mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
889 lines
28 KiB
889 lines
28 KiB
/* |
|
* QuickTime RPZA Video Encoder |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file rpzaenc.c |
|
* QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler |
|
*/ |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/opt.h" |
|
|
|
#include "avcodec.h" |
|
#include "codec_internal.h" |
|
#include "encode.h" |
|
#include "mathops.h" |
|
#include "put_bits.h" |
|
|
|
typedef struct RpzaContext { |
|
AVClass *avclass; |
|
|
|
int skip_frame_thresh; |
|
int start_one_color_thresh; |
|
int continue_one_color_thresh; |
|
int sixteen_color_thresh; |
|
|
|
AVFrame *prev_frame; // buffer for previous source frame |
|
PutBitContext pb; // buffer for encoded frame data. |
|
|
|
int frame_width; // width in pixels of source frame |
|
int frame_height; // height in pixesl of source frame |
|
|
|
int first_frame; // flag set to one when the first frame is being processed |
|
// so that comparisons with previous frame data in not attempted |
|
} RpzaContext; |
|
|
|
typedef enum channel_offset { |
|
RED = 2, |
|
GREEN = 1, |
|
BLUE = 0, |
|
} channel_offset; |
|
|
|
typedef struct rgb { |
|
uint8_t r; |
|
uint8_t g; |
|
uint8_t b; |
|
} rgb; |
|
|
|
#define SQR(x) ((x) * (x)) |
|
|
|
/* 15 bit components */ |
|
#define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F)) |
|
#define R(color) GET_CHAN(color, RED) |
|
#define G(color) GET_CHAN(color, GREEN) |
|
#define B(color) GET_CHAN(color, BLUE) |
|
|
|
typedef struct BlockInfo { |
|
int row; |
|
int col; |
|
int block_width; |
|
int block_height; |
|
int image_width; |
|
int image_height; |
|
int block_index; |
|
uint16_t start; |
|
int rowstride; |
|
int prev_rowstride; |
|
int blocks_per_row; |
|
int total_blocks; |
|
} BlockInfo; |
|
|
|
static void get_colors(const uint8_t *min, const uint8_t *max, uint8_t color4[4][3]) |
|
{ |
|
uint8_t step; |
|
|
|
color4[0][0] = min[0]; |
|
color4[0][1] = min[1]; |
|
color4[0][2] = min[2]; |
|
|
|
color4[3][0] = max[0]; |
|
color4[3][1] = max[1]; |
|
color4[3][2] = max[2]; |
|
|
|
// red components |
|
step = (color4[3][0] - color4[0][0] + 1) / 3; |
|
color4[1][0] = color4[0][0] + step; |
|
color4[2][0] = color4[3][0] - step; |
|
|
|
// green components |
|
step = (color4[3][1] - color4[0][1] + 1) / 3; |
|
color4[1][1] = color4[0][1] + step; |
|
color4[2][1] = color4[3][1] - step; |
|
|
|
// blue components |
|
step = (color4[3][2] - color4[0][2] + 1) / 3; |
|
color4[1][2] = color4[0][2] + step; |
|
color4[2][2] = color4[3][2] - step; |
|
} |
|
|
|
/* Fill BlockInfo struct with information about a 4x4 block of the image */ |
|
static int get_block_info(BlockInfo *bi, int block, int prev_frame) |
|
{ |
|
bi->row = block / bi->blocks_per_row; |
|
bi->col = block % bi->blocks_per_row; |
|
|
|
// test for right edge block |
|
if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) { |
|
bi->block_width = bi->image_width % 4; |
|
} else { |
|
bi->block_width = 4; |
|
} |
|
|
|
// test for bottom edge block |
|
if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) { |
|
bi->block_height = bi->image_height % 4; |
|
} else { |
|
bi->block_height = 4; |
|
} |
|
|
|
return block ? (bi->col * 4) + (bi->row * (prev_frame ? bi->prev_rowstride : bi->rowstride) * 4) : 0; |
|
} |
|
|
|
static uint16_t rgb24_to_rgb555(const uint8_t *rgb24) |
|
{ |
|
uint16_t rgb555 = 0; |
|
uint32_t r, g, b; |
|
|
|
r = rgb24[0]; |
|
g = rgb24[1]; |
|
b = rgb24[2]; |
|
|
|
rgb555 |= (r << 10); |
|
rgb555 |= (g << 5); |
|
rgb555 |= (b << 0); |
|
|
|
return rgb555; |
|
} |
|
|
|
/* |
|
* Returns the total difference between two 24 bit color values |
|
*/ |
|
static int diff_colors(const uint8_t *colorA, const uint8_t *colorB) |
|
{ |
|
int tot; |
|
|
|
tot = SQR(colorA[0] - colorB[0]); |
|
tot += SQR(colorA[1] - colorB[1]); |
|
tot += SQR(colorA[2] - colorB[2]); |
|
|
|
return tot; |
|
} |
|
|
|
/* |
|
* Returns the maximum channel difference |
|
*/ |
|
static int max_component_diff(const uint16_t *colorA, const uint16_t *colorB) |
|
{ |
|
int diff, max = 0; |
|
|
|
diff = FFABS(R(colorA[0]) - R(colorB[0])); |
|
if (diff > max) { |
|
max = diff; |
|
} |
|
diff = FFABS(G(colorA[0]) - G(colorB[0])); |
|
if (diff > max) { |
|
max = diff; |
|
} |
|
diff = FFABS(B(colorA[0]) - B(colorB[0])); |
|
if (diff > max) { |
|
max = diff; |
|
} |
|
return max; |
|
} |
|
|
|
/* |
|
* Find the channel that has the largest difference between minimum and maximum |
|
* color values. Put the minimum value in min, maximum in max and the channel |
|
* in chan. |
|
*/ |
|
static void get_max_component_diff(const BlockInfo *bi, const uint16_t *block_ptr, |
|
uint8_t *min, uint8_t *max, channel_offset *chan) |
|
{ |
|
int x, y; |
|
uint8_t min_r, max_r, min_g, max_g, min_b, max_b; |
|
uint8_t r, g, b; |
|
|
|
// fix warning about uninitialized vars |
|
min_r = min_g = min_b = UINT8_MAX; |
|
max_r = max_g = max_b = 0; |
|
|
|
// loop thru and compare pixels |
|
for (y = 0; y < bi->block_height; y++) { |
|
for (x = 0; x < bi->block_width; x++) { |
|
// TODO: optimize |
|
min_r = FFMIN(R(block_ptr[x]), min_r); |
|
min_g = FFMIN(G(block_ptr[x]), min_g); |
|
min_b = FFMIN(B(block_ptr[x]), min_b); |
|
|
|
max_r = FFMAX(R(block_ptr[x]), max_r); |
|
max_g = FFMAX(G(block_ptr[x]), max_g); |
|
max_b = FFMAX(B(block_ptr[x]), max_b); |
|
} |
|
block_ptr += bi->rowstride; |
|
} |
|
|
|
r = max_r - min_r; |
|
g = max_g - min_g; |
|
b = max_b - min_b; |
|
|
|
if (r > g && r > b) { |
|
*max = max_r; |
|
*min = min_r; |
|
*chan = RED; |
|
} else if (g > b && g >= r) { |
|
*max = max_g; |
|
*min = min_g; |
|
*chan = GREEN; |
|
} else { |
|
*max = max_b; |
|
*min = min_b; |
|
*chan = BLUE; |
|
} |
|
} |
|
|
|
/* |
|
* Compare two 4x4 blocks to determine if the total difference between the |
|
* blocks is greater than the thresh parameter. Returns -1 if difference |
|
* exceeds threshold or zero otherwise. |
|
*/ |
|
static int compare_blocks(const uint16_t *block1, const uint16_t *block2, |
|
const BlockInfo *bi, int thresh) |
|
{ |
|
int x, y, diff = 0; |
|
for (y = 0; y < bi->block_height; y++) { |
|
for (x = 0; x < bi->block_width; x++) { |
|
diff = max_component_diff(&block1[x], &block2[x]); |
|
if (diff >= thresh) { |
|
return -1; |
|
} |
|
} |
|
block1 += bi->prev_rowstride; |
|
block2 += bi->rowstride; |
|
} |
|
return 0; |
|
} |
|
|
|
/* |
|
* Determine the fit of one channel to another within a 4x4 block. This |
|
* is used to determine the best palette choices for 4-color encoding. |
|
*/ |
|
static int leastsquares(const uint16_t *block_ptr, const BlockInfo *bi, |
|
channel_offset xchannel, channel_offset ychannel, |
|
int *slope, int *y_intercept, int *correlation_coef) |
|
{ |
|
int sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0, |
|
sumx_sq = 0, sumy_sq = 0, tmp, tmp2; |
|
int i, j, count; |
|
uint8_t x, y; |
|
|
|
count = bi->block_height * bi->block_width; |
|
|
|
if (count < 2) |
|
return -1; |
|
|
|
for (i = 0; i < bi->block_height; i++) { |
|
for (j = 0; j < bi->block_width; j++) { |
|
x = GET_CHAN(block_ptr[j], xchannel); |
|
y = GET_CHAN(block_ptr[j], ychannel); |
|
sumx += x; |
|
sumy += y; |
|
sumx2 += x * x; |
|
sumy2 += y * y; |
|
sumxy += x * y; |
|
} |
|
block_ptr += bi->rowstride; |
|
} |
|
|
|
sumx_sq = sumx * sumx; |
|
tmp = (count * sumx2 - sumx_sq); |
|
|
|
// guard against div/0 |
|
if (tmp == 0) |
|
return -2; |
|
|
|
sumy_sq = sumy * sumy; |
|
|
|
*slope = (sumx * sumy - sumxy) / tmp; |
|
*y_intercept = (sumy - (*slope) * sumx) / count; |
|
|
|
tmp2 = count * sumy2 - sumy_sq; |
|
if (tmp2 == 0) { |
|
*correlation_coef = 0; |
|
} else { |
|
*correlation_coef = (count * sumxy - sumx * sumy) / |
|
ff_sqrt((unsigned)tmp * tmp2); |
|
} |
|
|
|
return 0; // success |
|
} |
|
|
|
/* |
|
* Determine the amount of error in the leastsquares fit. |
|
*/ |
|
static int calc_lsq_max_fit_error(const uint16_t *block_ptr, const BlockInfo *bi, |
|
int min, int max, int tmp_min, int tmp_max, |
|
channel_offset xchannel, channel_offset ychannel) |
|
{ |
|
int i, j, x, y; |
|
int err; |
|
int max_err = 0; |
|
|
|
for (i = 0; i < bi->block_height; i++) { |
|
for (j = 0; j < bi->block_width; j++) { |
|
int x_inc, lin_y, lin_x; |
|
x = GET_CHAN(block_ptr[j], xchannel); |
|
y = GET_CHAN(block_ptr[j], ychannel); |
|
|
|
/* calculate x_inc as the 4-color index (0..3) */ |
|
x_inc = (x - min) * 3 / (max - min) + 1; |
|
x_inc = FFMAX(FFMIN(3, x_inc), 0); |
|
|
|
/* calculate lin_y corresponding to x_inc */ |
|
lin_y = tmp_min + (tmp_max - tmp_min) * x_inc / 3 + 1; |
|
|
|
err = FFABS(lin_y - y); |
|
if (err > max_err) |
|
max_err = err; |
|
|
|
/* calculate lin_x corresponding to x_inc */ |
|
lin_x = min + (max - min) * x_inc / 3 + 1; |
|
|
|
err = FFABS(lin_x - x); |
|
if (err > max_err) |
|
max_err += err; |
|
} |
|
block_ptr += bi->rowstride; |
|
} |
|
|
|
return max_err; |
|
} |
|
|
|
/* |
|
* Find the closest match to a color within the 4-color palette |
|
*/ |
|
static int match_color(const uint16_t *color, uint8_t colors[4][3]) |
|
{ |
|
int ret = 0; |
|
int smallest_variance = INT_MAX; |
|
uint8_t dithered_color[3]; |
|
|
|
for (int channel = 0; channel < 3; channel++) { |
|
dithered_color[channel] = GET_CHAN(color[0], channel); |
|
} |
|
|
|
for (int palette_entry = 0; palette_entry < 4; palette_entry++) { |
|
int variance = diff_colors(dithered_color, colors[palette_entry]); |
|
|
|
if (variance < smallest_variance) { |
|
smallest_variance = variance; |
|
ret = palette_entry; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
/* |
|
* Encode a block using the 4-color opcode and palette. return number of |
|
* blocks encoded (until we implement multi-block 4 color runs this will |
|
* always be 1) |
|
*/ |
|
static int encode_four_color_block(const uint8_t *min_color, const uint8_t *max_color, |
|
PutBitContext *pb, const uint16_t *block_ptr, const BlockInfo *bi) |
|
{ |
|
const int y_size = FFMIN(4, bi->image_height - bi->row * 4); |
|
const int x_size = FFMIN(4, bi->image_width - bi->col * 4); |
|
uint8_t color4[4][3]; |
|
uint16_t rounded_max, rounded_min; |
|
int idx; |
|
|
|
// round min and max wider |
|
rounded_min = rgb24_to_rgb555(min_color); |
|
rounded_max = rgb24_to_rgb555(max_color); |
|
|
|
// put a and b colors |
|
// encode 4 colors = first 16 bit color with MSB zeroed and... |
|
put_bits(pb, 16, rounded_max & ~0x8000); |
|
// ...second 16 bit color with MSB on. |
|
put_bits(pb, 16, rounded_min | 0x8000); |
|
|
|
get_colors(min_color, max_color, color4); |
|
|
|
for (int y = 0; y < y_size; y++) { |
|
for (int x = 0; x < x_size; x++) { |
|
idx = match_color(&block_ptr[x], color4); |
|
put_bits(pb, 2, idx); |
|
} |
|
|
|
for (int x = x_size; x < 4; x++) |
|
put_bits(pb, 2, idx); |
|
block_ptr += bi->rowstride; |
|
} |
|
|
|
for (int y = y_size; y < 4; y++) { |
|
for (int x = 0; x < 4; x++) |
|
put_bits(pb, 2, 0); |
|
} |
|
return 1; // num blocks encoded |
|
} |
|
|
|
/* |
|
* Copy a 4x4 block from the current frame buffer to the previous frame buffer. |
|
*/ |
|
static void update_block_in_prev_frame(const uint16_t *src_pixels, |
|
uint16_t *dest_pixels, |
|
const BlockInfo *bi, int block_counter) |
|
{ |
|
const int y_size = FFMIN(4, bi->image_height - bi->row * 4); |
|
const int x_size = FFMIN(4, bi->image_width - bi->col * 4) * 2; |
|
|
|
for (int y = 0; y < y_size; y++) { |
|
memcpy(dest_pixels, src_pixels, x_size); |
|
dest_pixels += bi->prev_rowstride; |
|
src_pixels += bi->rowstride; |
|
} |
|
} |
|
|
|
/* |
|
* update statistics for the specified block. If first_block, |
|
* it initializes the statistics. Otherwise it updates the statistics IF THIS |
|
* BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether |
|
* the range of colors (since the routine was called first_block != 0) are |
|
* all close enough intensities to be represented by a single color. |
|
|
|
* The routine returns 0 if this block is too different to be part of |
|
* the same run of 1-color blocks. The routine returns 1 if this |
|
* block can be part of the same 1-color block run. |
|
|
|
* If the routine returns 1, it also updates its arguments to include |
|
* the statistics of this block. Otherwise, the stats are unchanged |
|
* and don't include the current block. |
|
*/ |
|
static int update_block_stats(RpzaContext *s, const BlockInfo *bi, const uint16_t *block, |
|
uint8_t min_color[3], uint8_t max_color[3], |
|
int *total_rgb, int *total_pixels, |
|
uint8_t avg_color[3], int first_block) |
|
{ |
|
int x, y; |
|
int is_in_range; |
|
int total_pixels_blk; |
|
int threshold; |
|
|
|
uint8_t min_color_blk[3], max_color_blk[3]; |
|
int total_rgb_blk[3]; |
|
uint8_t avg_color_blk[3]; |
|
|
|
if (first_block) { |
|
min_color[0] = UINT8_MAX; |
|
min_color[1] = UINT8_MAX; |
|
min_color[2] = UINT8_MAX; |
|
max_color[0] = 0; |
|
max_color[1] = 0; |
|
max_color[2] = 0; |
|
total_rgb[0] = 0; |
|
total_rgb[1] = 0; |
|
total_rgb[2] = 0; |
|
*total_pixels = 0; |
|
threshold = s->start_one_color_thresh; |
|
} else { |
|
threshold = s->continue_one_color_thresh; |
|
} |
|
|
|
/* |
|
The *_blk variables will include the current block. |
|
Initialize them based on the blocks so far. |
|
*/ |
|
min_color_blk[0] = min_color[0]; |
|
min_color_blk[1] = min_color[1]; |
|
min_color_blk[2] = min_color[2]; |
|
max_color_blk[0] = max_color[0]; |
|
max_color_blk[1] = max_color[1]; |
|
max_color_blk[2] = max_color[2]; |
|
total_rgb_blk[0] = total_rgb[0]; |
|
total_rgb_blk[1] = total_rgb[1]; |
|
total_rgb_blk[2] = total_rgb[2]; |
|
total_pixels_blk = *total_pixels + bi->block_height * bi->block_width; |
|
|
|
/* |
|
Update stats for this block's pixels |
|
*/ |
|
for (y = 0; y < bi->block_height; y++) { |
|
for (x = 0; x < bi->block_width; x++) { |
|
total_rgb_blk[0] += R(block[x]); |
|
total_rgb_blk[1] += G(block[x]); |
|
total_rgb_blk[2] += B(block[x]); |
|
|
|
min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]); |
|
min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]); |
|
min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]); |
|
|
|
max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]); |
|
max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]); |
|
max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]); |
|
} |
|
block += bi->rowstride; |
|
} |
|
|
|
/* |
|
Calculate average color including current block. |
|
*/ |
|
avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk; |
|
avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk; |
|
avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk; |
|
|
|
/* |
|
Are all the pixels within threshold of the average color? |
|
*/ |
|
is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold && |
|
max_color_blk[1] - avg_color_blk[1] <= threshold && |
|
max_color_blk[2] - avg_color_blk[2] <= threshold && |
|
avg_color_blk[0] - min_color_blk[0] <= threshold && |
|
avg_color_blk[1] - min_color_blk[1] <= threshold && |
|
avg_color_blk[2] - min_color_blk[2] <= threshold); |
|
|
|
if (is_in_range) { |
|
/* |
|
Set the output variables to include this block. |
|
*/ |
|
min_color[0] = min_color_blk[0]; |
|
min_color[1] = min_color_blk[1]; |
|
min_color[2] = min_color_blk[2]; |
|
max_color[0] = max_color_blk[0]; |
|
max_color[1] = max_color_blk[1]; |
|
max_color[2] = max_color_blk[2]; |
|
total_rgb[0] = total_rgb_blk[0]; |
|
total_rgb[1] = total_rgb_blk[1]; |
|
total_rgb[2] = total_rgb_blk[2]; |
|
*total_pixels = total_pixels_blk; |
|
avg_color[0] = avg_color_blk[0]; |
|
avg_color[1] = avg_color_blk[1]; |
|
avg_color[2] = avg_color_blk[2]; |
|
} |
|
|
|
return is_in_range; |
|
} |
|
|
|
static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict) |
|
{ |
|
BlockInfo bi; |
|
int block_counter = 0; |
|
int n_blocks; |
|
int total_blocks; |
|
int prev_block_offset; |
|
int block_offset = 0; |
|
int pblock_offset = 0; |
|
uint8_t min = 0, max = 0; |
|
channel_offset chan; |
|
int i; |
|
int tmp_min, tmp_max; |
|
int total_rgb[3]; |
|
uint8_t avg_color[3]; |
|
int pixel_count; |
|
uint8_t min_color[3], max_color[3]; |
|
int slope, y_intercept, correlation_coef; |
|
const uint16_t *src_pixels = (const uint16_t *)pict->data[0]; |
|
uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0]; |
|
|
|
/* Number of 4x4 blocks in frame. */ |
|
total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4); |
|
|
|
bi.image_width = s->frame_width; |
|
bi.image_height = s->frame_height; |
|
bi.rowstride = pict->linesize[0] / 2; |
|
bi.prev_rowstride = s->prev_frame->linesize[0] / 2; |
|
|
|
bi.blocks_per_row = (s->frame_width + 3) / 4; |
|
|
|
while (block_counter < total_blocks) { |
|
// SKIP CHECK |
|
// make sure we have a valid previous frame and we're not writing |
|
// a key frame |
|
if (!s->first_frame) { |
|
n_blocks = 0; |
|
prev_block_offset = 0; |
|
|
|
while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { |
|
block_offset = get_block_info(&bi, block_counter + n_blocks, 0); |
|
pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1); |
|
|
|
// multi-block opcodes cannot span multiple rows. |
|
// If we're starting a new row, break out and write the opcode |
|
/* TODO: Should eventually use bi.row here to determine when a |
|
row break occurs, but that is currently breaking the |
|
quicktime player. This is probably due to a bug in the |
|
way I'm calculating the current row. |
|
*/ |
|
if (prev_block_offset && block_offset - prev_block_offset > 12) { |
|
break; |
|
} |
|
|
|
prev_block_offset = block_offset; |
|
|
|
if (compare_blocks(&prev_pixels[pblock_offset], |
|
&src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) { |
|
// write out skipable blocks |
|
if (n_blocks) { |
|
|
|
// write skip opcode |
|
put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); |
|
block_counter += n_blocks; |
|
|
|
goto post_skip; |
|
} |
|
break; |
|
} |
|
|
|
/* |
|
* NOTE: we don't update skipped blocks in the previous frame buffer |
|
* since skipped needs always to be compared against the first skipped |
|
* block to avoid artifacts during gradual fade in/outs. |
|
*/ |
|
|
|
// update_block_in_prev_frame(&src_pixels[block_offset], |
|
// &prev_pixels[pblock_offset], &bi, block_counter + n_blocks); |
|
|
|
n_blocks++; |
|
} |
|
|
|
// we're either at the end of the frame or we've reached the maximum |
|
// of 32 blocks in a run. Write out the run. |
|
if (n_blocks) { |
|
// write skip opcode |
|
put_bits(&s->pb, 8, 0x80 | (n_blocks - 1)); |
|
block_counter += n_blocks; |
|
|
|
continue; |
|
} |
|
|
|
} else { |
|
block_offset = get_block_info(&bi, block_counter, 0); |
|
pblock_offset = get_block_info(&bi, block_counter, 1); |
|
} |
|
post_skip : |
|
|
|
// ONE COLOR CHECK |
|
if (update_block_stats(s, &bi, &src_pixels[block_offset], |
|
min_color, max_color, |
|
total_rgb, &pixel_count, avg_color, 1)) { |
|
prev_block_offset = block_offset; |
|
|
|
n_blocks = 1; |
|
|
|
/* update this block in the previous frame buffer */ |
|
update_block_in_prev_frame(&src_pixels[block_offset], |
|
&prev_pixels[pblock_offset], &bi, block_counter + n_blocks); |
|
|
|
// check for subsequent blocks with the same color |
|
while (n_blocks < 32 && block_counter + n_blocks < total_blocks) { |
|
block_offset = get_block_info(&bi, block_counter + n_blocks, 0); |
|
pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1); |
|
|
|
// multi-block opcodes cannot span multiple rows. |
|
// If we've hit end of a row, break out and write the opcode |
|
if (block_offset - prev_block_offset > 12) { |
|
break; |
|
} |
|
|
|
if (!update_block_stats(s, &bi, &src_pixels[block_offset], |
|
min_color, max_color, |
|
total_rgb, &pixel_count, avg_color, 0)) { |
|
break; |
|
} |
|
|
|
prev_block_offset = block_offset; |
|
|
|
/* update this block in the previous frame buffer */ |
|
update_block_in_prev_frame(&src_pixels[block_offset], |
|
&prev_pixels[pblock_offset], &bi, block_counter + n_blocks); |
|
|
|
n_blocks++; |
|
} |
|
|
|
// write one color opcode. |
|
put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1)); |
|
// write color to encode. |
|
put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color)); |
|
// skip past the blocks we've just encoded. |
|
block_counter += n_blocks; |
|
} else { // FOUR COLOR CHECK |
|
int err = 0; |
|
|
|
// get max component diff for block |
|
get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan); |
|
|
|
min_color[0] = 0; |
|
max_color[0] = 0; |
|
min_color[1] = 0; |
|
max_color[1] = 0; |
|
min_color[2] = 0; |
|
max_color[2] = 0; |
|
|
|
// run least squares against other two components |
|
for (i = 0; i < 3; i++) { |
|
if (i == chan) { |
|
min_color[i] = min; |
|
max_color[i] = max; |
|
continue; |
|
} |
|
|
|
slope = y_intercept = correlation_coef = 0; |
|
|
|
if (leastsquares(&src_pixels[block_offset], &bi, chan, i, |
|
&slope, &y_intercept, &correlation_coef)) { |
|
min_color[i] = GET_CHAN(src_pixels[block_offset], i); |
|
max_color[i] = GET_CHAN(src_pixels[block_offset], i); |
|
} else { |
|
tmp_min = 1 + min * slope + y_intercept; |
|
tmp_max = 1 + max * slope + y_intercept; |
|
|
|
av_assert0(tmp_min <= tmp_max); |
|
// clamp min and max color values |
|
tmp_min = av_clip_uint8(tmp_min); |
|
tmp_max = av_clip_uint8(tmp_max); |
|
|
|
err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi, |
|
min, max, tmp_min, tmp_max, chan, i), err); |
|
|
|
min_color[i] = tmp_min; |
|
max_color[i] = tmp_max; |
|
} |
|
} |
|
|
|
if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK |
|
const uint16_t *row_ptr; |
|
int y_size, x_size, rgb555; |
|
|
|
block_offset = get_block_info(&bi, block_counter, 0); |
|
pblock_offset = get_block_info(&bi, block_counter, 1); |
|
|
|
row_ptr = &src_pixels[block_offset]; |
|
y_size = FFMIN(4, bi.image_height - bi.row * 4); |
|
x_size = FFMIN(4, bi.image_width - bi.col * 4); |
|
|
|
for (int y = 0; y < y_size; y++) { |
|
for (int x = 0; x < x_size; x++) { |
|
rgb555 = row_ptr[x] & ~0x8000; |
|
|
|
put_bits(&s->pb, 16, rgb555); |
|
} |
|
for (int x = x_size; x < 4; x++) |
|
put_bits(&s->pb, 16, 0); |
|
|
|
row_ptr += bi.rowstride; |
|
} |
|
|
|
for (int y = y_size; y < 4; y++) { |
|
for (int x = 0; x < 4; x++) |
|
put_bits(&s->pb, 16, 0); |
|
} |
|
|
|
block_counter++; |
|
} else { // FOUR COLOR BLOCK |
|
block_counter += encode_four_color_block(min_color, max_color, |
|
&s->pb, &src_pixels[block_offset], &bi); |
|
} |
|
|
|
/* update this block in the previous frame buffer */ |
|
update_block_in_prev_frame(&src_pixels[block_offset], |
|
&prev_pixels[pblock_offset], &bi, block_counter); |
|
} |
|
} |
|
} |
|
|
|
static int rpza_encode_init(AVCodecContext *avctx) |
|
{ |
|
RpzaContext *s = avctx->priv_data; |
|
|
|
s->frame_width = avctx->width; |
|
s->frame_height = avctx->height; |
|
|
|
s->prev_frame = av_frame_alloc(); |
|
if (!s->prev_frame) |
|
return AVERROR(ENOMEM); |
|
|
|
return 0; |
|
} |
|
|
|
static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *pict, int *got_packet) |
|
{ |
|
RpzaContext *s = avctx->priv_data; |
|
uint8_t *buf; |
|
int ret = ff_alloc_packet(avctx, pkt, 4LL + 6LL * FFMAX(avctx->height, 4) * FFMAX(avctx->width, 4)); |
|
|
|
if (ret < 0) |
|
return ret; |
|
|
|
init_put_bits(&s->pb, pkt->data, pkt->size); |
|
|
|
// skip 4 byte header, write it later once the size of the chunk is known |
|
put_bits32(&s->pb, 0x00); |
|
|
|
if (!s->prev_frame->data[0]) { |
|
s->first_frame = 1; |
|
s->prev_frame->format = pict->format; |
|
s->prev_frame->width = pict->width; |
|
s->prev_frame->height = pict->height; |
|
ret = av_frame_get_buffer(s->prev_frame, 0); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
s->first_frame = 0; |
|
} |
|
|
|
rpza_encode_stream(s, pict); |
|
|
|
flush_put_bits(&s->pb); |
|
|
|
av_shrink_packet(pkt, put_bytes_output(&s->pb)); |
|
buf = pkt->data; |
|
|
|
// write header opcode |
|
buf[0] = 0xe1; // chunk opcode |
|
|
|
// write chunk length |
|
AV_WB24(buf + 1, pkt->size); |
|
|
|
*got_packet = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static int rpza_encode_end(AVCodecContext *avctx) |
|
{ |
|
RpzaContext *s = (RpzaContext *)avctx->priv_data; |
|
|
|
av_frame_free(&s->prev_frame); |
|
|
|
return 0; |
|
} |
|
|
|
#define OFFSET(x) offsetof(RpzaContext, x) |
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
static const AVOption options[] = { |
|
{ "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, |
|
{ "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, |
|
{ "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE}, |
|
{ "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE}, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass rpza_class = { |
|
.class_name = "rpza", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
const FFCodec ff_rpza_encoder = { |
|
.p.name = "rpza", |
|
CODEC_LONG_NAME("QuickTime video (RPZA)"), |
|
.p.type = AVMEDIA_TYPE_VIDEO, |
|
.p.id = AV_CODEC_ID_RPZA, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, |
|
.priv_data_size = sizeof(RpzaContext), |
|
.p.priv_class = &rpza_class, |
|
.init = rpza_encode_init, |
|
FF_CODEC_ENCODE_CB(rpza_encode_frame), |
|
.close = rpza_encode_end, |
|
.p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555, |
|
AV_PIX_FMT_NONE}, |
|
};
|
|
|