mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1241 lines
44 KiB
1241 lines
44 KiB
/* |
|
* Copyright (c) 2001-2003 The ffmpeg Project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "put_bits.h" |
|
#include "bytestream.h" |
|
#include "adpcm.h" |
|
#include "adpcm_data.h" |
|
|
|
/** |
|
* @file |
|
* ADPCM decoders |
|
* First version by Francois Revol (revol@free.fr) |
|
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
|
* by Mike Melanson (melanson@pcisys.net) |
|
* CD-ROM XA ADPCM codec by BERO |
|
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) |
|
* EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) |
|
* EA IMA EACS decoder by Peter Ross (pross@xvid.org) |
|
* EA IMA SEAD decoder by Peter Ross (pross@xvid.org) |
|
* EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) |
|
* MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) |
|
* THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) |
|
* |
|
* Features and limitations: |
|
* |
|
* Reference documents: |
|
* http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs |
|
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead] |
|
* http://www.geocities.com/SiliconValley/8682/aud3.txt [dead] |
|
* http://openquicktime.sourceforge.net/ |
|
* XAnim sources (xa_codec.c) http://xanim.polter.net/ |
|
* http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead] |
|
* SoX source code http://sox.sourceforge.net/ |
|
* |
|
* CD-ROM XA: |
|
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead] |
|
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead] |
|
* readstr http://www.geocities.co.jp/Playtown/2004/ |
|
*/ |
|
|
|
/* These are for CD-ROM XA ADPCM */ |
|
static const int xa_adpcm_table[5][2] = { |
|
{ 0, 0 }, |
|
{ 60, 0 }, |
|
{ 115, -52 }, |
|
{ 98, -55 }, |
|
{ 122, -60 } |
|
}; |
|
|
|
static const int ea_adpcm_table[] = { |
|
0, 240, 460, 392, |
|
0, 0, -208, -220, |
|
0, 1, 3, 4, |
|
7, 8, 10, 11, |
|
0, -1, -3, -4 |
|
}; |
|
|
|
// padded to zero where table size is less then 16 |
|
static const int swf_index_tables[4][16] = { |
|
/*2*/ { -1, 2 }, |
|
/*3*/ { -1, -1, 2, 4 }, |
|
/*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, |
|
/*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } |
|
}; |
|
|
|
/* end of tables */ |
|
|
|
typedef struct ADPCMDecodeContext { |
|
AVFrame frame; |
|
ADPCMChannelStatus status[6]; |
|
} ADPCMDecodeContext; |
|
|
|
static av_cold int adpcm_decode_init(AVCodecContext * avctx) |
|
{ |
|
ADPCMDecodeContext *c = avctx->priv_data; |
|
unsigned int max_channels = 2; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_EA_R1: |
|
case CODEC_ID_ADPCM_EA_R2: |
|
case CODEC_ID_ADPCM_EA_R3: |
|
case CODEC_ID_ADPCM_EA_XAS: |
|
max_channels = 6; |
|
break; |
|
} |
|
if (avctx->channels <= 0 || avctx->channels > max_channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_CT: |
|
c->status[0].step = c->status[1].step = 511; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->bits_per_coded_sample != 4) { |
|
av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n"); |
|
return -1; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
if (avctx->extradata && avctx->extradata_size == 2 * 4) { |
|
c->status[0].predictor = AV_RL32(avctx->extradata); |
|
c->status[1].predictor = AV_RL32(avctx->extradata + 4); |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
|
|
avcodec_get_frame_defaults(&c->frame); |
|
avctx->coded_frame = &c->frame; |
|
|
|
return 0; |
|
} |
|
|
|
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
|
{ |
|
int step_index; |
|
int predictor; |
|
int sign, delta, diff, step; |
|
|
|
step = ff_adpcm_step_table[c->step_index]; |
|
step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; |
|
if (step_index < 0) step_index = 0; |
|
else if (step_index > 88) step_index = 88; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * step) >> shift; |
|
predictor = c->predictor; |
|
if (sign) predictor -= diff; |
|
else predictor += diff; |
|
|
|
c->predictor = av_clip_int16(predictor); |
|
c->step_index = step_index; |
|
|
|
return (short)c->predictor; |
|
} |
|
|
|
static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift) |
|
{ |
|
int step_index; |
|
int predictor; |
|
int diff, step; |
|
|
|
step = ff_adpcm_step_table[c->step_index]; |
|
step_index = c->step_index + ff_adpcm_index_table[nibble]; |
|
step_index = av_clip(step_index, 0, 88); |
|
|
|
diff = step >> 3; |
|
if (nibble & 4) diff += step; |
|
if (nibble & 2) diff += step >> 1; |
|
if (nibble & 1) diff += step >> 2; |
|
|
|
if (nibble & 8) |
|
predictor = c->predictor - diff; |
|
else |
|
predictor = c->predictor + diff; |
|
|
|
c->predictor = av_clip_int16(predictor); |
|
c->step_index = step_index; |
|
|
|
return c->predictor; |
|
} |
|
|
|
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int predictor; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; |
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = av_clip_int16(predictor); |
|
c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) c->idelta = 16; |
|
|
|
return c->sample1; |
|
} |
|
|
|
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int sign, delta, diff; |
|
int new_step; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * c->step) >> 3; |
|
/* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ |
|
c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); |
|
c->predictor = av_clip_int16(c->predictor); |
|
/* calculate new step and clamp it to range 511..32767 */ |
|
new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8; |
|
c->step = av_clip(new_step, 511, 32767); |
|
|
|
return (short)c->predictor; |
|
} |
|
|
|
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
|
{ |
|
int sign, delta, diff; |
|
|
|
sign = nibble & (1<<(size-1)); |
|
delta = nibble & ((1<<(size-1))-1); |
|
diff = delta << (7 + c->step + shift); |
|
|
|
/* clamp result */ |
|
c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); |
|
|
|
/* calculate new step */ |
|
if (delta >= (2*size - 3) && c->step < 3) |
|
c->step++; |
|
else if (delta == 0 && c->step > 0) |
|
c->step--; |
|
|
|
return (short) c->predictor; |
|
} |
|
|
|
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
|
{ |
|
if(!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8; |
|
c->predictor = av_clip_int16(c->predictor); |
|
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24567); |
|
return c->predictor; |
|
} |
|
|
|
static void xa_decode(short *out, const unsigned char *in, |
|
ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) |
|
{ |
|
int i, j; |
|
int shift,filter,f0,f1; |
|
int s_1,s_2; |
|
int d,s,t; |
|
|
|
for(i=0;i<4;i++) { |
|
|
|
shift = 12 - (in[4+i*2] & 15); |
|
filter = in[4+i*2] >> 4; |
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
s_1 = left->sample1; |
|
s_2 = left->sample2; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)(d<<4)>>4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
s_2 = s_1; |
|
s_1 = av_clip_int16(s); |
|
*out = s_1; |
|
out += inc; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
s_1 = right->sample1; |
|
s_2 = right->sample2; |
|
out = out + 1 - 28*2; |
|
} |
|
|
|
shift = 12 - (in[5+i*2] & 15); |
|
filter = in[5+i*2] >> 4; |
|
|
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)d >> 4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
s_2 = s_1; |
|
s_1 = av_clip_int16(s); |
|
*out = s_1; |
|
out += inc; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
right->sample1 = s_1; |
|
right->sample2 = s_2; |
|
out -= 1; |
|
} else { |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Get the number of samples that will be decoded from the packet. |
|
* In one case, this is actually the maximum number of samples possible to |
|
* decode with the given buf_size. |
|
* |
|
* @param[out] coded_samples set to the number of samples as coded in the |
|
* packet, or 0 if the codec does not encode the |
|
* number of samples in each frame. |
|
*/ |
|
static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf, |
|
int buf_size, int *coded_samples) |
|
{ |
|
ADPCMDecodeContext *s = avctx->priv_data; |
|
int nb_samples = 0; |
|
int ch = avctx->channels; |
|
int has_coded_samples = 0; |
|
int header_size; |
|
|
|
*coded_samples = 0; |
|
|
|
if(ch <= 0) |
|
return 0; |
|
|
|
switch (avctx->codec->id) { |
|
/* constant, only check buf_size */ |
|
case CODEC_ID_ADPCM_EA_XAS: |
|
if (buf_size < 76 * ch) |
|
return 0; |
|
nb_samples = 128; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
if (buf_size < 34 * ch) |
|
return 0; |
|
nb_samples = 64; |
|
break; |
|
/* simple 4-bit adpcm */ |
|
case CODEC_ID_ADPCM_CT: |
|
case CODEC_ID_ADPCM_IMA_EA_SEAD: |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
nb_samples = buf_size * 2 / ch; |
|
break; |
|
} |
|
if (nb_samples) |
|
return nb_samples; |
|
|
|
/* simple 4-bit adpcm, with header */ |
|
header_size = 0; |
|
switch (avctx->codec->id) { |
|
case CODEC_ID_ADPCM_4XM: |
|
case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break; |
|
case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break; |
|
case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break; |
|
} |
|
if (header_size > 0) |
|
return (buf_size - header_size) * 2 / ch; |
|
|
|
/* more complex formats */ |
|
switch (avctx->codec->id) { |
|
case CODEC_ID_ADPCM_EA: |
|
has_coded_samples = 1; |
|
if (buf_size < 4) |
|
return 0; |
|
*coded_samples = AV_RL32(buf); |
|
*coded_samples -= *coded_samples % 28; |
|
nb_samples = (buf_size - 12) / 30 * 28; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_EA_EACS: |
|
has_coded_samples = 1; |
|
if (buf_size < 4) |
|
return 0; |
|
*coded_samples = AV_RL32(buf); |
|
nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch; |
|
break; |
|
case CODEC_ID_ADPCM_EA_MAXIS_XA: |
|
nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch; |
|
break; |
|
case CODEC_ID_ADPCM_EA_R1: |
|
case CODEC_ID_ADPCM_EA_R2: |
|
case CODEC_ID_ADPCM_EA_R3: |
|
/* maximum number of samples */ |
|
/* has internal offsets and a per-frame switch to signal raw 16-bit */ |
|
has_coded_samples = 1; |
|
if (buf_size < 4) |
|
return 0; |
|
switch (avctx->codec->id) { |
|
case CODEC_ID_ADPCM_EA_R1: |
|
header_size = 4 + 9 * ch; |
|
*coded_samples = AV_RL32(buf); |
|
break; |
|
case CODEC_ID_ADPCM_EA_R2: |
|
header_size = 4 + 5 * ch; |
|
*coded_samples = AV_RL32(buf); |
|
break; |
|
case CODEC_ID_ADPCM_EA_R3: |
|
header_size = 4 + 5 * ch; |
|
*coded_samples = AV_RB32(buf); |
|
break; |
|
} |
|
*coded_samples -= *coded_samples % 28; |
|
nb_samples = (buf_size - header_size) * 2 / ch; |
|
nb_samples -= nb_samples % 28; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK3: |
|
if (avctx->block_align > 0) |
|
buf_size = FFMIN(buf_size, avctx->block_align); |
|
nb_samples = ((buf_size - 16) * 8 / 3) / ch; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK4: |
|
nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->block_align > 0) |
|
buf_size = FFMIN(buf_size, avctx->block_align); |
|
nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8; |
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
if (avctx->block_align > 0) |
|
buf_size = FFMIN(buf_size, avctx->block_align); |
|
nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch; |
|
break; |
|
case CODEC_ID_ADPCM_SBPRO_2: |
|
case CODEC_ID_ADPCM_SBPRO_3: |
|
case CODEC_ID_ADPCM_SBPRO_4: |
|
{ |
|
int samples_per_byte; |
|
switch (avctx->codec->id) { |
|
case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break; |
|
case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break; |
|
case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break; |
|
} |
|
if (!s->status[0].step_index) { |
|
nb_samples++; |
|
buf_size -= ch; |
|
} |
|
nb_samples += buf_size * samples_per_byte / ch; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_SWF: |
|
{ |
|
int buf_bits = buf_size * 8 - 2; |
|
int nbits = (buf[0] >> 6) + 2; |
|
int block_hdr_size = 22 * ch; |
|
int block_size = block_hdr_size + nbits * ch * 4095; |
|
int nblocks = buf_bits / block_size; |
|
int bits_left = buf_bits - nblocks * block_size; |
|
nb_samples = nblocks * 4096; |
|
if (bits_left >= block_hdr_size) |
|
nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch); |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_THP: |
|
has_coded_samples = 1; |
|
if (buf_size < 8) |
|
return 0; |
|
*coded_samples = AV_RB32(&buf[4]); |
|
*coded_samples -= *coded_samples % 14; |
|
nb_samples = (buf_size - 80) / (8 * ch) * 14; |
|
break; |
|
case CODEC_ID_ADPCM_XA: |
|
nb_samples = (buf_size / 128) * 224 / ch; |
|
break; |
|
} |
|
|
|
/* validate coded sample count */ |
|
if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
return nb_samples; |
|
} |
|
|
|
/* DK3 ADPCM support macro */ |
|
#define DK3_GET_NEXT_NIBBLE() \ |
|
if (decode_top_nibble_next) \ |
|
{ \ |
|
nibble = last_byte >> 4; \ |
|
decode_top_nibble_next = 0; \ |
|
} \ |
|
else \ |
|
{ \ |
|
if (end_of_packet) \ |
|
break; \ |
|
last_byte = *src++; \ |
|
if (src >= buf + buf_size) \ |
|
end_of_packet = 1; \ |
|
nibble = last_byte & 0x0F; \ |
|
decode_top_nibble_next = 1; \ |
|
} |
|
|
|
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
ADPCMDecodeContext *c = avctx->priv_data; |
|
ADPCMChannelStatus *cs; |
|
int n, m, channel, i; |
|
short *samples; |
|
const uint8_t *src; |
|
int st; /* stereo */ |
|
int count1, count2; |
|
int nb_samples, coded_samples, ret; |
|
|
|
nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples); |
|
if (nb_samples <= 0) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* get output buffer */ |
|
c->frame.nb_samples = nb_samples; |
|
if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return ret; |
|
} |
|
samples = (short *)c->frame.data[0]; |
|
|
|
/* use coded_samples when applicable */ |
|
/* it is always <= nb_samples, so the output buffer will be large enough */ |
|
if (coded_samples) { |
|
if (coded_samples != nb_samples) |
|
av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n"); |
|
c->frame.nb_samples = nb_samples = coded_samples; |
|
} |
|
|
|
src = buf; |
|
|
|
st = avctx->channels == 2 ? 1 : 0; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
/* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples). |
|
Channel data is interleaved per-chunk. */ |
|
for (channel = 0; channel < avctx->channels; channel++) { |
|
int16_t predictor; |
|
int step_index; |
|
cs = &(c->status[channel]); |
|
/* (pppppp) (piiiiiii) */ |
|
|
|
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ |
|
predictor = AV_RB16(src); |
|
step_index = predictor & 0x7F; |
|
predictor &= 0xFF80; |
|
|
|
src += 2; |
|
|
|
if (cs->step_index == step_index) { |
|
int diff = (int)predictor - cs->predictor; |
|
if (diff < 0) |
|
diff = - diff; |
|
if (diff > 0x7f) |
|
goto update; |
|
} else { |
|
update: |
|
cs->step_index = step_index; |
|
cs->predictor = predictor; |
|
} |
|
|
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
|
|
samples = (short *)c->frame.data[0] + channel; |
|
|
|
for (m = 0; m < 32; m++) { |
|
*samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3); |
|
samples += avctx->channels; |
|
*samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3); |
|
samples += avctx->channels; |
|
src ++; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
for(i=0; i<avctx->channels; i++){ |
|
cs = &(c->status[i]); |
|
cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src); |
|
|
|
cs->step_index = *src++; |
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ |
|
} |
|
|
|
for (n = (nb_samples - 1) / 8; n > 0; n--) { |
|
for (i = 0; i < avctx->channels; i++) { |
|
cs = &c->status[i]; |
|
for (m = 0; m < 4; m++) { |
|
uint8_t v = *src++; |
|
*samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); |
|
samples += avctx->channels; |
|
*samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3); |
|
samples += avctx->channels; |
|
} |
|
samples -= 8 * avctx->channels - 1; |
|
} |
|
samples += 7 * avctx->channels; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_4XM: |
|
for (i = 0; i < avctx->channels; i++) |
|
c->status[i].predictor= (int16_t)bytestream_get_le16(&src); |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
c->status[i].step_index= (int16_t)bytestream_get_le16(&src); |
|
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
|
} |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
samples = (short *)c->frame.data[0] + i; |
|
cs = &c->status[i]; |
|
for (n = nb_samples >> 1; n > 0; n--, src++) { |
|
uint8_t v = *src; |
|
*samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4); |
|
samples += avctx->channels; |
|
*samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4); |
|
samples += avctx->channels; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
{ |
|
int block_predictor; |
|
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
block_predictor = av_clip(*src++, 0, 6); |
|
c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; |
|
c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; |
|
if (st) { |
|
block_predictor = av_clip(*src++, 0, 6); |
|
c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; |
|
c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; |
|
} |
|
c->status[0].idelta = (int16_t)bytestream_get_le16(&src); |
|
if (st){ |
|
c->status[1].idelta = (int16_t)bytestream_get_le16(&src); |
|
} |
|
|
|
c->status[0].sample1 = bytestream_get_le16(&src); |
|
if (st) c->status[1].sample1 = bytestream_get_le16(&src); |
|
c->status[0].sample2 = bytestream_get_le16(&src); |
|
if (st) c->status[1].sample2 = bytestream_get_le16(&src); |
|
|
|
*samples++ = c->status[0].sample2; |
|
if (st) *samples++ = c->status[1].sample2; |
|
*samples++ = c->status[0].sample1; |
|
if (st) *samples++ = c->status[1].sample1; |
|
for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) { |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); |
|
} |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_IMA_DK4: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
for (channel = 0; channel < avctx->channels; channel++) { |
|
cs = &c->status[channel]; |
|
cs->predictor = (int16_t)bytestream_get_le16(&src); |
|
cs->step_index = *src++; |
|
src++; |
|
*samples++ = cs->predictor; |
|
} |
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
uint8_t v = *src; |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK3: |
|
{ |
|
unsigned char last_byte = 0; |
|
unsigned char nibble; |
|
int decode_top_nibble_next = 0; |
|
int end_of_packet = 0; |
|
int diff_channel; |
|
|
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
c->status[0].predictor = (int16_t)AV_RL16(src + 10); |
|
c->status[1].predictor = (int16_t)AV_RL16(src + 12); |
|
c->status[0].step_index = src[14]; |
|
c->status[1].step_index = src[15]; |
|
/* sign extend the predictors */ |
|
src += 16; |
|
diff_channel = c->status[1].predictor; |
|
|
|
/* the DK3_GET_NEXT_NIBBLE macro issues the break statement when |
|
* the buffer is consumed */ |
|
while (1) { |
|
|
|
/* for this algorithm, c->status[0] is the sum channel and |
|
* c->status[1] is the diff channel */ |
|
|
|
/* process the first predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the diff channel predictor */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
|
|
|
/* process the first pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
|
|
/* process the second predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the second pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
} |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_IMA_ISS: |
|
for (channel = 0; channel < avctx->channels; channel++) { |
|
cs = &c->status[channel]; |
|
cs->predictor = (int16_t)bytestream_get_le16(&src); |
|
cs->step_index = *src++; |
|
src++; |
|
} |
|
|
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
uint8_t v1, v2; |
|
uint8_t v = *src; |
|
/* nibbles are swapped for mono */ |
|
if (st) { |
|
v1 = v >> 4; |
|
v2 = v & 0x0F; |
|
} else { |
|
v2 = v >> 4; |
|
v1 = v & 0x0F; |
|
} |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
while (src < buf + buf_size) { |
|
uint8_t v = *src++; |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_XA: |
|
while (buf_size >= 128) { |
|
xa_decode(samples, src, &c->status[0], &c->status[1], |
|
avctx->channels); |
|
src += 128; |
|
samples += 28 * 8; |
|
buf_size -= 128; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_EA_EACS: |
|
src += 4; // skip sample count (already read) |
|
|
|
for (i=0; i<=st; i++) |
|
c->status[i].step_index = bytestream_get_le32(&src); |
|
for (i=0; i<=st; i++) |
|
c->status[i].predictor = bytestream_get_le32(&src); |
|
|
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_EA_SEAD: |
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_EA: |
|
{ |
|
int32_t previous_left_sample, previous_right_sample; |
|
int32_t current_left_sample, current_right_sample; |
|
int32_t next_left_sample, next_right_sample; |
|
int32_t coeff1l, coeff2l, coeff1r, coeff2r; |
|
uint8_t shift_left, shift_right; |
|
|
|
/* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, |
|
each coding 28 stereo samples. */ |
|
|
|
if(avctx->channels != 2) |
|
return AVERROR_INVALIDDATA; |
|
|
|
src += 4; // skip sample count (already read) |
|
|
|
current_left_sample = (int16_t)bytestream_get_le16(&src); |
|
previous_left_sample = (int16_t)bytestream_get_le16(&src); |
|
current_right_sample = (int16_t)bytestream_get_le16(&src); |
|
previous_right_sample = (int16_t)bytestream_get_le16(&src); |
|
|
|
for (count1 = 0; count1 < nb_samples / 28; count1++) { |
|
coeff1l = ea_adpcm_table[ *src >> 4 ]; |
|
coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; |
|
coeff1r = ea_adpcm_table[*src & 0x0F]; |
|
coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; |
|
src++; |
|
|
|
shift_left = 20 - (*src >> 4); |
|
shift_right = 20 - (*src & 0x0F); |
|
src++; |
|
|
|
for (count2 = 0; count2 < 28; count2++) { |
|
next_left_sample = sign_extend(*src >> 4, 4) << shift_left; |
|
next_right_sample = sign_extend(*src, 4) << shift_right; |
|
src++; |
|
|
|
next_left_sample = (next_left_sample + |
|
(current_left_sample * coeff1l) + |
|
(previous_left_sample * coeff2l) + 0x80) >> 8; |
|
next_right_sample = (next_right_sample + |
|
(current_right_sample * coeff1r) + |
|
(previous_right_sample * coeff2r) + 0x80) >> 8; |
|
|
|
previous_left_sample = current_left_sample; |
|
current_left_sample = av_clip_int16(next_left_sample); |
|
previous_right_sample = current_right_sample; |
|
current_right_sample = av_clip_int16(next_right_sample); |
|
*samples++ = (unsigned short)current_left_sample; |
|
*samples++ = (unsigned short)current_right_sample; |
|
} |
|
} |
|
|
|
if (src - buf == buf_size - 2) |
|
src += 2; // Skip terminating 0x0000 |
|
|
|
break; |
|
} |
|
case CODEC_ID_ADPCM_EA_MAXIS_XA: |
|
{ |
|
int coeff[2][2], shift[2]; |
|
|
|
for(channel = 0; channel < avctx->channels; channel++) { |
|
for (i=0; i<2; i++) |
|
coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; |
|
shift[channel] = 20 - (*src & 0x0F); |
|
src++; |
|
} |
|
for (count1 = 0; count1 < nb_samples / 2; count1++) { |
|
for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ |
|
for(channel = 0; channel < avctx->channels; channel++) { |
|
int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel]; |
|
sample = (sample + |
|
c->status[channel].sample1 * coeff[channel][0] + |
|
c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; |
|
c->status[channel].sample2 = c->status[channel].sample1; |
|
c->status[channel].sample1 = av_clip_int16(sample); |
|
*samples++ = c->status[channel].sample1; |
|
} |
|
} |
|
src+=avctx->channels; |
|
} |
|
/* consume whole packet */ |
|
src = buf + buf_size; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_EA_R1: |
|
case CODEC_ID_ADPCM_EA_R2: |
|
case CODEC_ID_ADPCM_EA_R3: { |
|
/* channel numbering |
|
2chan: 0=fl, 1=fr |
|
4chan: 0=fl, 1=rl, 2=fr, 3=rr |
|
6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ |
|
const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; |
|
int32_t previous_sample, current_sample, next_sample; |
|
int32_t coeff1, coeff2; |
|
uint8_t shift; |
|
unsigned int channel; |
|
uint16_t *samplesC; |
|
const uint8_t *srcC; |
|
const uint8_t *src_end = buf + buf_size; |
|
int count = 0; |
|
|
|
src += 4; // skip sample count (already read) |
|
|
|
for (channel=0; channel<avctx->channels; channel++) { |
|
int32_t offset = (big_endian ? bytestream_get_be32(&src) |
|
: bytestream_get_le32(&src)) |
|
+ (avctx->channels-channel-1) * 4; |
|
|
|
if ((offset < 0) || (offset >= src_end - src - 4)) break; |
|
srcC = src + offset; |
|
samplesC = samples + channel; |
|
|
|
if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { |
|
current_sample = (int16_t)bytestream_get_le16(&srcC); |
|
previous_sample = (int16_t)bytestream_get_le16(&srcC); |
|
} else { |
|
current_sample = c->status[channel].predictor; |
|
previous_sample = c->status[channel].prev_sample; |
|
} |
|
|
|
for (count1 = 0; count1 < nb_samples / 28; count1++) { |
|
if (*srcC == 0xEE) { /* only seen in R2 and R3 */ |
|
srcC++; |
|
if (srcC > src_end - 30*2) break; |
|
current_sample = (int16_t)bytestream_get_be16(&srcC); |
|
previous_sample = (int16_t)bytestream_get_be16(&srcC); |
|
|
|
for (count2=0; count2<28; count2++) { |
|
*samplesC = (int16_t)bytestream_get_be16(&srcC); |
|
samplesC += avctx->channels; |
|
} |
|
} else { |
|
coeff1 = ea_adpcm_table[ *srcC>>4 ]; |
|
coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; |
|
shift = 20 - (*srcC++ & 0x0F); |
|
|
|
if (srcC > src_end - 14) break; |
|
for (count2=0; count2<28; count2++) { |
|
if (count2 & 1) |
|
next_sample = sign_extend(*srcC++, 4) << shift; |
|
else |
|
next_sample = sign_extend(*srcC >> 4, 4) << shift; |
|
|
|
next_sample += (current_sample * coeff1) + |
|
(previous_sample * coeff2); |
|
next_sample = av_clip_int16(next_sample >> 8); |
|
|
|
previous_sample = current_sample; |
|
current_sample = next_sample; |
|
*samplesC = current_sample; |
|
samplesC += avctx->channels; |
|
} |
|
} |
|
} |
|
if (!count) { |
|
count = count1; |
|
} else if (count != count1) { |
|
av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n"); |
|
count = FFMAX(count, count1); |
|
} |
|
|
|
if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { |
|
c->status[channel].predictor = current_sample; |
|
c->status[channel].prev_sample = previous_sample; |
|
} |
|
} |
|
|
|
c->frame.nb_samples = count * 28; |
|
src = src_end; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_EA_XAS: |
|
for (channel=0; channel<avctx->channels; channel++) { |
|
int coeff[2][4], shift[4]; |
|
short *s2, *s = &samples[channel]; |
|
for (n=0; n<4; n++, s+=32*avctx->channels) { |
|
for (i=0; i<2; i++) |
|
coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; |
|
shift[n] = 20 - (src[2] & 0x0F); |
|
for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) |
|
s2[0] = (src[0]&0xF0) + (src[1]<<8); |
|
} |
|
|
|
for (m=2; m<32; m+=2) { |
|
s = &samples[m*avctx->channels + channel]; |
|
for (n=0; n<4; n++, src++, s+=32*avctx->channels) { |
|
for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { |
|
int level = sign_extend(*src >> (4 - i), 4) << shift[n]; |
|
int pred = s2[-1*avctx->channels] * coeff[0][n] |
|
+ s2[-2*avctx->channels] * coeff[1][n]; |
|
s2[0] = av_clip_int16((level + pred + 0x80) >> 8); |
|
} |
|
} |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_AMV: |
|
case CODEC_ID_ADPCM_IMA_SMJPEG: |
|
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) { |
|
c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16); |
|
c->status[0].step_index = bytestream_get_le16(&src); |
|
src += 4; |
|
} else { |
|
c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16); |
|
c->status[0].step_index = bytestream_get_byte(&src); |
|
src += 1; |
|
} |
|
|
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
char hi, lo; |
|
lo = *src & 0x0F; |
|
hi = *src >> 4; |
|
|
|
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) |
|
FFSWAP(char, hi, lo); |
|
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
lo, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
hi, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_CT: |
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
uint8_t v = *src; |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 ); |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SBPRO_4: |
|
case CODEC_ID_ADPCM_SBPRO_3: |
|
case CODEC_ID_ADPCM_SBPRO_2: |
|
if (!c->status[0].step_index) { |
|
/* the first byte is a raw sample */ |
|
*samples++ = 128 * (*src++ - 0x80); |
|
if (st) |
|
*samples++ = 128 * (*src++ - 0x80); |
|
c->status[0].step_index = 1; |
|
nb_samples--; |
|
} |
|
if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { |
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 4, 4, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x0F, 4, 0); |
|
} |
|
} else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { |
|
for (n = nb_samples / 3; n > 0; n--, src++) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 5 , 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x07, 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] & 0x03, 2, 0); |
|
} |
|
} else { |
|
for (n = nb_samples >> (2 - st); n > 0; n--, src++) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 6 , 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
(src[0] >> 4) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x03, 2, 2); |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SWF: |
|
{ |
|
GetBitContext gb; |
|
const int *table; |
|
int k0, signmask, nb_bits, count; |
|
int size = buf_size*8; |
|
|
|
init_get_bits(&gb, buf, size); |
|
|
|
//read bits & initial values |
|
nb_bits = get_bits(&gb, 2)+2; |
|
//av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); |
|
table = swf_index_tables[nb_bits-2]; |
|
k0 = 1 << (nb_bits-2); |
|
signmask = 1 << (nb_bits-1); |
|
|
|
while (get_bits_count(&gb) <= size - 22*avctx->channels) { |
|
for (i = 0; i < avctx->channels; i++) { |
|
*samples++ = c->status[i].predictor = get_sbits(&gb, 16); |
|
c->status[i].step_index = get_bits(&gb, 6); |
|
} |
|
|
|
for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { |
|
int i; |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
// similar to IMA adpcm |
|
int delta = get_bits(&gb, nb_bits); |
|
int step = ff_adpcm_step_table[c->status[i].step_index]; |
|
long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 |
|
int k = k0; |
|
|
|
do { |
|
if (delta & k) |
|
vpdiff += step; |
|
step >>= 1; |
|
k >>= 1; |
|
} while(k); |
|
vpdiff += step; |
|
|
|
if (delta & signmask) |
|
c->status[i].predictor -= vpdiff; |
|
else |
|
c->status[i].predictor += vpdiff; |
|
|
|
c->status[i].step_index += table[delta & (~signmask)]; |
|
|
|
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
|
c->status[i].predictor = av_clip_int16(c->status[i].predictor); |
|
|
|
*samples++ = c->status[i].predictor; |
|
} |
|
} |
|
} |
|
src += buf_size; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
for (n = nb_samples >> (1 - st); n > 0; n--, src++) { |
|
uint8_t v = *src; |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F); |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 ); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_THP: |
|
{ |
|
int table[2][16]; |
|
int prev[2][2]; |
|
int ch; |
|
|
|
src += 4; // skip channel size |
|
src += 4; // skip number of samples (already read) |
|
|
|
for (i = 0; i < 32; i++) |
|
table[0][i] = (int16_t)bytestream_get_be16(&src); |
|
|
|
/* Initialize the previous sample. */ |
|
for (i = 0; i < 4; i++) |
|
prev[0][i] = (int16_t)bytestream_get_be16(&src); |
|
|
|
for (ch = 0; ch <= st; ch++) { |
|
samples = (short *)c->frame.data[0] + ch; |
|
|
|
/* Read in every sample for this channel. */ |
|
for (i = 0; i < nb_samples / 14; i++) { |
|
int index = (*src >> 4) & 7; |
|
unsigned int exp = *src++ & 15; |
|
int factor1 = table[ch][index * 2]; |
|
int factor2 = table[ch][index * 2 + 1]; |
|
|
|
/* Decode 14 samples. */ |
|
for (n = 0; n < 14; n++) { |
|
int32_t sampledat; |
|
if(n&1) sampledat = sign_extend(*src++, 4); |
|
else sampledat = sign_extend(*src >> 4, 4); |
|
|
|
sampledat = ((prev[ch][0]*factor1 |
|
+ prev[ch][1]*factor2) >> 11) + (sampledat << exp); |
|
*samples = av_clip_int16(sampledat); |
|
prev[ch][1] = prev[ch][0]; |
|
prev[ch][0] = *samples++; |
|
|
|
/* In case of stereo, skip one sample, this sample |
|
is for the other channel. */ |
|
samples += st; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
|
|
default: |
|
return -1; |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
*(AVFrame *)data = c->frame; |
|
|
|
return src - buf; |
|
} |
|
|
|
|
|
#define ADPCM_DECODER(id_, name_, long_name_) \ |
|
AVCodec ff_ ## name_ ## _decoder = { \ |
|
.name = #name_, \ |
|
.type = AVMEDIA_TYPE_AUDIO, \ |
|
.id = id_, \ |
|
.priv_data_size = sizeof(ADPCMDecodeContext), \ |
|
.init = adpcm_decode_init, \ |
|
.decode = adpcm_decode_frame, \ |
|
.capabilities = CODEC_CAP_DR1, \ |
|
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
|
} |
|
|
|
/* Note: Do not forget to add new entries to the Makefile as well. */ |
|
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
|
|
|