p->count); |
|
} |
|
*/ |
|
|
|
static void update_predictor(Predictor *p, double q, double var, double size) |
|
{ |
|
double new_coeff= size*q / (var + 1); |
|
if(var<10) return; |
|
|
|
p->count*= p->decay; |
|
p->coeff*= p->decay; |
|
p->count++; |
|
p->coeff+= new_coeff; |
|
} |
|
|
|
static void adaptive_quantization(MpegEncContext *s, double q){ |
|
int i; |
|
const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0); |
|
const float dark_masking= s->avctx->dark_masking / (128.0*128.0); |
|
const float temp_cplx_masking= s->avctx->temporal_cplx_masking; |
|
const float spatial_cplx_masking = s->avctx->spatial_cplx_masking; |
|
const float p_masking = s->avctx->p_masking; |
|
const float border_masking = s->avctx->border_masking; |
|
float bits_sum= 0.0; |
|
float cplx_sum= 0.0; |
|
float cplx_tab[s->mb_num]; |
|
float bits_tab[s->mb_num]; |
|
const int qmin= s->avctx->mb_lmin; |
|
const int qmax= s->avctx->mb_lmax; |
|
Picture * const pic= &s->current_picture; |
|
const int mb_width = s->mb_width; |
|
const int mb_height = s->mb_height; |
|
|
|
for(i=0; i<s->mb_num; i++){ |
|
const int mb_xy= s->mb_index2xy[i]; |
|
float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow() |
|
float spat_cplx= sqrt(pic->mb_var[mb_xy]); |
|
const int lumi= pic->mb_mean[mb_xy]; |
|
float bits, cplx, factor; |
|
int mb_x = mb_xy % s->mb_stride; |
|
int mb_y = mb_xy / s->mb_stride; |
|
int mb_distance; |
|
float mb_factor = 0.0; |
|
#if 0 |
|
if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune |
|
if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune |
|
#endif |
|
if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune |
|
if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune |
|
|
|
if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode |
|
cplx= spat_cplx; |
|
factor= 1.0 + p_masking; |
|
}else{ |
|
cplx= temp_cplx; |
|
factor= pow(temp_cplx, - temp_cplx_masking); |
|
} |
|
factor*=pow(spat_cplx, - spatial_cplx_masking); |
|
|
|
if(lumi>127) |
|
factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking); |
|
else |
|
factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking); |
|
|
|
if(mb_x < mb_width/5){ |
|
mb_distance = mb_width/5 - mb_x; |
|
mb_factor = (float)mb_distance / (float)(mb_width/5); |
|
}else if(mb_x > 4*mb_width/5){ |
|
mb_distance = mb_x - 4*mb_width/5; |
|
mb_factor = (float)mb_distance / (float)(mb_width/5); |
|
} |
|
if(mb_y < mb_height/5){ |
|
mb_distance = mb_height/5 - mb_y; |
|
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); |
|
}else if(mb_y > 4*mb_height/5){ |
|
mb_distance = mb_y - 4*mb_height/5; |
|
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5)); |
|
} |
|
|
|
factor*= 1.0 - border_masking*mb_factor; |
|
|
|
if(factor<0.00001) factor= 0.00001; |
|
|
|
bits= cplx*factor; |
|
cplx_sum+= cplx; |
|
bits_sum+= bits; |
|
cplx_tab[i]= cplx; |
|
bits_tab[i]= bits; |
|
} |
|
|
|
/* handle qmin/qmax cliping */ |
|
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ |
|
float factor= bits_sum/cplx_sum; |
|
for(i=0; i<s->mb_num; i++){ |
|
float newq= q*cplx_tab[i]/bits_tab[i]; |
|
newq*= factor; |
|
|
|
if (newq > qmax){ |
|
bits_sum -= bits_tab[i]; |
|
cplx_sum -= cplx_tab[i]*q/qmax; |
|
} |
|
else if(newq < qmin){ |
|
bits_sum -= bits_tab[i]; |
|
cplx_sum -= cplx_tab[i]*q/qmin; |
|
} |
|
} |
|
if(bits_sum < 0.001) bits_sum= 0.001; |
|
if(cplx_sum < 0.001) cplx_sum= 0.001; |
|
} |
|
|
|
for(i=0; i<s->mb_num; i++){ |
|
const int mb_xy= s->mb_index2xy[i]; |
|
float newq= q*cplx_tab[i]/bits_tab[i]; |
|
int intq; |
|
|
|
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){ |
|
newq*= bits_sum/cplx_sum; |
|
} |
|
|
|
intq= (int)(newq + 0.5); |
|
|
|
if (intq > qmax) intq= qmax; |
|
else if(intq < qmin) intq= qmin; |
|
//if(i%s->mb_width==0) printf("\n"); |
|
//printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i])); |
|
s->lambda_table[mb_xy]= intq; |
|
} |
|
} |
|
|
|
void ff_get_2pass_fcode(MpegEncContext *s){ |
|
RateControlContext *rcc= &s->rc_context; |
|
int picture_number= s->picture_number; |
|
RateControlEntry *rce; |
|
|
|
rce= &rcc->entry[picture_number]; |
|
s->f_code= rce->f_code; |
|
s->b_code= rce->b_code; |
|
} |
|
|
|
//FIXME rd or at least approx for dquant |
|
|
|
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) |
|
{ |
|
float q; |
|
int qmin, qmax; |
|
float br_compensation; |
|
double diff; |
|
double short_term_q; |
|
double fps; |
|
int picture_number= s->picture_number; |
|
int64_t wanted_bits; |
|
RateControlContext *rcc= &s->rc_context; |
|
AVCodecContext *a= s->avctx; |
|
RateControlEntry local_rce, *rce; |
|
double bits; |
|
double rate_factor; |
|
int var; |
|
const int pict_type= s->pict_type; |
|
Picture * const pic= &s->current_picture; |
|
emms_c(); |
|
|
|
get_qminmax(&qmin, &qmax, s, pict_type); |
|
|
|
fps= 1/av_q2d(s->avctx->time_base); |
|
//printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate); |
|
/* update predictors */ |
|
if(picture_number>2 && !dry_run){ |
|
const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum; |
|
update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits); |
|
} |
|
|
|
if(s->flags&CODEC_FLAG_PASS2){ |
|
assert(picture_number>=0); |
|
assert(picture_number<rcc->num_entries); |
|
rce= &rcc->entry[picture_number]; |
|
wanted_bits= rce->expected_bits; |
|
}else{ |
|
rce= &local_rce; |
|
wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps); |
|
} |
|
|
|
diff= s->total_bits - wanted_bits; |
|
br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance; |
|
if(br_compensation<=0.0) br_compensation=0.001; |
|
|
|
var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum; |
|
|
|
short_term_q = 0; /* avoid warning */ |
|
if(s->flags&CODEC_FLAG_PASS2){ |
|
if(pict_type!=I_TYPE) |
|
assert(pict_type == rce->new_pict_type); |
|
|
|
q= rce->new_qscale / br_compensation; |
|
//printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type); |
|
}else{ |
|
rce->pict_type= |
|
rce->new_pict_type= pict_type; |
|
rce->mc_mb_var_sum= pic->mc_mb_var_sum; |
|
rce->mb_var_sum = pic-> mb_var_sum; |
|
rce->qscale = FF_QP2LAMBDA * 2; |
|
rce->f_code = s->f_code; |
|
rce->b_code = s->b_code; |
|
rce->misc_bits= 1; |
|
|
|
bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var)); |
|
if(pict_type== I_TYPE){ |
|
rce->i_count = s->mb_num; |
|
rce->i_tex_bits= bits; |
|
rce->p_tex_bits= 0; |
|
rce->mv_bits= 0; |
|
}else{ |
|
rce->i_count = 0; //FIXME we do know this approx |
|
rce->i_tex_bits= 0; |
|
rce->p_tex_bits= bits*0.9; |
|
|
|
rce->mv_bits= bits*0.1; |
|
} |
|
rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale; |
|
rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale; |
|
rcc->mv_bits_sum[pict_type] += rce->mv_bits; |
|
rcc->frame_count[pict_type] ++; |
|
|
|
bits= rce->i_tex_bits + rce->p_tex_bits; |
|
rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation; |
|
|
|
q= get_qscale(s, rce, rate_factor, picture_number); |
|
|
|
assert(q>0.0); |
|
//printf("%f ", q); |
|
q= get_diff_limited_q(s, rce, q); |
|
//printf("%f ", q); |
|
assert(q>0.0); |
|
|
|
if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass |
|
rcc->short_term_qsum*=a->qblur; |
|
rcc->short_term_qcount*=a->qblur; |
|
|
|
rcc->short_term_qsum+= q; |
|
rcc->short_term_qcount++; |
|
//printf("%f ", q); |
|
q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount; |
|
//printf("%f ", q); |
|
} |
|
assert(q>0.0); |
|
|
|
q= modify_qscale(s, rce, q, picture_number); |
|
|
|
rcc->pass1_wanted_bits+= s->bit_rate/fps; |
|
|
|
assert(q>0.0); |
|
} |
|
|
|
if(s->avctx->debug&FF_DEBUG_RC){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n", |
|
av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000, |
|
br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps |
|
); |
|
} |
|
|
|
if (q<qmin) q=qmin; |
|
else if(q>qmax) q=qmax; |
|
|
|
if(s->adaptive_quant) |
|
adaptive_quantization(s, q); |
|
else |
|
q= (int)(q + 0.5); |
|
|
|
if(!dry_run){ |
|
rcc->last_qscale= q; |
|
rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum; |
|
rcc->last_mb_var_sum= pic->mb_var_sum; |
|
} |
|
#if 0 |
|
{ |
|
static int mvsum=0, texsum=0; |
|
mvsum += s->mv_bits; |
|
texsum += s->i_tex_bits + s->p_tex_bits; |
|
printf("%d %d//\n\n", mvsum, texsum); |
|
} |
|
#endif |
|
return q; |
|
} |
|
|
|
//---------------------------------------------- |
|
// 2-Pass code |
|
|
|
static int init_pass2(MpegEncContext *s) |
|
{ |
|
RateControlContext *rcc= &s->rc_context; |
|
AVCodecContext *a= s->avctx; |
|
int i; |
|
double fps= 1/av_q2d(s->avctx->time_base); |
|
double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1 |
|
double avg_quantizer[5]; |
|
uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits |
|
uint64_t available_bits[5]; |
|
uint64_t all_const_bits; |
|
uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps); |
|
double rate_factor=0; |
|
double step; |
|
//int last_i_frame=-10000000; |
|
const int filter_size= (int)(a->qblur*4) | 1; |
|
double expected_bits; |
|
double *qscale, *blured_qscale; |
|
|
|
/* find complexity & const_bits & decide the pict_types */ |
|
for(i=0; i<rcc->num_entries; i++){ |
|
RateControlEntry *rce= &rcc->entry[i]; |
|
|
|
rce->new_pict_type= rce->pict_type; |
|
rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale; |
|
rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale; |
|
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; |
|
rcc->frame_count[rce->pict_type] ++; |
|
|
|
complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale; |
|
const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits; |
|
} |
|
all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE]; |
|
|
|
if(all_available_bits < all_const_bits){ |
|
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n"); |
|
return -1; |
|
} |
|
|
|
/* find average quantizers */ |
|
avg_quantizer[P_TYPE]=0; |
|
for(step=256*256; step>0.0000001; step*=0.5){ |
|
double expected_bits=0; |
|
avg_quantizer[P_TYPE]+= step; |
|
|
|
avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset; |
|
avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset; |
|
|
|
expected_bits= |
|
+ all_const_bits |
|
+ complexity[I_TYPE]/avg_quantizer[I_TYPE] |
|
+ complexity[P_TYPE]/avg_quantizer[P_TYPE] |
|
+ complexity[B_TYPE]/avg_quantizer[B_TYPE]; |
|
|
|
if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step; |
|
//printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]); |
|
} |
|
//printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]); |
|
|
|
for(i=0; i<5; i++){ |
|
available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i]; |
|
} |
|
//printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits); |
|
|
|
qscale= av_malloc(sizeof(double)*rcc->num_entries); |
|
blured_qscale= av_malloc(sizeof(double)*rcc->num_entries); |
|
|
|
for(step=256*256; step>0.0000001; step*=0.5){ |
|
expected_bits=0; |
|
rate_factor+= step; |
|
|
|
rcc->buffer_index= s->avctx->rc_buffer_size/2; |
|
|
|
/* find qscale */ |
|
for(i=0; i<rcc->num_entries; i++){ |
|
qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i); |
|
} |
|
assert(filter_size%2==1); |
|
|
|
/* fixed I/B QP relative to P mode */ |
|
for(i=rcc->num_entries-1; i>=0; i--){ |
|
RateControlEntry *rce= &rcc->entry[i]; |
|
|
|
qscale[i]= get_diff_limited_q(s, rce, qscale[i]); |
|
} |
|
|
|
/* smooth curve */ |
|
for(i=0; i<rcc->num_entries; i++){ |
|
RateControlEntry *rce= &rcc->entry[i]; |
|
const int pict_type= rce->new_pict_type; |
|
int j; |
|
double q=0.0, sum=0.0; |
|
|
|
for(j=0; j<filter_size; j++){ |
|
int index= i+j-filter_size/2; |
|
double d= index-i; |
|
double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur)); |
|
|
|
if(index < 0 || index >= rcc->num_entries) continue; |
|
if(pict_type != rcc->entry[index].new_pict_type) continue; |
|
q+= qscale[index] * coeff; |
|
sum+= coeff; |
|
} |
|
blured_qscale[i]= q/sum; |
|
} |
|
|
|
/* find expected bits */ |
|
for(i=0; i<rcc->num_entries; i++){ |
|
RateControlEntry *rce= &rcc->entry[i]; |
|
double bits; |
|
rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i); |
|
bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; |
|
//printf("%d %f\n", rce->new_bits, blured_qscale[i]); |
|
bits += 8*ff_vbv_update(s, bits); |
|
|
|
rce->expected_bits= expected_bits; |
|
expected_bits += bits; |
|
} |
|
|
|
// printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor); |
|
if(expected_bits > all_available_bits) rate_factor-= step; |
|
} |
|
av_free(qscale); |
|
av_free(blured_qscale); |
|
|
|
if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){ |
|
av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n"); |
|
return -1; |
|
} |
|
|
|
return 0; |
|
}
|
|
|