mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5280 lines
197 KiB
5280 lines
197 KiB
/* |
|
* H.26L/H.264/AVC/JVT/14496-10/... decoder |
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* H.264 / AVC / MPEG4 part10 codec. |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#define UNCHECKED_BITSTREAM_READER 1 |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/imgutils.h" |
|
#include "libavutil/opt.h" |
|
#include "internal.h" |
|
#include "cabac.h" |
|
#include "cabac_functions.h" |
|
#include "dsputil.h" |
|
#include "error_resilience.h" |
|
#include "avcodec.h" |
|
#include "mpegvideo.h" |
|
#include "h264.h" |
|
#include "h264data.h" |
|
#include "h264chroma.h" |
|
#include "h264_mvpred.h" |
|
#include "golomb.h" |
|
#include "mathops.h" |
|
#include "rectangle.h" |
|
#include "svq3.h" |
|
#include "thread.h" |
|
#include "vdpau_internal.h" |
|
|
|
#include <assert.h> |
|
|
|
static void flush_change(H264Context *h); |
|
|
|
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; |
|
|
|
static const uint8_t rem6[QP_MAX_NUM + 1] = { |
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, |
|
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, |
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, |
|
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, |
|
0, 1, 2, 3, |
|
}; |
|
|
|
static const uint8_t div6[QP_MAX_NUM + 1] = { |
|
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, |
|
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, |
|
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, |
|
10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13, |
|
14,14,14,14, |
|
}; |
|
|
|
static const uint8_t field_scan[16+1] = { |
|
0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4, |
|
0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4, |
|
2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4, |
|
3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, |
|
}; |
|
|
|
static const uint8_t field_scan8x8[64+1] = { |
|
0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8, |
|
1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8, |
|
2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8, |
|
0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8, |
|
2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8, |
|
2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8, |
|
2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8, |
|
3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8, |
|
3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8, |
|
4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8, |
|
4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8, |
|
5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8, |
|
5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8, |
|
7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8, |
|
6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8, |
|
7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8, |
|
}; |
|
|
|
static const uint8_t field_scan8x8_cavlc[64+1] = { |
|
0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8, |
|
2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8, |
|
3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8, |
|
5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8, |
|
0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8, |
|
1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8, |
|
3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8, |
|
5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8, |
|
0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8, |
|
1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8, |
|
3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8, |
|
5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8, |
|
1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8, |
|
1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8, |
|
3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8, |
|
6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8, |
|
}; |
|
|
|
// zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)] |
|
static const uint8_t zigzag_scan8x8_cavlc[64+1] = { |
|
0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8, |
|
4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8, |
|
3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8, |
|
2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8, |
|
1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8, |
|
3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8, |
|
2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8, |
|
3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8, |
|
0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8, |
|
2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8, |
|
1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8, |
|
4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8, |
|
0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8, |
|
1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8, |
|
0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8, |
|
5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8, |
|
}; |
|
|
|
static const uint8_t dequant4_coeff_init[6][3] = { |
|
{ 10, 13, 16 }, |
|
{ 11, 14, 18 }, |
|
{ 13, 16, 20 }, |
|
{ 14, 18, 23 }, |
|
{ 16, 20, 25 }, |
|
{ 18, 23, 29 }, |
|
}; |
|
|
|
static const uint8_t dequant8_coeff_init_scan[16] = { |
|
0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1 |
|
}; |
|
|
|
static const uint8_t dequant8_coeff_init[6][6] = { |
|
{ 20, 18, 32, 19, 25, 24 }, |
|
{ 22, 19, 35, 21, 28, 26 }, |
|
{ 26, 23, 42, 24, 33, 31 }, |
|
{ 28, 25, 45, 26, 35, 33 }, |
|
{ 32, 28, 51, 30, 40, 38 }, |
|
{ 36, 32, 58, 34, 46, 43 }, |
|
}; |
|
|
|
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_420[] = { |
|
#if CONFIG_H264_DXVA2_HWACCEL |
|
AV_PIX_FMT_DXVA2_VLD, |
|
#endif |
|
#if CONFIG_H264_VAAPI_HWACCEL |
|
AV_PIX_FMT_VAAPI_VLD, |
|
#endif |
|
#if CONFIG_H264_VDA_HWACCEL |
|
AV_PIX_FMT_VDA_VLD, |
|
#endif |
|
#if CONFIG_H264_VDPAU_HWACCEL |
|
AV_PIX_FMT_VDPAU, |
|
#endif |
|
AV_PIX_FMT_YUV420P, |
|
AV_PIX_FMT_NONE |
|
}; |
|
|
|
static const enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[] = { |
|
#if CONFIG_H264_DXVA2_HWACCEL |
|
AV_PIX_FMT_DXVA2_VLD, |
|
#endif |
|
#if CONFIG_H264_VAAPI_HWACCEL |
|
AV_PIX_FMT_VAAPI_VLD, |
|
#endif |
|
#if CONFIG_H264_VDA_HWACCEL |
|
AV_PIX_FMT_VDA_VLD, |
|
#endif |
|
#if CONFIG_H264_VDPAU_HWACCEL |
|
AV_PIX_FMT_VDPAU, |
|
#endif |
|
AV_PIX_FMT_YUVJ420P, |
|
AV_PIX_FMT_NONE |
|
}; |
|
|
|
int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
return h ? h->sps.num_reorder_frames : 0; |
|
} |
|
|
|
static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, |
|
int (*mv)[2][4][2], |
|
int mb_x, int mb_y, int mb_intra, int mb_skipped) |
|
{ |
|
H264Context *h = opaque; |
|
|
|
h->mb_x = mb_x; |
|
h->mb_y = mb_y; |
|
h->mb_xy = mb_x + mb_y * h->mb_stride; |
|
memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache)); |
|
av_assert1(ref >= 0); |
|
/* FIXME: It is possible albeit uncommon that slice references |
|
* differ between slices. We take the easy approach and ignore |
|
* it for now. If this turns out to have any relevance in |
|
* practice then correct remapping should be added. */ |
|
if (ref >= h->ref_count[0]) |
|
ref = 0; |
|
if (!h->ref_list[0][ref].f.data[0]) { |
|
av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n"); |
|
ref = 0; |
|
} |
|
if ((h->ref_list[0][ref].reference&3) != 3) { |
|
av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n"); |
|
return; |
|
} |
|
fill_rectangle(&h->cur_pic.ref_index[0][4 * h->mb_xy], |
|
2, 2, 2, ref, 1); |
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); |
|
fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, |
|
pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); |
|
h->mb_mbaff = |
|
h->mb_field_decoding_flag = 0; |
|
ff_h264_hl_decode_mb(h); |
|
} |
|
|
|
void ff_h264_draw_horiz_band(H264Context *h, int y, int height) |
|
{ |
|
AVCodecContext *avctx = h->avctx; |
|
Picture *cur = &h->cur_pic; |
|
Picture *last = h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0] : NULL; |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); |
|
int vshift = desc->log2_chroma_h; |
|
const int field_pic = h->picture_structure != PICT_FRAME; |
|
if (field_pic) { |
|
height <<= 1; |
|
y <<= 1; |
|
} |
|
|
|
height = FFMIN(height, avctx->height - y); |
|
|
|
if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) |
|
return; |
|
|
|
if (avctx->draw_horiz_band) { |
|
AVFrame *src; |
|
int offset[AV_NUM_DATA_POINTERS]; |
|
int i; |
|
|
|
if (cur->f.pict_type == AV_PICTURE_TYPE_B || h->low_delay || |
|
(avctx->slice_flags & SLICE_FLAG_CODED_ORDER)) |
|
src = &cur->f; |
|
else if (last) |
|
src = &last->f; |
|
else |
|
return; |
|
|
|
offset[0] = y * src->linesize[0]; |
|
offset[1] = |
|
offset[2] = (y >> vshift) * src->linesize[1]; |
|
for (i = 3; i < AV_NUM_DATA_POINTERS; i++) |
|
offset[i] = 0; |
|
|
|
emms_c(); |
|
|
|
avctx->draw_horiz_band(avctx, src, offset, |
|
y, h->picture_structure, height); |
|
} |
|
} |
|
|
|
static void unref_picture(H264Context *h, Picture *pic) |
|
{ |
|
int off = offsetof(Picture, tf) + sizeof(pic->tf); |
|
int i; |
|
|
|
if (!pic->f.buf[0]) |
|
return; |
|
|
|
ff_thread_release_buffer(h->avctx, &pic->tf); |
|
av_buffer_unref(&pic->hwaccel_priv_buf); |
|
|
|
av_buffer_unref(&pic->qscale_table_buf); |
|
av_buffer_unref(&pic->mb_type_buf); |
|
for (i = 0; i < 2; i++) { |
|
av_buffer_unref(&pic->motion_val_buf[i]); |
|
av_buffer_unref(&pic->ref_index_buf[i]); |
|
} |
|
|
|
memset((uint8_t*)pic + off, 0, sizeof(*pic) - off); |
|
} |
|
|
|
static void release_unused_pictures(H264Context *h, int remove_current) |
|
{ |
|
int i; |
|
|
|
/* release non reference frames */ |
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) { |
|
if (h->DPB[i].f.buf[0] && !h->DPB[i].reference && |
|
(remove_current || &h->DPB[i] != h->cur_pic_ptr)) { |
|
unref_picture(h, &h->DPB[i]); |
|
} |
|
} |
|
} |
|
|
|
static int ref_picture(H264Context *h, Picture *dst, Picture *src) |
|
{ |
|
int ret, i; |
|
|
|
av_assert0(!dst->f.buf[0]); |
|
av_assert0(src->f.buf[0]); |
|
|
|
src->tf.f = &src->f; |
|
dst->tf.f = &dst->f; |
|
ret = ff_thread_ref_frame(&dst->tf, &src->tf); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
dst->qscale_table_buf = av_buffer_ref(src->qscale_table_buf); |
|
dst->mb_type_buf = av_buffer_ref(src->mb_type_buf); |
|
if (!dst->qscale_table_buf || !dst->mb_type_buf) |
|
goto fail; |
|
dst->qscale_table = src->qscale_table; |
|
dst->mb_type = src->mb_type; |
|
|
|
for (i = 0; i < 2; i++) { |
|
dst->motion_val_buf[i] = av_buffer_ref(src->motion_val_buf[i]); |
|
dst->ref_index_buf[i] = av_buffer_ref(src->ref_index_buf[i]); |
|
if (!dst->motion_val_buf[i] || !dst->ref_index_buf[i]) |
|
goto fail; |
|
dst->motion_val[i] = src->motion_val[i]; |
|
dst->ref_index[i] = src->ref_index[i]; |
|
} |
|
|
|
if (src->hwaccel_picture_private) { |
|
dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf); |
|
if (!dst->hwaccel_priv_buf) |
|
goto fail; |
|
dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data; |
|
} |
|
|
|
for (i = 0; i < 2; i++) |
|
dst->field_poc[i] = src->field_poc[i]; |
|
|
|
memcpy(dst->ref_poc, src->ref_poc, sizeof(src->ref_poc)); |
|
memcpy(dst->ref_count, src->ref_count, sizeof(src->ref_count)); |
|
|
|
dst->poc = src->poc; |
|
dst->frame_num = src->frame_num; |
|
dst->mmco_reset = src->mmco_reset; |
|
dst->pic_id = src->pic_id; |
|
dst->long_ref = src->long_ref; |
|
dst->mbaff = src->mbaff; |
|
dst->field_picture = src->field_picture; |
|
dst->needs_realloc = src->needs_realloc; |
|
dst->reference = src->reference; |
|
dst->crop = src->crop; |
|
dst->crop_left = src->crop_left; |
|
dst->crop_top = src->crop_top; |
|
dst->recovered = src->recovered; |
|
|
|
return 0; |
|
fail: |
|
unref_picture(h, dst); |
|
return ret; |
|
} |
|
|
|
static int alloc_scratch_buffers(H264Context *h, int linesize) |
|
{ |
|
int alloc_size = FFALIGN(FFABS(linesize) + 32, 32); |
|
|
|
if (h->bipred_scratchpad) |
|
return 0; |
|
|
|
h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size); |
|
// edge emu needs blocksize + filter length - 1 |
|
// (= 21x21 for h264) |
|
h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21); |
|
h->me.scratchpad = av_mallocz(alloc_size * 2 * 16 * 2); |
|
|
|
if (!h->bipred_scratchpad || !h->edge_emu_buffer || !h->me.scratchpad) { |
|
av_freep(&h->bipred_scratchpad); |
|
av_freep(&h->edge_emu_buffer); |
|
av_freep(&h->me.scratchpad); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
h->me.temp = h->me.scratchpad; |
|
|
|
return 0; |
|
} |
|
|
|
static int init_table_pools(H264Context *h) |
|
{ |
|
const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1; |
|
const int mb_array_size = h->mb_stride * h->mb_height; |
|
const int b4_stride = h->mb_width * 4 + 1; |
|
const int b4_array_size = b4_stride * h->mb_height * 4; |
|
|
|
h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride, |
|
av_buffer_allocz); |
|
h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) * |
|
sizeof(uint32_t), av_buffer_allocz); |
|
h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) * |
|
sizeof(int16_t), av_buffer_allocz); |
|
h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz); |
|
|
|
if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool || |
|
!h->ref_index_pool) { |
|
av_buffer_pool_uninit(&h->qscale_table_pool); |
|
av_buffer_pool_uninit(&h->mb_type_pool); |
|
av_buffer_pool_uninit(&h->motion_val_pool); |
|
av_buffer_pool_uninit(&h->ref_index_pool); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int alloc_picture(H264Context *h, Picture *pic) |
|
{ |
|
int i, ret = 0; |
|
|
|
av_assert0(!pic->f.data[0]); |
|
|
|
pic->tf.f = &pic->f; |
|
ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ? |
|
AV_GET_BUFFER_FLAG_REF : 0); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
h->linesize = pic->f.linesize[0]; |
|
h->uvlinesize = pic->f.linesize[1]; |
|
pic->crop = h->sps.crop; |
|
pic->crop_top = h->sps.crop_top; |
|
pic->crop_left= h->sps.crop_left; |
|
|
|
if (h->avctx->hwaccel) { |
|
const AVHWAccel *hwaccel = h->avctx->hwaccel; |
|
av_assert0(!pic->hwaccel_picture_private); |
|
if (hwaccel->priv_data_size) { |
|
pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->priv_data_size); |
|
if (!pic->hwaccel_priv_buf) |
|
return AVERROR(ENOMEM); |
|
pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data; |
|
} |
|
} |
|
|
|
if (!h->qscale_table_pool) { |
|
ret = init_table_pools(h); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool); |
|
pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool); |
|
if (!pic->qscale_table_buf || !pic->mb_type_buf) |
|
goto fail; |
|
|
|
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1; |
|
pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1; |
|
|
|
for (i = 0; i < 2; i++) { |
|
pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool); |
|
pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool); |
|
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) |
|
goto fail; |
|
|
|
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4; |
|
pic->ref_index[i] = pic->ref_index_buf[i]->data; |
|
} |
|
|
|
return 0; |
|
fail: |
|
unref_picture(h, pic); |
|
return (ret < 0) ? ret : AVERROR(ENOMEM); |
|
} |
|
|
|
static inline int pic_is_unused(H264Context *h, Picture *pic) |
|
{ |
|
if (!pic->f.buf[0]) |
|
return 1; |
|
if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF)) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
static int find_unused_picture(H264Context *h) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) { |
|
if (pic_is_unused(h, &h->DPB[i])) |
|
break; |
|
} |
|
if (i == MAX_PICTURE_COUNT) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (h->DPB[i].needs_realloc) { |
|
h->DPB[i].needs_realloc = 0; |
|
unref_picture(h, &h->DPB[i]); |
|
} |
|
|
|
return i; |
|
} |
|
|
|
/** |
|
* Check if the top & left blocks are available if needed and |
|
* change the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra4x4_pred_mode(H264Context *h) |
|
{ |
|
static const int8_t top[12] = { |
|
-1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0 |
|
}; |
|
static const int8_t left[12] = { |
|
0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED |
|
}; |
|
int i; |
|
|
|
if (!(h->top_samples_available & 0x8000)) { |
|
for (i = 0; i < 4; i++) { |
|
int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]]; |
|
if (status < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"top block unavailable for requested intra4x4 mode %d at %d %d\n", |
|
status, h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} else if (status) { |
|
h->intra4x4_pred_mode_cache[scan8[0] + i] = status; |
|
} |
|
} |
|
} |
|
|
|
if ((h->left_samples_available & 0x8888) != 0x8888) { |
|
static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 }; |
|
for (i = 0; i < 4; i++) |
|
if (!(h->left_samples_available & mask[i])) { |
|
int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]]; |
|
if (status < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"left block unavailable for requested intra4x4 mode %d at %d %d\n", |
|
status, h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} else if (status) { |
|
h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} // FIXME cleanup like ff_h264_check_intra_pred_mode |
|
|
|
/** |
|
* Check if the top & left blocks are available if needed and |
|
* change the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma) |
|
{ |
|
static const int8_t top[4] = { LEFT_DC_PRED8x8, 1, -1, -1 }; |
|
static const int8_t left[5] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 }; |
|
|
|
if (mode > 3U) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"out of range intra chroma pred mode at %d %d\n", |
|
h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!(h->top_samples_available & 0x8000)) { |
|
mode = top[mode]; |
|
if (mode < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"top block unavailable for requested intra mode at %d %d\n", |
|
h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
if ((h->left_samples_available & 0x8080) != 0x8080) { |
|
mode = left[mode]; |
|
if (is_chroma && (h->left_samples_available & 0x8080)) { |
|
// mad cow disease mode, aka MBAFF + constrained_intra_pred |
|
mode = ALZHEIMER_DC_L0T_PRED8x8 + |
|
(!(h->left_samples_available & 0x8000)) + |
|
2 * (mode == DC_128_PRED8x8); |
|
} |
|
if (mode < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"left block unavailable for requested intra mode at %d %d\n", |
|
h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
return mode; |
|
} |
|
|
|
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, |
|
int *dst_length, int *consumed, int length) |
|
{ |
|
int i, si, di; |
|
uint8_t *dst; |
|
int bufidx; |
|
|
|
// src[0]&0x80; // forbidden bit |
|
h->nal_ref_idc = src[0] >> 5; |
|
h->nal_unit_type = src[0] & 0x1F; |
|
|
|
src++; |
|
length--; |
|
|
|
#define STARTCODE_TEST \ |
|
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ |
|
if (src[i + 2] != 3) { \ |
|
/* startcode, so we must be past the end */ \ |
|
length = i; \ |
|
} \ |
|
break; \ |
|
} |
|
|
|
#if HAVE_FAST_UNALIGNED |
|
#define FIND_FIRST_ZERO \ |
|
if (i > 0 && !src[i]) \ |
|
i--; \ |
|
while (src[i]) \ |
|
i++ |
|
|
|
#if HAVE_FAST_64BIT |
|
for (i = 0; i + 1 < length; i += 9) { |
|
if (!((~AV_RN64A(src + i) & |
|
(AV_RN64A(src + i) - 0x0100010001000101ULL)) & |
|
0x8000800080008080ULL)) |
|
continue; |
|
FIND_FIRST_ZERO; |
|
STARTCODE_TEST; |
|
i -= 7; |
|
} |
|
#else |
|
for (i = 0; i + 1 < length; i += 5) { |
|
if (!((~AV_RN32A(src + i) & |
|
(AV_RN32A(src + i) - 0x01000101U)) & |
|
0x80008080U)) |
|
continue; |
|
FIND_FIRST_ZERO; |
|
STARTCODE_TEST; |
|
i -= 3; |
|
} |
|
#endif |
|
#else |
|
for (i = 0; i + 1 < length; i += 2) { |
|
if (src[i]) |
|
continue; |
|
if (i > 0 && src[i - 1] == 0) |
|
i--; |
|
STARTCODE_TEST; |
|
} |
|
#endif |
|
|
|
// use second escape buffer for inter data |
|
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; |
|
|
|
si = h->rbsp_buffer_size[bufidx]; |
|
av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE); |
|
dst = h->rbsp_buffer[bufidx]; |
|
|
|
if (dst == NULL) |
|
return NULL; |
|
|
|
if(i>=length-1){ //no escaped 0 |
|
*dst_length= length; |
|
*consumed= length+1; //+1 for the header |
|
if(h->avctx->flags2 & CODEC_FLAG2_FAST){ |
|
return src; |
|
}else{ |
|
memcpy(dst, src, length); |
|
return dst; |
|
} |
|
} |
|
|
|
memcpy(dst, src, i); |
|
si = di = i; |
|
while (si + 2 < length) { |
|
// remove escapes (very rare 1:2^22) |
|
if (src[si + 2] > 3) { |
|
dst[di++] = src[si++]; |
|
dst[di++] = src[si++]; |
|
} else if (src[si] == 0 && src[si + 1] == 0) { |
|
if (src[si + 2] == 3) { // escape |
|
dst[di++] = 0; |
|
dst[di++] = 0; |
|
si += 3; |
|
continue; |
|
} else // next start code |
|
goto nsc; |
|
} |
|
|
|
dst[di++] = src[si++]; |
|
} |
|
while (si < length) |
|
dst[di++] = src[si++]; |
|
|
|
nsc: |
|
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
*dst_length = di; |
|
*consumed = si + 1; // +1 for the header |
|
/* FIXME store exact number of bits in the getbitcontext |
|
* (it is needed for decoding) */ |
|
return dst; |
|
} |
|
|
|
/** |
|
* Identify the exact end of the bitstream |
|
* @return the length of the trailing, or 0 if damaged |
|
*/ |
|
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src) |
|
{ |
|
int v = *src; |
|
int r; |
|
|
|
tprintf(h->avctx, "rbsp trailing %X\n", v); |
|
|
|
for (r = 1; r < 9; r++) { |
|
if (v & 1) |
|
return r; |
|
v >>= 1; |
|
} |
|
return 0; |
|
} |
|
|
|
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, |
|
int height, int y_offset, int list) |
|
{ |
|
int raw_my = h->mv_cache[list][scan8[n]][1]; |
|
int filter_height_down = (raw_my & 3) ? 3 : 0; |
|
int full_my = (raw_my >> 2) + y_offset; |
|
int bottom = full_my + filter_height_down + height; |
|
|
|
av_assert2(height >= 0); |
|
|
|
return FFMAX(0, bottom); |
|
} |
|
|
|
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, |
|
int height, int y_offset, int list0, |
|
int list1, int *nrefs) |
|
{ |
|
int my; |
|
|
|
y_offset += 16 * (h->mb_y >> MB_FIELD(h)); |
|
|
|
if (list0) { |
|
int ref_n = h->ref_cache[0][scan8[n]]; |
|
Picture *ref = &h->ref_list[0][ref_n]; |
|
|
|
// Error resilience puts the current picture in the ref list. |
|
// Don't try to wait on these as it will cause a deadlock. |
|
// Fields can wait on each other, though. |
|
if (ref->tf.progress->data != h->cur_pic.tf.progress->data || |
|
(ref->reference & 3) != h->picture_structure) { |
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0); |
|
if (refs[0][ref_n] < 0) |
|
nrefs[0] += 1; |
|
refs[0][ref_n] = FFMAX(refs[0][ref_n], my); |
|
} |
|
} |
|
|
|
if (list1) { |
|
int ref_n = h->ref_cache[1][scan8[n]]; |
|
Picture *ref = &h->ref_list[1][ref_n]; |
|
|
|
if (ref->tf.progress->data != h->cur_pic.tf.progress->data || |
|
(ref->reference & 3) != h->picture_structure) { |
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1); |
|
if (refs[1][ref_n] < 0) |
|
nrefs[1] += 1; |
|
refs[1][ref_n] = FFMAX(refs[1][ref_n], my); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Wait until all reference frames are available for MC operations. |
|
* |
|
* @param h the H264 context |
|
*/ |
|
static void await_references(H264Context *h) |
|
{ |
|
const int mb_xy = h->mb_xy; |
|
const int mb_type = h->cur_pic.mb_type[mb_xy]; |
|
int refs[2][48]; |
|
int nrefs[2] = { 0 }; |
|
int ref, list; |
|
|
|
memset(refs, -1, sizeof(refs)); |
|
|
|
if (IS_16X16(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 16, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
} else if (IS_16X8(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 8, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
get_lowest_part_y(h, refs, 8, 8, 8, |
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); |
|
} else if (IS_8X16(mb_type)) { |
|
get_lowest_part_y(h, refs, 0, 16, 0, |
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); |
|
get_lowest_part_y(h, refs, 4, 16, 0, |
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); |
|
} else { |
|
int i; |
|
|
|
av_assert2(IS_8X8(mb_type)); |
|
|
|
for (i = 0; i < 4; i++) { |
|
const int sub_mb_type = h->sub_mb_type[i]; |
|
const int n = 4 * i; |
|
int y_offset = (i & 2) << 2; |
|
|
|
if (IS_SUB_8X8(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else if (IS_SUB_8X4(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 4, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
get_lowest_part_y(h, refs, n + 2, 4, y_offset + 4, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else if (IS_SUB_4X8(sub_mb_type)) { |
|
get_lowest_part_y(h, refs, n, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
get_lowest_part_y(h, refs, n + 1, 8, y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} else { |
|
int j; |
|
av_assert2(IS_SUB_4X4(sub_mb_type)); |
|
for (j = 0; j < 4; j++) { |
|
int sub_y_offset = y_offset + 2 * (j & 2); |
|
get_lowest_part_y(h, refs, n + j, 4, sub_y_offset, |
|
IS_DIR(sub_mb_type, 0, 0), |
|
IS_DIR(sub_mb_type, 0, 1), |
|
nrefs); |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (list = h->list_count - 1; list >= 0; list--) |
|
for (ref = 0; ref < 48 && nrefs[list]; ref++) { |
|
int row = refs[list][ref]; |
|
if (row >= 0) { |
|
Picture *ref_pic = &h->ref_list[list][ref]; |
|
int ref_field = ref_pic->reference - 1; |
|
int ref_field_picture = ref_pic->field_picture; |
|
int pic_height = 16 * h->mb_height >> ref_field_picture; |
|
|
|
row <<= MB_MBAFF(h); |
|
nrefs[list]--; |
|
|
|
if (!FIELD_PICTURE(h) && ref_field_picture) { // frame referencing two fields |
|
ff_thread_await_progress(&ref_pic->tf, |
|
FFMIN((row >> 1) - !(row & 1), |
|
pic_height - 1), |
|
1); |
|
ff_thread_await_progress(&ref_pic->tf, |
|
FFMIN((row >> 1), pic_height - 1), |
|
0); |
|
} else if (FIELD_PICTURE(h) && !ref_field_picture) { // field referencing one field of a frame |
|
ff_thread_await_progress(&ref_pic->tf, |
|
FFMIN(row * 2 + ref_field, |
|
pic_height - 1), |
|
0); |
|
} else if (FIELD_PICTURE(h)) { |
|
ff_thread_await_progress(&ref_pic->tf, |
|
FFMIN(row, pic_height - 1), |
|
ref_field); |
|
} else { |
|
ff_thread_await_progress(&ref_pic->tf, |
|
FFMIN(row, pic_height - 1), |
|
0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void mc_dir_part(H264Context *h, Picture *pic, |
|
int n, int square, int height, |
|
int delta, int list, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int src_x_offset, int src_y_offset, |
|
qpel_mc_func *qpix_op, |
|
h264_chroma_mc_func chroma_op, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
const int mx = h->mv_cache[list][scan8[n]][0] + src_x_offset * 8; |
|
int my = h->mv_cache[list][scan8[n]][1] + src_y_offset * 8; |
|
const int luma_xy = (mx & 3) + ((my & 3) << 2); |
|
ptrdiff_t offset = ((mx >> 2) << pixel_shift) + (my >> 2) * h->mb_linesize; |
|
uint8_t *src_y = pic->f.data[0] + offset; |
|
uint8_t *src_cb, *src_cr; |
|
int extra_width = 0; |
|
int extra_height = 0; |
|
int emu = 0; |
|
const int full_mx = mx >> 2; |
|
const int full_my = my >> 2; |
|
const int pic_width = 16 * h->mb_width; |
|
const int pic_height = 16 * h->mb_height >> MB_FIELD(h); |
|
int ysh; |
|
|
|
if (mx & 7) |
|
extra_width -= 3; |
|
if (my & 7) |
|
extra_height -= 3; |
|
|
|
if (full_mx < 0 - extra_width || |
|
full_my < 0 - extra_height || |
|
full_mx + 16 /*FIXME*/ > pic_width + extra_width || |
|
full_my + 16 /*FIXME*/ > pic_height + extra_height) { |
|
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, |
|
src_y - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, |
|
full_my - 2, pic_width, pic_height); |
|
src_y = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
emu = 1; |
|
} |
|
|
|
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); |
|
|
|
if (CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY) |
|
return; |
|
|
|
if (chroma_idc == 3 /* yuv444 */) { |
|
src_cb = pic->f.data[1] + offset; |
|
if (emu) { |
|
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, |
|
src_cb - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, |
|
full_mx - 2, full_my - 2, |
|
pic_width, pic_height); |
|
src_cb = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
} |
|
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize); |
|
|
|
src_cr = pic->f.data[2] + offset; |
|
if (emu) { |
|
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, |
|
src_cr - (2 << pixel_shift) - 2 * h->mb_linesize, |
|
h->mb_linesize, h->mb_linesize, |
|
16 + 5, 16 + 5 /*FIXME*/, |
|
full_mx - 2, full_my - 2, |
|
pic_width, pic_height); |
|
src_cr = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; |
|
} |
|
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); // FIXME try variable height perhaps? |
|
if (!square) |
|
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize); |
|
return; |
|
} |
|
|
|
ysh = 3 - (chroma_idc == 2 /* yuv422 */); |
|
if (chroma_idc == 1 /* yuv420 */ && MB_FIELD(h)) { |
|
// chroma offset when predicting from a field of opposite parity |
|
my += 2 * ((h->mb_y & 1) - (pic->reference - 1)); |
|
emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1); |
|
} |
|
|
|
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + |
|
(my >> ysh) * h->mb_uvlinesize; |
|
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + |
|
(my >> ysh) * h->mb_uvlinesize; |
|
|
|
if (emu) { |
|
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, |
|
h->mb_uvlinesize, h->mb_uvlinesize, |
|
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), |
|
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); |
|
src_cb = h->edge_emu_buffer; |
|
} |
|
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, |
|
height >> (chroma_idc == 1 /* yuv420 */), |
|
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); |
|
|
|
if (emu) { |
|
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, |
|
h->mb_uvlinesize, h->mb_uvlinesize, |
|
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), |
|
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); |
|
src_cr = h->edge_emu_buffer; |
|
} |
|
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), |
|
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); |
|
} |
|
|
|
static av_always_inline void mc_part_std(H264Context *h, int n, int square, |
|
int height, int delta, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int x_offset, int y_offset, |
|
qpel_mc_func *qpix_put, |
|
h264_chroma_mc_func chroma_put, |
|
qpel_mc_func *qpix_avg, |
|
h264_chroma_mc_func chroma_avg, |
|
int list0, int list1, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
qpel_mc_func *qpix_op = qpix_put; |
|
h264_chroma_mc_func chroma_op = chroma_put; |
|
|
|
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
} else if (chroma_idc == 2 /* yuv422 */) { |
|
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
} else { /* yuv420 */ |
|
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
} |
|
x_offset += 8 * h->mb_x; |
|
y_offset += 8 * (h->mb_y >> MB_FIELD(h)); |
|
|
|
if (list0) { |
|
Picture *ref = &h->ref_list[0][h->ref_cache[0][scan8[n]]]; |
|
mc_dir_part(h, ref, n, square, height, delta, 0, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_op, chroma_op, pixel_shift, chroma_idc); |
|
|
|
qpix_op = qpix_avg; |
|
chroma_op = chroma_avg; |
|
} |
|
|
|
if (list1) { |
|
Picture *ref = &h->ref_list[1][h->ref_cache[1][scan8[n]]]; |
|
mc_dir_part(h, ref, n, square, height, delta, 1, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_op, chroma_op, pixel_shift, chroma_idc); |
|
} |
|
} |
|
|
|
static av_always_inline void mc_part_weighted(H264Context *h, int n, int square, |
|
int height, int delta, |
|
uint8_t *dest_y, uint8_t *dest_cb, |
|
uint8_t *dest_cr, |
|
int x_offset, int y_offset, |
|
qpel_mc_func *qpix_put, |
|
h264_chroma_mc_func chroma_put, |
|
h264_weight_func luma_weight_op, |
|
h264_weight_func chroma_weight_op, |
|
h264_biweight_func luma_weight_avg, |
|
h264_biweight_func chroma_weight_avg, |
|
int list0, int list1, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
int chroma_height; |
|
|
|
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
chroma_height = height; |
|
chroma_weight_avg = luma_weight_avg; |
|
chroma_weight_op = luma_weight_op; |
|
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; |
|
} else if (chroma_idc == 2 /* yuv422 */) { |
|
chroma_height = height; |
|
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; |
|
} else { /* yuv420 */ |
|
chroma_height = height >> 1; |
|
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; |
|
} |
|
x_offset += 8 * h->mb_x; |
|
y_offset += 8 * (h->mb_y >> MB_FIELD(h)); |
|
|
|
if (list0 && list1) { |
|
/* don't optimize for luma-only case, since B-frames usually |
|
* use implicit weights => chroma too. */ |
|
uint8_t *tmp_cb = h->bipred_scratchpad; |
|
uint8_t *tmp_cr = h->bipred_scratchpad + (16 << pixel_shift); |
|
uint8_t *tmp_y = h->bipred_scratchpad + 16 * h->mb_uvlinesize; |
|
int refn0 = h->ref_cache[0][scan8[n]]; |
|
int refn1 = h->ref_cache[1][scan8[n]]; |
|
|
|
mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0, |
|
dest_y, dest_cb, dest_cr, |
|
x_offset, y_offset, qpix_put, chroma_put, |
|
pixel_shift, chroma_idc); |
|
mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1, |
|
tmp_y, tmp_cb, tmp_cr, |
|
x_offset, y_offset, qpix_put, chroma_put, |
|
pixel_shift, chroma_idc); |
|
|
|
if (h->use_weight == 2) { |
|
int weight0 = h->implicit_weight[refn0][refn1][h->mb_y & 1]; |
|
int weight1 = 64 - weight0; |
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, |
|
height, 5, weight0, weight1, 0); |
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, |
|
chroma_height, 5, weight0, weight1, 0); |
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, |
|
chroma_height, 5, weight0, weight1, 0); |
|
} else { |
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, |
|
h->luma_log2_weight_denom, |
|
h->luma_weight[refn0][0][0], |
|
h->luma_weight[refn1][1][0], |
|
h->luma_weight[refn0][0][1] + |
|
h->luma_weight[refn1][1][1]); |
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn0][0][0][0], |
|
h->chroma_weight[refn1][1][0][0], |
|
h->chroma_weight[refn0][0][0][1] + |
|
h->chroma_weight[refn1][1][0][1]); |
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn0][0][1][0], |
|
h->chroma_weight[refn1][1][1][0], |
|
h->chroma_weight[refn0][0][1][1] + |
|
h->chroma_weight[refn1][1][1][1]); |
|
} |
|
} else { |
|
int list = list1 ? 1 : 0; |
|
int refn = h->ref_cache[list][scan8[n]]; |
|
Picture *ref = &h->ref_list[list][refn]; |
|
mc_dir_part(h, ref, n, square, height, delta, list, |
|
dest_y, dest_cb, dest_cr, x_offset, y_offset, |
|
qpix_put, chroma_put, pixel_shift, chroma_idc); |
|
|
|
luma_weight_op(dest_y, h->mb_linesize, height, |
|
h->luma_log2_weight_denom, |
|
h->luma_weight[refn][list][0], |
|
h->luma_weight[refn][list][1]); |
|
if (h->use_weight_chroma) { |
|
chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn][list][0][0], |
|
h->chroma_weight[refn][list][0][1]); |
|
chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height, |
|
h->chroma_log2_weight_denom, |
|
h->chroma_weight[refn][list][1][0], |
|
h->chroma_weight[refn][list][1][1]); |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void prefetch_motion(H264Context *h, int list, |
|
int pixel_shift, int chroma_idc) |
|
{ |
|
/* fetch pixels for estimated mv 4 macroblocks ahead |
|
* optimized for 64byte cache lines */ |
|
const int refn = h->ref_cache[list][scan8[0]]; |
|
if (refn >= 0) { |
|
const int mx = (h->mv_cache[list][scan8[0]][0] >> 2) + 16 * h->mb_x + 8; |
|
const int my = (h->mv_cache[list][scan8[0]][1] >> 2) + 16 * h->mb_y; |
|
uint8_t **src = h->ref_list[list][refn].f.data; |
|
int off = (mx << pixel_shift) + |
|
(my + (h->mb_x & 3) * 4) * h->mb_linesize + |
|
(64 << pixel_shift); |
|
h->vdsp.prefetch(src[0] + off, h->linesize, 4); |
|
if (chroma_idc == 3 /* yuv444 */) { |
|
h->vdsp.prefetch(src[1] + off, h->linesize, 4); |
|
h->vdsp.prefetch(src[2] + off, h->linesize, 4); |
|
} else { |
|
off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (h->mb_x&7))*h->uvlinesize; |
|
h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2); |
|
} |
|
} |
|
} |
|
|
|
static void free_tables(H264Context *h, int free_rbsp) |
|
{ |
|
int i; |
|
H264Context *hx; |
|
|
|
av_freep(&h->intra4x4_pred_mode); |
|
av_freep(&h->chroma_pred_mode_table); |
|
av_freep(&h->cbp_table); |
|
av_freep(&h->mvd_table[0]); |
|
av_freep(&h->mvd_table[1]); |
|
av_freep(&h->direct_table); |
|
av_freep(&h->non_zero_count); |
|
av_freep(&h->slice_table_base); |
|
h->slice_table = NULL; |
|
av_freep(&h->list_counts); |
|
|
|
av_freep(&h->mb2b_xy); |
|
av_freep(&h->mb2br_xy); |
|
|
|
for (i = 0; i < 3; i++) |
|
av_freep(&h->visualization_buffer[i]); |
|
|
|
av_buffer_pool_uninit(&h->qscale_table_pool); |
|
av_buffer_pool_uninit(&h->mb_type_pool); |
|
av_buffer_pool_uninit(&h->motion_val_pool); |
|
av_buffer_pool_uninit(&h->ref_index_pool); |
|
|
|
if (free_rbsp && h->DPB) { |
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) |
|
unref_picture(h, &h->DPB[i]); |
|
av_freep(&h->DPB); |
|
} else if (h->DPB) { |
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) |
|
h->DPB[i].needs_realloc = 1; |
|
} |
|
|
|
h->cur_pic_ptr = NULL; |
|
|
|
for (i = 0; i < MAX_THREADS; i++) { |
|
hx = h->thread_context[i]; |
|
if (!hx) |
|
continue; |
|
av_freep(&hx->top_borders[1]); |
|
av_freep(&hx->top_borders[0]); |
|
av_freep(&hx->bipred_scratchpad); |
|
av_freep(&hx->edge_emu_buffer); |
|
av_freep(&hx->dc_val_base); |
|
av_freep(&hx->me.scratchpad); |
|
av_freep(&hx->er.mb_index2xy); |
|
av_freep(&hx->er.error_status_table); |
|
av_freep(&hx->er.er_temp_buffer); |
|
av_freep(&hx->er.mbintra_table); |
|
av_freep(&hx->er.mbskip_table); |
|
|
|
if (free_rbsp) { |
|
av_freep(&hx->rbsp_buffer[1]); |
|
av_freep(&hx->rbsp_buffer[0]); |
|
hx->rbsp_buffer_size[0] = 0; |
|
hx->rbsp_buffer_size[1] = 0; |
|
} |
|
if (i) |
|
av_freep(&h->thread_context[i]); |
|
} |
|
} |
|
|
|
static void init_dequant8_coeff_table(H264Context *h) |
|
{ |
|
int i, j, q, x; |
|
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); |
|
|
|
for (i = 0; i < 6; i++) { |
|
h->dequant8_coeff[i] = h->dequant8_buffer[i]; |
|
for (j = 0; j < i; j++) |
|
if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], |
|
64 * sizeof(uint8_t))) { |
|
h->dequant8_coeff[i] = h->dequant8_buffer[j]; |
|
break; |
|
} |
|
if (j < i) |
|
continue; |
|
|
|
for (q = 0; q < max_qp + 1; q++) { |
|
int shift = div6[q]; |
|
int idx = rem6[q]; |
|
for (x = 0; x < 64; x++) |
|
h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] = |
|
((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] * |
|
h->pps.scaling_matrix8[i][x]) << shift; |
|
} |
|
} |
|
} |
|
|
|
static void init_dequant4_coeff_table(H264Context *h) |
|
{ |
|
int i, j, q, x; |
|
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); |
|
for (i = 0; i < 6; i++) { |
|
h->dequant4_coeff[i] = h->dequant4_buffer[i]; |
|
for (j = 0; j < i; j++) |
|
if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], |
|
16 * sizeof(uint8_t))) { |
|
h->dequant4_coeff[i] = h->dequant4_buffer[j]; |
|
break; |
|
} |
|
if (j < i) |
|
continue; |
|
|
|
for (q = 0; q < max_qp + 1; q++) { |
|
int shift = div6[q] + 2; |
|
int idx = rem6[q]; |
|
for (x = 0; x < 16; x++) |
|
h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] = |
|
((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * |
|
h->pps.scaling_matrix4[i][x]) << shift; |
|
} |
|
} |
|
} |
|
|
|
static void init_dequant_tables(H264Context *h) |
|
{ |
|
int i, x; |
|
init_dequant4_coeff_table(h); |
|
if (h->pps.transform_8x8_mode) |
|
init_dequant8_coeff_table(h); |
|
if (h->sps.transform_bypass) { |
|
for (i = 0; i < 6; i++) |
|
for (x = 0; x < 16; x++) |
|
h->dequant4_coeff[i][0][x] = 1 << 6; |
|
if (h->pps.transform_8x8_mode) |
|
for (i = 0; i < 6; i++) |
|
for (x = 0; x < 64; x++) |
|
h->dequant8_coeff[i][0][x] = 1 << 6; |
|
} |
|
} |
|
|
|
int ff_h264_alloc_tables(H264Context *h) |
|
{ |
|
const int big_mb_num = h->mb_stride * (h->mb_height + 1); |
|
const int row_mb_num = 2*h->mb_stride*FFMAX(h->avctx->thread_count, 1); |
|
int x, y, i; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode, |
|
row_mb_num * 8 * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, |
|
big_mb_num * 48 * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, |
|
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, |
|
big_mb_num * sizeof(uint16_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, |
|
4 * big_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
|
|
memset(h->slice_table_base, -1, |
|
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); |
|
h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
for (y = 0; y < h->mb_height; y++) |
|
for (x = 0; x < h->mb_width; x++) { |
|
const int mb_xy = x + y * h->mb_stride; |
|
const int b_xy = 4 * x + 4 * y * h->b_stride; |
|
|
|
h->mb2b_xy[mb_xy] = b_xy; |
|
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); |
|
} |
|
|
|
if (!h->dequant4_coeff[0]) |
|
init_dequant_tables(h); |
|
|
|
if (!h->DPB) { |
|
h->DPB = av_mallocz_array(MAX_PICTURE_COUNT, sizeof(*h->DPB)); |
|
if (!h->DPB) |
|
return AVERROR(ENOMEM); |
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) |
|
avcodec_get_frame_defaults(&h->DPB[i].f); |
|
avcodec_get_frame_defaults(&h->cur_pic.f); |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
free_tables(h, 1); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/** |
|
* Mimic alloc_tables(), but for every context thread. |
|
*/ |
|
static void clone_tables(H264Context *dst, H264Context *src, int i) |
|
{ |
|
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride; |
|
dst->non_zero_count = src->non_zero_count; |
|
dst->slice_table = src->slice_table; |
|
dst->cbp_table = src->cbp_table; |
|
dst->mb2b_xy = src->mb2b_xy; |
|
dst->mb2br_xy = src->mb2br_xy; |
|
dst->chroma_pred_mode_table = src->chroma_pred_mode_table; |
|
dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride; |
|
dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride; |
|
dst->direct_table = src->direct_table; |
|
dst->list_counts = src->list_counts; |
|
dst->DPB = src->DPB; |
|
dst->cur_pic_ptr = src->cur_pic_ptr; |
|
dst->cur_pic = src->cur_pic; |
|
dst->bipred_scratchpad = NULL; |
|
dst->edge_emu_buffer = NULL; |
|
dst->me.scratchpad = NULL; |
|
ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma, |
|
src->sps.chroma_format_idc); |
|
} |
|
|
|
/** |
|
* Init context |
|
* Allocate buffers which are not shared amongst multiple threads. |
|
*/ |
|
static int context_init(H264Context *h) |
|
{ |
|
ERContext *er = &h->er; |
|
int mb_array_size = h->mb_height * h->mb_stride; |
|
int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); |
|
int c_size = h->mb_stride * (h->mb_height + 1); |
|
int yc_size = y_size + 2 * c_size; |
|
int x, y, i; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[0], |
|
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[1], |
|
h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) |
|
|
|
h->ref_cache[0][scan8[5] + 1] = |
|
h->ref_cache[0][scan8[7] + 1] = |
|
h->ref_cache[0][scan8[13] + 1] = |
|
h->ref_cache[1][scan8[5] + 1] = |
|
h->ref_cache[1][scan8[7] + 1] = |
|
h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; |
|
|
|
if (CONFIG_ERROR_RESILIENCE) { |
|
/* init ER */ |
|
er->avctx = h->avctx; |
|
er->dsp = &h->dsp; |
|
er->decode_mb = h264_er_decode_mb; |
|
er->opaque = h; |
|
er->quarter_sample = 1; |
|
|
|
er->mb_num = h->mb_num; |
|
er->mb_width = h->mb_width; |
|
er->mb_height = h->mb_height; |
|
er->mb_stride = h->mb_stride; |
|
er->b8_stride = h->mb_width * 2 + 1; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int), |
|
fail); // error ressilience code looks cleaner with this |
|
for (y = 0; y < h->mb_height; y++) |
|
for (x = 0; x < h->mb_width; x++) |
|
er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; |
|
|
|
er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * |
|
h->mb_stride + h->mb_width; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, |
|
mb_array_size * sizeof(uint8_t), fail); |
|
|
|
FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail); |
|
memset(er->mbintra_table, 1, mb_array_size); |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail); |
|
|
|
FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride, |
|
fail); |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->dc_val_base, yc_size * sizeof(int16_t), fail); |
|
er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2; |
|
er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1; |
|
er->dc_val[2] = er->dc_val[1] + c_size; |
|
for (i = 0; i < yc_size; i++) |
|
h->dc_val_base[i] = 1024; |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
return AVERROR(ENOMEM); // free_tables will clean up for us |
|
} |
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, |
|
int parse_extradata); |
|
|
|
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size) |
|
{ |
|
AVCodecContext *avctx = h->avctx; |
|
int ret; |
|
|
|
if (!buf || size <= 0) |
|
return -1; |
|
|
|
if (buf[0] == 1) { |
|
int i, cnt, nalsize; |
|
const unsigned char *p = buf; |
|
|
|
h->is_avc = 1; |
|
|
|
if (size < 7) { |
|
av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
/* sps and pps in the avcC always have length coded with 2 bytes, |
|
* so put a fake nal_length_size = 2 while parsing them */ |
|
h->nal_length_size = 2; |
|
// Decode sps from avcC |
|
cnt = *(p + 5) & 0x1f; // Number of sps |
|
p += 6; |
|
for (i = 0; i < cnt; i++) { |
|
nalsize = AV_RB16(p) + 2; |
|
if(nalsize > size - (p-buf)) |
|
return AVERROR_INVALIDDATA; |
|
ret = decode_nal_units(h, p, nalsize, 1); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Decoding sps %d from avcC failed\n", i); |
|
return ret; |
|
} |
|
p += nalsize; |
|
} |
|
// Decode pps from avcC |
|
cnt = *(p++); // Number of pps |
|
for (i = 0; i < cnt; i++) { |
|
nalsize = AV_RB16(p) + 2; |
|
if(nalsize > size - (p-buf)) |
|
return AVERROR_INVALIDDATA; |
|
ret = decode_nal_units(h, p, nalsize, 1); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Decoding pps %d from avcC failed\n", i); |
|
return ret; |
|
} |
|
p += nalsize; |
|
} |
|
// Now store right nal length size, that will be used to parse all other nals |
|
h->nal_length_size = (buf[4] & 0x03) + 1; |
|
} else { |
|
h->is_avc = 0; |
|
ret = decode_nal_units(h, buf, size, 1); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
return size; |
|
} |
|
|
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int i; |
|
int ret; |
|
|
|
h->avctx = avctx; |
|
|
|
h->bit_depth_luma = 8; |
|
h->chroma_format_idc = 1; |
|
|
|
h->avctx->bits_per_raw_sample = 8; |
|
h->cur_chroma_format_idc = 1; |
|
|
|
ff_h264dsp_init(&h->h264dsp, 8, 1); |
|
av_assert0(h->sps.bit_depth_chroma == 0); |
|
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); |
|
ff_h264qpel_init(&h->h264qpel, 8); |
|
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1); |
|
|
|
h->dequant_coeff_pps = -1; |
|
h->current_sps_id = -1; |
|
|
|
/* needed so that IDCT permutation is known early */ |
|
if (CONFIG_ERROR_RESILIENCE) |
|
ff_dsputil_init(&h->dsp, h->avctx); |
|
ff_videodsp_init(&h->vdsp, 8); |
|
|
|
memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t)); |
|
memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t)); |
|
|
|
h->picture_structure = PICT_FRAME; |
|
h->slice_context_count = 1; |
|
h->workaround_bugs = avctx->workaround_bugs; |
|
h->flags = avctx->flags; |
|
|
|
/* set defaults */ |
|
// s->decode_mb = ff_h263_decode_mb; |
|
if (!avctx->has_b_frames) |
|
h->low_delay = 1; |
|
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; |
|
|
|
ff_h264_decode_init_vlc(); |
|
|
|
ff_init_cabac_states(); |
|
|
|
h->pixel_shift = 0; |
|
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; |
|
|
|
h->thread_context[0] = h; |
|
h->outputed_poc = h->next_outputed_poc = INT_MIN; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
h->prev_poc_msb = 1 << 16; |
|
h->prev_frame_num = -1; |
|
h->x264_build = -1; |
|
h->sei_fpa.frame_packing_arrangement_cancel_flag = -1; |
|
ff_h264_reset_sei(h); |
|
if (avctx->codec_id == AV_CODEC_ID_H264) { |
|
if (avctx->ticks_per_frame == 1) { |
|
if(h->avctx->time_base.den < INT_MAX/2) { |
|
h->avctx->time_base.den *= 2; |
|
} else |
|
h->avctx->time_base.num /= 2; |
|
} |
|
avctx->ticks_per_frame = 2; |
|
} |
|
|
|
if (avctx->extradata_size > 0 && avctx->extradata) { |
|
ret = ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size); |
|
if (ret < 0) { |
|
ff_h264_free_context(h); |
|
return ret; |
|
} |
|
} |
|
|
|
if (h->sps.bitstream_restriction_flag && |
|
h->avctx->has_b_frames < h->sps.num_reorder_frames) { |
|
h->avctx->has_b_frames = h->sps.num_reorder_frames; |
|
h->low_delay = 0; |
|
} |
|
|
|
avctx->internal->allocate_progress = 1; |
|
|
|
flush_change(h); |
|
|
|
return 0; |
|
} |
|
|
|
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size)))) |
|
#undef REBASE_PICTURE |
|
#define REBASE_PICTURE(pic, new_ctx, old_ctx) \ |
|
((pic && pic >= old_ctx->DPB && \ |
|
pic < old_ctx->DPB + MAX_PICTURE_COUNT) ? \ |
|
&new_ctx->DPB[pic - old_ctx->DPB] : NULL) |
|
|
|
static void copy_picture_range(Picture **to, Picture **from, int count, |
|
H264Context *new_base, |
|
H264Context *old_base) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < count; i++) { |
|
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) || |
|
IN_RANGE(from[i], old_base->DPB, |
|
sizeof(Picture) * MAX_PICTURE_COUNT) || |
|
!from[i])); |
|
to[i] = REBASE_PICTURE(from[i], new_base, old_base); |
|
} |
|
} |
|
|
|
static int copy_parameter_set(void **to, void **from, int count, int size) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < count; i++) { |
|
if (to[i] && !from[i]) { |
|
av_freep(&to[i]); |
|
} else if (from[i] && !to[i]) { |
|
to[i] = av_malloc(size); |
|
if (!to[i]) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (from[i]) |
|
memcpy(to[i], from[i], size); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_init_thread_copy(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
|
|
if (!avctx->internal->is_copy) |
|
return 0; |
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); |
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); |
|
|
|
h->rbsp_buffer[0] = NULL; |
|
h->rbsp_buffer[1] = NULL; |
|
h->rbsp_buffer_size[0] = 0; |
|
h->rbsp_buffer_size[1] = 0; |
|
h->context_initialized = 0; |
|
|
|
return 0; |
|
} |
|
|
|
#define copy_fields(to, from, start_field, end_field) \ |
|
memcpy(&to->start_field, &from->start_field, \ |
|
(char *)&to->end_field - (char *)&to->start_field) |
|
|
|
static int h264_slice_header_init(H264Context *, int); |
|
|
|
static int h264_set_parameter_from_sps(H264Context *h); |
|
|
|
static int decode_update_thread_context(AVCodecContext *dst, |
|
const AVCodecContext *src) |
|
{ |
|
H264Context *h = dst->priv_data, *h1 = src->priv_data; |
|
int inited = h->context_initialized, err = 0; |
|
int context_reinitialized = 0; |
|
int i, ret; |
|
|
|
if (dst == src) |
|
return 0; |
|
|
|
if (inited && |
|
(h->width != h1->width || |
|
h->height != h1->height || |
|
h->mb_width != h1->mb_width || |
|
h->mb_height != h1->mb_height || |
|
h->sps.bit_depth_luma != h1->sps.bit_depth_luma || |
|
h->sps.chroma_format_idc != h1->sps.chroma_format_idc || |
|
h->sps.colorspace != h1->sps.colorspace)) { |
|
|
|
/* set bits_per_raw_sample to the previous value. the check for changed |
|
* bit depth in h264_set_parameter_from_sps() uses it and sets it to |
|
* the current value */ |
|
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; |
|
|
|
av_freep(&h->bipred_scratchpad); |
|
|
|
h->width = h1->width; |
|
h->height = h1->height; |
|
h->mb_height = h1->mb_height; |
|
h->mb_width = h1->mb_width; |
|
h->mb_num = h1->mb_num; |
|
h->mb_stride = h1->mb_stride; |
|
h->b_stride = h1->b_stride; |
|
// SPS/PPS |
|
if ((ret = copy_parameter_set((void **)h->sps_buffers, |
|
(void **)h1->sps_buffers, |
|
MAX_SPS_COUNT, sizeof(SPS))) < 0) |
|
return ret; |
|
h->sps = h1->sps; |
|
if ((ret = copy_parameter_set((void **)h->pps_buffers, |
|
(void **)h1->pps_buffers, |
|
MAX_PPS_COUNT, sizeof(PPS))) < 0) |
|
return ret; |
|
h->pps = h1->pps; |
|
|
|
if ((err = h264_slice_header_init(h, 1)) < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed"); |
|
return err; |
|
} |
|
context_reinitialized = 1; |
|
|
|
#if 0 |
|
h264_set_parameter_from_sps(h); |
|
//Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted |
|
h->cur_chroma_format_idc = h1->cur_chroma_format_idc; |
|
#endif |
|
} |
|
/* update linesize on resize for h264. The h264 decoder doesn't |
|
* necessarily call ff_MPV_frame_start in the new thread */ |
|
h->linesize = h1->linesize; |
|
h->uvlinesize = h1->uvlinesize; |
|
|
|
/* copy block_offset since frame_start may not be called */ |
|
memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset)); |
|
|
|
if (!inited) { |
|
for (i = 0; i < MAX_SPS_COUNT; i++) |
|
av_freep(h->sps_buffers + i); |
|
|
|
for (i = 0; i < MAX_PPS_COUNT; i++) |
|
av_freep(h->pps_buffers + i); |
|
|
|
av_freep(&h->rbsp_buffer[0]); |
|
av_freep(&h->rbsp_buffer[1]); |
|
memcpy(h, h1, offsetof(H264Context, intra_pcm_ptr)); |
|
memcpy(&h->cabac, &h1->cabac, |
|
sizeof(H264Context) - offsetof(H264Context, cabac)); |
|
av_assert0((void*)&h->cabac == &h->mb_padding + 1); |
|
|
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); |
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); |
|
|
|
memset(&h->er, 0, sizeof(h->er)); |
|
memset(&h->me, 0, sizeof(h->me)); |
|
memset(&h->mb, 0, sizeof(h->mb)); |
|
memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc)); |
|
memset(&h->mb_padding, 0, sizeof(h->mb_padding)); |
|
|
|
h->avctx = dst; |
|
h->DPB = NULL; |
|
h->qscale_table_pool = NULL; |
|
h->mb_type_pool = NULL; |
|
h->ref_index_pool = NULL; |
|
h->motion_val_pool = NULL; |
|
for (i = 0; i < 2; i++) { |
|
h->rbsp_buffer[i] = NULL; |
|
h->rbsp_buffer_size[i] = 0; |
|
} |
|
|
|
if (h1->context_initialized) { |
|
h->context_initialized = 0; |
|
|
|
memset(&h->cur_pic, 0, sizeof(h->cur_pic)); |
|
avcodec_get_frame_defaults(&h->cur_pic.f); |
|
h->cur_pic.tf.f = &h->cur_pic.f; |
|
|
|
ret = ff_h264_alloc_tables(h); |
|
if (ret < 0) { |
|
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n"); |
|
return ret; |
|
} |
|
ret = context_init(h); |
|
if (ret < 0) { |
|
av_log(dst, AV_LOG_ERROR, "context_init() failed.\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
h->bipred_scratchpad = NULL; |
|
h->edge_emu_buffer = NULL; |
|
|
|
h->thread_context[0] = h; |
|
h->context_initialized = h1->context_initialized; |
|
} |
|
|
|
h->avctx->coded_height = h1->avctx->coded_height; |
|
h->avctx->coded_width = h1->avctx->coded_width; |
|
h->avctx->width = h1->avctx->width; |
|
h->avctx->height = h1->avctx->height; |
|
h->coded_picture_number = h1->coded_picture_number; |
|
h->first_field = h1->first_field; |
|
h->picture_structure = h1->picture_structure; |
|
h->qscale = h1->qscale; |
|
h->droppable = h1->droppable; |
|
h->data_partitioning = h1->data_partitioning; |
|
h->low_delay = h1->low_delay; |
|
|
|
for (i = 0; h->DPB && i < MAX_PICTURE_COUNT; i++) { |
|
unref_picture(h, &h->DPB[i]); |
|
if (h1->DPB[i].f.buf[0] && |
|
(ret = ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0) |
|
return ret; |
|
} |
|
|
|
h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1); |
|
unref_picture(h, &h->cur_pic); |
|
if (h1->cur_pic.f.buf[0] && (ret = ref_picture(h, &h->cur_pic, &h1->cur_pic)) < 0) |
|
return ret; |
|
|
|
h->workaround_bugs = h1->workaround_bugs; |
|
h->low_delay = h1->low_delay; |
|
h->droppable = h1->droppable; |
|
|
|
// extradata/NAL handling |
|
h->is_avc = h1->is_avc; |
|
|
|
// SPS/PPS |
|
if ((ret = copy_parameter_set((void **)h->sps_buffers, |
|
(void **)h1->sps_buffers, |
|
MAX_SPS_COUNT, sizeof(SPS))) < 0) |
|
return ret; |
|
h->sps = h1->sps; |
|
if ((ret = copy_parameter_set((void **)h->pps_buffers, |
|
(void **)h1->pps_buffers, |
|
MAX_PPS_COUNT, sizeof(PPS))) < 0) |
|
return ret; |
|
h->pps = h1->pps; |
|
|
|
// Dequantization matrices |
|
// FIXME these are big - can they be only copied when PPS changes? |
|
copy_fields(h, h1, dequant4_buffer, dequant4_coeff); |
|
|
|
for (i = 0; i < 6; i++) |
|
h->dequant4_coeff[i] = h->dequant4_buffer[0] + |
|
(h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); |
|
|
|
for (i = 0; i < 6; i++) |
|
h->dequant8_coeff[i] = h->dequant8_buffer[0] + |
|
(h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); |
|
|
|
h->dequant_coeff_pps = h1->dequant_coeff_pps; |
|
|
|
// POC timing |
|
copy_fields(h, h1, poc_lsb, redundant_pic_count); |
|
|
|
// reference lists |
|
copy_fields(h, h1, short_ref, cabac_init_idc); |
|
|
|
copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1); |
|
copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1); |
|
copy_picture_range(h->delayed_pic, h1->delayed_pic, |
|
MAX_DELAYED_PIC_COUNT + 2, h, h1); |
|
|
|
h->frame_recovered = h1->frame_recovered; |
|
|
|
if (context_reinitialized) |
|
h264_set_parameter_from_sps(h); |
|
|
|
if (!h->cur_pic_ptr) |
|
return 0; |
|
|
|
if (!h->droppable) { |
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); |
|
h->prev_poc_msb = h->poc_msb; |
|
h->prev_poc_lsb = h->poc_lsb; |
|
} |
|
h->prev_frame_num_offset = h->frame_num_offset; |
|
h->prev_frame_num = h->frame_num; |
|
h->outputed_poc = h->next_outputed_poc; |
|
|
|
h->recovery_frame = h1->recovery_frame; |
|
|
|
return err; |
|
} |
|
|
|
static int h264_frame_start(H264Context *h) |
|
{ |
|
Picture *pic; |
|
int i, ret; |
|
const int pixel_shift = h->pixel_shift; |
|
int c[4] = { |
|
1<<(h->sps.bit_depth_luma-1), |
|
1<<(h->sps.bit_depth_chroma-1), |
|
1<<(h->sps.bit_depth_chroma-1), |
|
-1 |
|
}; |
|
|
|
if (!ff_thread_can_start_frame(h->avctx)) { |
|
av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n"); |
|
return -1; |
|
} |
|
|
|
release_unused_pictures(h, 1); |
|
h->cur_pic_ptr = NULL; |
|
|
|
i = find_unused_picture(h); |
|
if (i < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n"); |
|
return i; |
|
} |
|
pic = &h->DPB[i]; |
|
|
|
pic->reference = h->droppable ? 0 : h->picture_structure; |
|
pic->f.coded_picture_number = h->coded_picture_number++; |
|
pic->field_picture = h->picture_structure != PICT_FRAME; |
|
|
|
/* |
|
* Zero key_frame here; IDR markings per slice in frame or fields are ORed |
|
* in later. |
|
* See decode_nal_units(). |
|
*/ |
|
pic->f.key_frame = 0; |
|
pic->mmco_reset = 0; |
|
pic->recovered = 0; |
|
|
|
if ((ret = alloc_picture(h, pic)) < 0) |
|
return ret; |
|
if(!h->frame_recovered && !h->avctx->hwaccel && |
|
!(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)) |
|
avpriv_color_frame(&pic->f, c); |
|
|
|
h->cur_pic_ptr = pic; |
|
unref_picture(h, &h->cur_pic); |
|
if ((ret = ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0) |
|
return ret; |
|
|
|
if (CONFIG_ERROR_RESILIENCE) { |
|
ff_er_frame_start(&h->er); |
|
h->er.last_pic = |
|
h->er.next_pic = NULL; |
|
} |
|
|
|
assert(h->linesize && h->uvlinesize); |
|
|
|
for (i = 0; i < 16; i++) { |
|
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3); |
|
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3); |
|
} |
|
for (i = 0; i < 16; i++) { |
|
h->block_offset[16 + i] = |
|
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); |
|
h->block_offset[48 + 16 + i] = |
|
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); |
|
} |
|
|
|
// s->decode = (h->flags & CODEC_FLAG_PSNR) || !s->encoding || |
|
// h->cur_pic.reference /* || h->contains_intra */ || 1; |
|
|
|
/* We mark the current picture as non-reference after allocating it, so |
|
* that if we break out due to an error it can be released automatically |
|
* in the next ff_MPV_frame_start(). |
|
*/ |
|
h->cur_pic_ptr->reference = 0; |
|
|
|
h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX; |
|
|
|
h->next_output_pic = NULL; |
|
|
|
assert(h->cur_pic_ptr->long_ref == 0); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Run setup operations that must be run after slice header decoding. |
|
* This includes finding the next displayed frame. |
|
* |
|
* @param h h264 master context |
|
* @param setup_finished enough NALs have been read that we can call |
|
* ff_thread_finish_setup() |
|
*/ |
|
static void decode_postinit(H264Context *h, int setup_finished) |
|
{ |
|
Picture *out = h->cur_pic_ptr; |
|
Picture *cur = h->cur_pic_ptr; |
|
int i, pics, out_of_order, out_idx; |
|
|
|
h->cur_pic_ptr->f.pict_type = h->pict_type; |
|
|
|
if (h->next_output_pic) |
|
return; |
|
|
|
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { |
|
/* FIXME: if we have two PAFF fields in one packet, we can't start |
|
* the next thread here. If we have one field per packet, we can. |
|
* The check in decode_nal_units() is not good enough to find this |
|
* yet, so we assume the worst for now. */ |
|
// if (setup_finished) |
|
// ff_thread_finish_setup(h->avctx); |
|
return; |
|
} |
|
|
|
cur->f.interlaced_frame = 0; |
|
cur->f.repeat_pict = 0; |
|
|
|
/* Signal interlacing information externally. */ |
|
/* Prioritize picture timing SEI information over used |
|
* decoding process if it exists. */ |
|
|
|
if (h->sps.pic_struct_present_flag) { |
|
switch (h->sei_pic_struct) { |
|
case SEI_PIC_STRUCT_FRAME: |
|
break; |
|
case SEI_PIC_STRUCT_TOP_FIELD: |
|
case SEI_PIC_STRUCT_BOTTOM_FIELD: |
|
cur->f.interlaced_frame = 1; |
|
break; |
|
case SEI_PIC_STRUCT_TOP_BOTTOM: |
|
case SEI_PIC_STRUCT_BOTTOM_TOP: |
|
if (FIELD_OR_MBAFF_PICTURE(h)) |
|
cur->f.interlaced_frame = 1; |
|
else |
|
// try to flag soft telecine progressive |
|
cur->f.interlaced_frame = h->prev_interlaced_frame; |
|
break; |
|
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: |
|
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: |
|
/* Signal the possibility of telecined film externally |
|
* (pic_struct 5,6). From these hints, let the applications |
|
* decide if they apply deinterlacing. */ |
|
cur->f.repeat_pict = 1; |
|
break; |
|
case SEI_PIC_STRUCT_FRAME_DOUBLING: |
|
cur->f.repeat_pict = 2; |
|
break; |
|
case SEI_PIC_STRUCT_FRAME_TRIPLING: |
|
cur->f.repeat_pict = 4; |
|
break; |
|
} |
|
|
|
if ((h->sei_ct_type & 3) && |
|
h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) |
|
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0; |
|
} else { |
|
/* Derive interlacing flag from used decoding process. */ |
|
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE(h); |
|
} |
|
h->prev_interlaced_frame = cur->f.interlaced_frame; |
|
|
|
if (cur->field_poc[0] != cur->field_poc[1]) { |
|
/* Derive top_field_first from field pocs. */ |
|
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1]; |
|
} else { |
|
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) { |
|
/* Use picture timing SEI information. Even if it is a |
|
* information of a past frame, better than nothing. */ |
|
if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || |
|
h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) |
|
cur->f.top_field_first = 1; |
|
else |
|
cur->f.top_field_first = 0; |
|
} else { |
|
/* Most likely progressive */ |
|
cur->f.top_field_first = 0; |
|
} |
|
} |
|
|
|
cur->mmco_reset = h->mmco_reset; |
|
h->mmco_reset = 0; |
|
// FIXME do something with unavailable reference frames |
|
|
|
/* Sort B-frames into display order */ |
|
|
|
if (h->sps.bitstream_restriction_flag && |
|
h->avctx->has_b_frames < h->sps.num_reorder_frames) { |
|
h->avctx->has_b_frames = h->sps.num_reorder_frames; |
|
h->low_delay = 0; |
|
} |
|
|
|
if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && |
|
!h->sps.bitstream_restriction_flag) { |
|
h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1; |
|
h->low_delay = 0; |
|
} |
|
|
|
for (i = 0; 1; i++) { |
|
if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){ |
|
if(i) |
|
h->last_pocs[i-1] = cur->poc; |
|
break; |
|
} else if(i) { |
|
h->last_pocs[i-1]= h->last_pocs[i]; |
|
} |
|
} |
|
out_of_order = MAX_DELAYED_PIC_COUNT - i; |
|
if( cur->f.pict_type == AV_PICTURE_TYPE_B |
|
|| (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2)) |
|
out_of_order = FFMAX(out_of_order, 1); |
|
if (out_of_order == MAX_DELAYED_PIC_COUNT) { |
|
av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]); |
|
for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
h->last_pocs[0] = cur->poc; |
|
cur->mmco_reset = 1; |
|
} else if(h->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){ |
|
av_log(h->avctx, AV_LOG_VERBOSE, "Increasing reorder buffer to %d\n", out_of_order); |
|
h->avctx->has_b_frames = out_of_order; |
|
h->low_delay = 0; |
|
} |
|
|
|
pics = 0; |
|
while (h->delayed_pic[pics]) |
|
pics++; |
|
|
|
av_assert0(pics <= MAX_DELAYED_PIC_COUNT); |
|
|
|
h->delayed_pic[pics++] = cur; |
|
if (cur->reference == 0) |
|
cur->reference = DELAYED_PIC_REF; |
|
|
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; h->delayed_pic[i] && |
|
!h->delayed_pic[i]->f.key_frame && |
|
!h->delayed_pic[i]->mmco_reset; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
if (h->avctx->has_b_frames == 0 && |
|
(h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) |
|
h->next_outputed_poc = INT_MIN; |
|
out_of_order = out->poc < h->next_outputed_poc; |
|
|
|
if (out_of_order || pics > h->avctx->has_b_frames) { |
|
out->reference &= ~DELAYED_PIC_REF; |
|
// for frame threading, the owner must be the second field's thread or |
|
// else the first thread can release the picture and reuse it unsafely |
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
} |
|
if (!out_of_order && pics > h->avctx->has_b_frames) { |
|
h->next_output_pic = out; |
|
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) { |
|
h->next_outputed_poc = INT_MIN; |
|
} else |
|
h->next_outputed_poc = out->poc; |
|
} else { |
|
av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : ""); |
|
} |
|
|
|
if (h->next_output_pic) { |
|
if (h->next_output_pic->recovered) { |
|
// We have reached an recovery point and all frames after it in |
|
// display order are "recovered". |
|
h->frame_recovered |= FRAME_RECOVERED_SEI; |
|
} |
|
h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); |
|
} |
|
|
|
if (setup_finished && !h->avctx->hwaccel) |
|
ff_thread_finish_setup(h->avctx); |
|
} |
|
|
|
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, |
|
uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, |
|
int simple) |
|
{ |
|
uint8_t *top_border; |
|
int top_idx = 1; |
|
const int pixel_shift = h->pixel_shift; |
|
int chroma444 = CHROMA444(h); |
|
int chroma422 = CHROMA422(h); |
|
|
|
src_y -= linesize; |
|
src_cb -= uvlinesize; |
|
src_cr -= uvlinesize; |
|
|
|
if (!simple && FRAME_MBAFF(h)) { |
|
if (h->mb_y & 1) { |
|
if (!MB_MBAFF(h)) { |
|
top_border = h->top_borders[0][h->mb_x]; |
|
AV_COPY128(top_border, src_y + 15 * linesize); |
|
if (pixel_shift) |
|
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16); |
|
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16); |
|
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize); |
|
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16); |
|
} else { |
|
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize); |
|
} |
|
} else if (chroma422) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize); |
|
} |
|
} else { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); |
|
} |
|
} |
|
} |
|
} |
|
} else if (MB_MBAFF(h)) { |
|
top_idx = 0; |
|
} else |
|
return; |
|
} |
|
|
|
top_border = h->top_borders[top_idx][h->mb_x]; |
|
/* There are two lines saved, the line above the top macroblock |
|
* of a pair, and the line above the bottom macroblock. */ |
|
AV_COPY128(top_border, src_y + 16 * linesize); |
|
if (pixel_shift) |
|
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16); |
|
|
|
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 16 * linesize); |
|
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16); |
|
AV_COPY128(top_border + 64, src_cr + 16 * linesize); |
|
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16); |
|
} else { |
|
AV_COPY128(top_border + 16, src_cb + 16 * linesize); |
|
AV_COPY128(top_border + 32, src_cr + 16 * linesize); |
|
} |
|
} else if (chroma422) { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize); |
|
} |
|
} else { |
|
if (pixel_shift) { |
|
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize); |
|
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize); |
|
} else { |
|
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize); |
|
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y, |
|
uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, |
|
int xchg, int chroma444, |
|
int simple, int pixel_shift) |
|
{ |
|
int deblock_topleft; |
|
int deblock_top; |
|
int top_idx = 1; |
|
uint8_t *top_border_m1; |
|
uint8_t *top_border; |
|
|
|
if (!simple && FRAME_MBAFF(h)) { |
|
if (h->mb_y & 1) { |
|
if (!MB_MBAFF(h)) |
|
return; |
|
} else { |
|
top_idx = MB_MBAFF(h) ? 0 : 1; |
|
} |
|
} |
|
|
|
if (h->deblocking_filter == 2) { |
|
deblock_topleft = h->slice_table[h->mb_xy - 1 - h->mb_stride] == h->slice_num; |
|
deblock_top = h->top_type; |
|
} else { |
|
deblock_topleft = (h->mb_x > 0); |
|
deblock_top = (h->mb_y > !!MB_FIELD(h)); |
|
} |
|
|
|
src_y -= linesize + 1 + pixel_shift; |
|
src_cb -= uvlinesize + 1 + pixel_shift; |
|
src_cr -= uvlinesize + 1 + pixel_shift; |
|
|
|
top_border_m1 = h->top_borders[top_idx][h->mb_x - 1]; |
|
top_border = h->top_borders[top_idx][h->mb_x]; |
|
|
|
#define XCHG(a, b, xchg) \ |
|
if (pixel_shift) { \ |
|
if (xchg) { \ |
|
AV_SWAP64(b + 0, a + 0); \ |
|
AV_SWAP64(b + 8, a + 8); \ |
|
} else { \ |
|
AV_COPY128(b, a); \ |
|
} \ |
|
} else if (xchg) \ |
|
AV_SWAP64(b, a); \ |
|
else \ |
|
AV_COPY64(b, a); |
|
|
|
if (deblock_top) { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (8 << pixel_shift), |
|
src_y - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1); |
|
if (h->mb_x + 1 < h->mb_width) { |
|
XCHG(h->top_borders[top_idx][h->mb_x + 1], |
|
src_y + (17 << pixel_shift), 1); |
|
} |
|
if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { |
|
if (chroma444) { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1); |
|
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1); |
|
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg); |
|
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1); |
|
if (h->mb_x + 1 < h->mb_width) { |
|
XCHG(h->top_borders[top_idx][h->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1); |
|
XCHG(h->top_borders[top_idx][h->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1); |
|
} |
|
} else { |
|
if (deblock_topleft) { |
|
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1); |
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1); |
|
} |
|
XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1); |
|
XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth, |
|
int index) |
|
{ |
|
if (high_bit_depth) { |
|
return AV_RN32A(((int32_t *)mb) + index); |
|
} else |
|
return AV_RN16A(mb + index); |
|
} |
|
|
|
static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth, |
|
int index, int value) |
|
{ |
|
if (high_bit_depth) { |
|
AV_WN32A(((int32_t *)mb) + index, value); |
|
} else |
|
AV_WN16A(mb + index, value); |
|
} |
|
|
|
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, |
|
int mb_type, int is_h264, |
|
int simple, |
|
int transform_bypass, |
|
int pixel_shift, |
|
int *block_offset, |
|
int linesize, |
|
uint8_t *dest_y, int p) |
|
{ |
|
void (*idct_add)(uint8_t *dst, int16_t *block, int stride); |
|
void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride); |
|
int i; |
|
int qscale = p == 0 ? h->qscale : h->chroma_qp[p - 1]; |
|
block_offset += 16 * p; |
|
if (IS_INTRA4x4(mb_type)) { |
|
if (IS_8x8DCT(mb_type)) { |
|
if (transform_bypass) { |
|
idct_dc_add = |
|
idct_add = h->h264dsp.h264_add_pixels8_clear; |
|
} else { |
|
idct_dc_add = h->h264dsp.h264_idct8_dc_add; |
|
idct_add = h->h264dsp.h264_idct8_add; |
|
} |
|
for (i = 0; i < 16; i += 4) { |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; |
|
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { |
|
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else { |
|
const int nnz = h->non_zero_count_cache[scan8[i + p * 16]]; |
|
h->hpc.pred8x8l[dir](ptr, (h->topleft_samples_available << i) & 0x8000, |
|
(h->topright_samples_available << i) & 0x4000, linesize); |
|
if (nnz) { |
|
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
else |
|
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} |
|
} |
|
} |
|
} else { |
|
if (transform_bypass) { |
|
idct_dc_add = |
|
idct_add = h->h264dsp.h264_add_pixels4_clear; |
|
} else { |
|
idct_dc_add = h->h264dsp.h264_idct_dc_add; |
|
idct_add = h->h264dsp.h264_idct_add; |
|
} |
|
for (i = 0; i < 16; i++) { |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; |
|
|
|
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { |
|
h->hpc.pred4x4_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else { |
|
uint8_t *topright; |
|
int nnz, tr; |
|
uint64_t tr_high; |
|
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) { |
|
const int topright_avail = (h->topright_samples_available << i) & 0x8000; |
|
av_assert2(h->mb_y || linesize <= block_offset[i]); |
|
if (!topright_avail) { |
|
if (pixel_shift) { |
|
tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL; |
|
topright = (uint8_t *)&tr_high; |
|
} else { |
|
tr = ptr[3 - linesize] * 0x01010101u; |
|
topright = (uint8_t *)&tr; |
|
} |
|
} else |
|
topright = ptr + (4 << pixel_shift) - linesize; |
|
} else |
|
topright = NULL; |
|
|
|
h->hpc.pred4x4[dir](ptr, topright, linesize); |
|
nnz = h->non_zero_count_cache[scan8[i + p * 16]]; |
|
if (nnz) { |
|
if (is_h264) { |
|
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
else |
|
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); |
|
} else if (CONFIG_SVQ3_DECODER) |
|
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, qscale, 0); |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
h->hpc.pred16x16[h->intra16x16_pred_mode](dest_y, linesize); |
|
if (is_h264) { |
|
if (h->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) { |
|
if (!transform_bypass) |
|
h->h264dsp.h264_luma_dc_dequant_idct(h->mb + (p * 256 << pixel_shift), |
|
h->mb_luma_dc[p], |
|
h->dequant4_coeff[p][qscale][0]); |
|
else { |
|
static const uint8_t dc_mapping[16] = { |
|
0 * 16, 1 * 16, 4 * 16, 5 * 16, |
|
2 * 16, 3 * 16, 6 * 16, 7 * 16, |
|
8 * 16, 9 * 16, 12 * 16, 13 * 16, |
|
10 * 16, 11 * 16, 14 * 16, 15 * 16 |
|
}; |
|
for (i = 0; i < 16; i++) |
|
dctcoef_set(h->mb + (p * 256 << pixel_shift), |
|
pixel_shift, dc_mapping[i], |
|
dctcoef_get(h->mb_luma_dc[p], |
|
pixel_shift, i)); |
|
} |
|
} |
|
} else if (CONFIG_SVQ3_DECODER) |
|
ff_svq3_luma_dc_dequant_idct_c(h->mb + p * 256, |
|
h->mb_luma_dc[p], qscale); |
|
} |
|
} |
|
|
|
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, |
|
int is_h264, int simple, |
|
int transform_bypass, |
|
int pixel_shift, |
|
int *block_offset, |
|
int linesize, |
|
uint8_t *dest_y, int p) |
|
{ |
|
void (*idct_add)(uint8_t *dst, int16_t *block, int stride); |
|
int i; |
|
block_offset += 16 * p; |
|
if (!IS_INTRA4x4(mb_type)) { |
|
if (is_h264) { |
|
if (IS_INTRA16x16(mb_type)) { |
|
if (transform_bypass) { |
|
if (h->sps.profile_idc == 244 && |
|
(h->intra16x16_pred_mode == VERT_PRED8x8 || |
|
h->intra16x16_pred_mode == HOR_PRED8x8)) { |
|
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize); |
|
} else { |
|
for (i = 0; i < 16; i++) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]] || |
|
dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) |
|
h->h264dsp.h264_add_pixels4_clear(dest_y + block_offset[i], |
|
h->mb + (i * 16 + p * 256 << pixel_shift), |
|
linesize); |
|
} |
|
} else { |
|
h->h264dsp.h264_idct_add16intra(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
} |
|
} else if (h->cbp & 15) { |
|
if (transform_bypass) { |
|
const int di = IS_8x8DCT(mb_type) ? 4 : 1; |
|
idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8_clear |
|
: h->h264dsp.h264_add_pixels4_clear; |
|
for (i = 0; i < 16; i += di) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]]) |
|
idct_add(dest_y + block_offset[i], |
|
h->mb + (i * 16 + p * 256 << pixel_shift), |
|
linesize); |
|
} else { |
|
if (IS_8x8DCT(mb_type)) |
|
h->h264dsp.h264_idct8_add4(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
else |
|
h->h264dsp.h264_idct_add16(dest_y, block_offset, |
|
h->mb + (p * 256 << pixel_shift), |
|
linesize, |
|
h->non_zero_count_cache + p * 5 * 8); |
|
} |
|
} |
|
} else if (CONFIG_SVQ3_DECODER) { |
|
for (i = 0; i < 16; i++) |
|
if (h->non_zero_count_cache[scan8[i + p * 16]] || h->mb[i * 16 + p * 256]) { |
|
// FIXME benchmark weird rule, & below |
|
uint8_t *const ptr = dest_y + block_offset[i]; |
|
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, |
|
h->qscale, IS_INTRA(mb_type) ? 1 : 0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#define BITS 8 |
|
#define SIMPLE 1 |
|
#include "h264_mb_template.c" |
|
|
|
#undef BITS |
|
#define BITS 16 |
|
#include "h264_mb_template.c" |
|
|
|
#undef SIMPLE |
|
#define SIMPLE 0 |
|
#include "h264_mb_template.c" |
|
|
|
void ff_h264_hl_decode_mb(H264Context *h) |
|
{ |
|
const int mb_xy = h->mb_xy; |
|
const int mb_type = h->cur_pic.mb_type[mb_xy]; |
|
int is_complex = CONFIG_SMALL || h->is_complex || |
|
IS_INTRA_PCM(mb_type) || h->qscale == 0; |
|
|
|
if (CHROMA444(h)) { |
|
if (is_complex || h->pixel_shift) |
|
hl_decode_mb_444_complex(h); |
|
else |
|
hl_decode_mb_444_simple_8(h); |
|
} else if (is_complex) { |
|
hl_decode_mb_complex(h); |
|
} else if (h->pixel_shift) { |
|
hl_decode_mb_simple_16(h); |
|
} else |
|
hl_decode_mb_simple_8(h); |
|
} |
|
|
|
int ff_pred_weight_table(H264Context *h) |
|
{ |
|
int list, i; |
|
int luma_def, chroma_def; |
|
|
|
h->use_weight = 0; |
|
h->use_weight_chroma = 0; |
|
h->luma_log2_weight_denom = get_ue_golomb(&h->gb); |
|
if (h->sps.chroma_format_idc) |
|
h->chroma_log2_weight_denom = get_ue_golomb(&h->gb); |
|
luma_def = 1 << h->luma_log2_weight_denom; |
|
chroma_def = 1 << h->chroma_log2_weight_denom; |
|
|
|
for (list = 0; list < 2; list++) { |
|
h->luma_weight_flag[list] = 0; |
|
h->chroma_weight_flag[list] = 0; |
|
for (i = 0; i < h->ref_count[list]; i++) { |
|
int luma_weight_flag, chroma_weight_flag; |
|
|
|
luma_weight_flag = get_bits1(&h->gb); |
|
if (luma_weight_flag) { |
|
h->luma_weight[i][list][0] = get_se_golomb(&h->gb); |
|
h->luma_weight[i][list][1] = get_se_golomb(&h->gb); |
|
if (h->luma_weight[i][list][0] != luma_def || |
|
h->luma_weight[i][list][1] != 0) { |
|
h->use_weight = 1; |
|
h->luma_weight_flag[list] = 1; |
|
} |
|
} else { |
|
h->luma_weight[i][list][0] = luma_def; |
|
h->luma_weight[i][list][1] = 0; |
|
} |
|
|
|
if (h->sps.chroma_format_idc) { |
|
chroma_weight_flag = get_bits1(&h->gb); |
|
if (chroma_weight_flag) { |
|
int j; |
|
for (j = 0; j < 2; j++) { |
|
h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb); |
|
h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb); |
|
if (h->chroma_weight[i][list][j][0] != chroma_def || |
|
h->chroma_weight[i][list][j][1] != 0) { |
|
h->use_weight_chroma = 1; |
|
h->chroma_weight_flag[list] = 1; |
|
} |
|
} |
|
} else { |
|
int j; |
|
for (j = 0; j < 2; j++) { |
|
h->chroma_weight[i][list][j][0] = chroma_def; |
|
h->chroma_weight[i][list][j][1] = 0; |
|
} |
|
} |
|
} |
|
} |
|
if (h->slice_type_nos != AV_PICTURE_TYPE_B) |
|
break; |
|
} |
|
h->use_weight = h->use_weight || h->use_weight_chroma; |
|
return 0; |
|
} |
|
|
|
/** |
|
* Initialize implicit_weight table. |
|
* @param field 0/1 initialize the weight for interlaced MBAFF |
|
* -1 initializes the rest |
|
*/ |
|
static void implicit_weight_table(H264Context *h, int field) |
|
{ |
|
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; |
|
|
|
for (i = 0; i < 2; i++) { |
|
h->luma_weight_flag[i] = 0; |
|
h->chroma_weight_flag[i] = 0; |
|
} |
|
|
|
if (field < 0) { |
|
if (h->picture_structure == PICT_FRAME) { |
|
cur_poc = h->cur_pic_ptr->poc; |
|
} else { |
|
cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1]; |
|
} |
|
if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) && |
|
h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) { |
|
h->use_weight = 0; |
|
h->use_weight_chroma = 0; |
|
return; |
|
} |
|
ref_start = 0; |
|
ref_count0 = h->ref_count[0]; |
|
ref_count1 = h->ref_count[1]; |
|
} else { |
|
cur_poc = h->cur_pic_ptr->field_poc[field]; |
|
ref_start = 16; |
|
ref_count0 = 16 + 2 * h->ref_count[0]; |
|
ref_count1 = 16 + 2 * h->ref_count[1]; |
|
} |
|
|
|
h->use_weight = 2; |
|
h->use_weight_chroma = 2; |
|
h->luma_log2_weight_denom = 5; |
|
h->chroma_log2_weight_denom = 5; |
|
|
|
for (ref0 = ref_start; ref0 < ref_count0; ref0++) { |
|
int poc0 = h->ref_list[0][ref0].poc; |
|
for (ref1 = ref_start; ref1 < ref_count1; ref1++) { |
|
int w = 32; |
|
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) { |
|
int poc1 = h->ref_list[1][ref1].poc; |
|
int td = av_clip(poc1 - poc0, -128, 127); |
|
if (td) { |
|
int tb = av_clip(cur_poc - poc0, -128, 127); |
|
int tx = (16384 + (FFABS(td) >> 1)) / td; |
|
int dist_scale_factor = (tb * tx + 32) >> 8; |
|
if (dist_scale_factor >= -64 && dist_scale_factor <= 128) |
|
w = 64 - dist_scale_factor; |
|
} |
|
} |
|
if (field < 0) { |
|
h->implicit_weight[ref0][ref1][0] = |
|
h->implicit_weight[ref0][ref1][1] = w; |
|
} else { |
|
h->implicit_weight[ref0][ref1][field] = w; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* instantaneous decoder refresh. |
|
*/ |
|
static void idr(H264Context *h) |
|
{ |
|
int i; |
|
ff_h264_remove_all_refs(h); |
|
h->prev_frame_num = 0; |
|
h->prev_frame_num_offset = 0; |
|
h->prev_poc_msb = 1<<16; |
|
h->prev_poc_lsb = 0; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
} |
|
|
|
/* forget old pics after a seek */ |
|
static void flush_change(H264Context *h) |
|
{ |
|
int i, j; |
|
|
|
h->outputed_poc = h->next_outputed_poc = INT_MIN; |
|
h->prev_interlaced_frame = 1; |
|
idr(h); |
|
|
|
h->prev_frame_num = -1; |
|
if (h->cur_pic_ptr) { |
|
h->cur_pic_ptr->reference = 0; |
|
for (j=i=0; h->delayed_pic[i]; i++) |
|
if (h->delayed_pic[i] != h->cur_pic_ptr) |
|
h->delayed_pic[j++] = h->delayed_pic[i]; |
|
h->delayed_pic[j] = NULL; |
|
} |
|
h->first_field = 0; |
|
memset(h->ref_list[0], 0, sizeof(h->ref_list[0])); |
|
memset(h->ref_list[1], 0, sizeof(h->ref_list[1])); |
|
memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0])); |
|
memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1])); |
|
ff_h264_reset_sei(h); |
|
h->recovery_frame = -1; |
|
h->frame_recovered = 0; |
|
h->list_count = 0; |
|
h->current_slice = 0; |
|
h->mmco_reset = 1; |
|
} |
|
|
|
/* forget old pics after a seek */ |
|
static void flush_dpb(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i <= MAX_DELAYED_PIC_COUNT; i++) { |
|
if (h->delayed_pic[i]) |
|
h->delayed_pic[i]->reference = 0; |
|
h->delayed_pic[i] = NULL; |
|
} |
|
|
|
flush_change(h); |
|
|
|
if (h->DPB) |
|
for (i = 0; i < MAX_PICTURE_COUNT; i++) |
|
unref_picture(h, &h->DPB[i]); |
|
h->cur_pic_ptr = NULL; |
|
unref_picture(h, &h->cur_pic); |
|
|
|
h->mb_x = h->mb_y = 0; |
|
|
|
h->parse_context.state = -1; |
|
h->parse_context.frame_start_found = 0; |
|
h->parse_context.overread = 0; |
|
h->parse_context.overread_index = 0; |
|
h->parse_context.index = 0; |
|
h->parse_context.last_index = 0; |
|
|
|
free_tables(h, 1); |
|
h->context_initialized = 0; |
|
} |
|
|
|
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc) |
|
{ |
|
const int max_frame_num = 1 << h->sps.log2_max_frame_num; |
|
int field_poc[2]; |
|
|
|
h->frame_num_offset = h->prev_frame_num_offset; |
|
if (h->frame_num < h->prev_frame_num) |
|
h->frame_num_offset += max_frame_num; |
|
|
|
if (h->sps.poc_type == 0) { |
|
const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb; |
|
|
|
if (h->poc_lsb < h->prev_poc_lsb && |
|
h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2) |
|
h->poc_msb = h->prev_poc_msb + max_poc_lsb; |
|
else if (h->poc_lsb > h->prev_poc_lsb && |
|
h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2) |
|
h->poc_msb = h->prev_poc_msb - max_poc_lsb; |
|
else |
|
h->poc_msb = h->prev_poc_msb; |
|
field_poc[0] = |
|
field_poc[1] = h->poc_msb + h->poc_lsb; |
|
if (h->picture_structure == PICT_FRAME) |
|
field_poc[1] += h->delta_poc_bottom; |
|
} else if (h->sps.poc_type == 1) { |
|
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; |
|
int i; |
|
|
|
if (h->sps.poc_cycle_length != 0) |
|
abs_frame_num = h->frame_num_offset + h->frame_num; |
|
else |
|
abs_frame_num = 0; |
|
|
|
if (h->nal_ref_idc == 0 && abs_frame_num > 0) |
|
abs_frame_num--; |
|
|
|
expected_delta_per_poc_cycle = 0; |
|
for (i = 0; i < h->sps.poc_cycle_length; i++) |
|
// FIXME integrate during sps parse |
|
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i]; |
|
|
|
if (abs_frame_num > 0) { |
|
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; |
|
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; |
|
|
|
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; |
|
for (i = 0; i <= frame_num_in_poc_cycle; i++) |
|
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i]; |
|
} else |
|
expectedpoc = 0; |
|
|
|
if (h->nal_ref_idc == 0) |
|
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; |
|
|
|
field_poc[0] = expectedpoc + h->delta_poc[0]; |
|
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; |
|
|
|
if (h->picture_structure == PICT_FRAME) |
|
field_poc[1] += h->delta_poc[1]; |
|
} else { |
|
int poc = 2 * (h->frame_num_offset + h->frame_num); |
|
|
|
if (!h->nal_ref_idc) |
|
poc--; |
|
|
|
field_poc[0] = poc; |
|
field_poc[1] = poc; |
|
} |
|
|
|
if (h->picture_structure != PICT_BOTTOM_FIELD) |
|
pic_field_poc[0] = field_poc[0]; |
|
if (h->picture_structure != PICT_TOP_FIELD) |
|
pic_field_poc[1] = field_poc[1]; |
|
*pic_poc = FFMIN(pic_field_poc[0], pic_field_poc[1]); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* initialize scan tables |
|
*/ |
|
static void init_scan_tables(H264Context *h) |
|
{ |
|
int i; |
|
for (i = 0; i < 16; i++) { |
|
#define T(x) (x >> 2) | ((x << 2) & 0xF) |
|
h->zigzag_scan[i] = T(zigzag_scan[i]); |
|
h->field_scan[i] = T(field_scan[i]); |
|
#undef T |
|
} |
|
for (i = 0; i < 64; i++) { |
|
#define T(x) (x >> 3) | ((x & 7) << 3) |
|
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]); |
|
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); |
|
h->field_scan8x8[i] = T(field_scan8x8[i]); |
|
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); |
|
#undef T |
|
} |
|
if (h->sps.transform_bypass) { // FIXME same ugly |
|
memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 )); |
|
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 )); |
|
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); |
|
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 )); |
|
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 )); |
|
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); |
|
} else { |
|
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 )); |
|
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 )); |
|
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); |
|
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 )); |
|
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 )); |
|
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); |
|
} |
|
} |
|
|
|
static int field_end(H264Context *h, int in_setup) |
|
{ |
|
AVCodecContext *const avctx = h->avctx; |
|
int err = 0; |
|
h->mb_y = 0; |
|
|
|
if (CONFIG_H264_VDPAU_DECODER && |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_set_reference_frames(h); |
|
|
|
if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) { |
|
if (!h->droppable) { |
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); |
|
h->prev_poc_msb = h->poc_msb; |
|
h->prev_poc_lsb = h->poc_lsb; |
|
} |
|
h->prev_frame_num_offset = h->frame_num_offset; |
|
h->prev_frame_num = h->frame_num; |
|
h->outputed_poc = h->next_outputed_poc; |
|
} |
|
|
|
if (avctx->hwaccel) { |
|
if (avctx->hwaccel->end_frame(avctx) < 0) |
|
av_log(avctx, AV_LOG_ERROR, |
|
"hardware accelerator failed to decode picture\n"); |
|
} |
|
|
|
if (CONFIG_H264_VDPAU_DECODER && |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_picture_complete(h); |
|
|
|
/* |
|
* FIXME: Error handling code does not seem to support interlaced |
|
* when slices span multiple rows |
|
* The ff_er_add_slice calls don't work right for bottom |
|
* fields; they cause massive erroneous error concealing |
|
* Error marking covers both fields (top and bottom). |
|
* This causes a mismatched s->error_count |
|
* and a bad error table. Further, the error count goes to |
|
* INT_MAX when called for bottom field, because mb_y is |
|
* past end by one (callers fault) and resync_mb_y != 0 |
|
* causes problems for the first MB line, too. |
|
*/ |
|
if (CONFIG_ERROR_RESILIENCE && !FIELD_PICTURE(h) && h->current_slice && !h->sps.new) { |
|
h->er.cur_pic = h->cur_pic_ptr; |
|
ff_er_frame_end(&h->er); |
|
} |
|
if (!in_setup && !h->droppable) |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, |
|
h->picture_structure == PICT_BOTTOM_FIELD); |
|
emms_c(); |
|
|
|
h->current_slice = 0; |
|
|
|
return err; |
|
} |
|
|
|
/** |
|
* Replicate H264 "master" context to thread contexts. |
|
*/ |
|
static int clone_slice(H264Context *dst, H264Context *src) |
|
{ |
|
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); |
|
dst->cur_pic_ptr = src->cur_pic_ptr; |
|
dst->cur_pic = src->cur_pic; |
|
dst->linesize = src->linesize; |
|
dst->uvlinesize = src->uvlinesize; |
|
dst->first_field = src->first_field; |
|
|
|
dst->prev_poc_msb = src->prev_poc_msb; |
|
dst->prev_poc_lsb = src->prev_poc_lsb; |
|
dst->prev_frame_num_offset = src->prev_frame_num_offset; |
|
dst->prev_frame_num = src->prev_frame_num; |
|
dst->short_ref_count = src->short_ref_count; |
|
|
|
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); |
|
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); |
|
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); |
|
|
|
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); |
|
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Compute profile from profile_idc and constraint_set?_flags. |
|
* |
|
* @param sps SPS |
|
* |
|
* @return profile as defined by FF_PROFILE_H264_* |
|
*/ |
|
int ff_h264_get_profile(SPS *sps) |
|
{ |
|
int profile = sps->profile_idc; |
|
|
|
switch (sps->profile_idc) { |
|
case FF_PROFILE_H264_BASELINE: |
|
// constraint_set1_flag set to 1 |
|
profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0; |
|
break; |
|
case FF_PROFILE_H264_HIGH_10: |
|
case FF_PROFILE_H264_HIGH_422: |
|
case FF_PROFILE_H264_HIGH_444_PREDICTIVE: |
|
// constraint_set3_flag set to 1 |
|
profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0; |
|
break; |
|
} |
|
|
|
return profile; |
|
} |
|
|
|
static int h264_set_parameter_from_sps(H264Context *h) |
|
{ |
|
if (h->flags & CODEC_FLAG_LOW_DELAY || |
|
(h->sps.bitstream_restriction_flag && |
|
!h->sps.num_reorder_frames)) { |
|
if (h->avctx->has_b_frames > 1 || h->delayed_pic[0]) |
|
av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. " |
|
"Reenabling low delay requires a codec flush.\n"); |
|
else |
|
h->low_delay = 1; |
|
} |
|
|
|
if (h->avctx->has_b_frames < 2) |
|
h->avctx->has_b_frames = !h->low_delay; |
|
|
|
if (h->sps.bit_depth_luma != h->sps.bit_depth_chroma) { |
|
avpriv_request_sample(h->avctx, |
|
"Different chroma and luma bit depth"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || |
|
h->cur_chroma_format_idc != h->sps.chroma_format_idc) { |
|
if (h->avctx->codec && |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU && |
|
(h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"VDPAU decoding does not support video colorspace.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 14 && |
|
h->sps.bit_depth_luma != 11 && h->sps.bit_depth_luma != 13) { |
|
h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; |
|
h->cur_chroma_format_idc = h->sps.chroma_format_idc; |
|
h->pixel_shift = h->sps.bit_depth_luma > 8; |
|
|
|
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, |
|
h->sps.chroma_format_idc); |
|
ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); |
|
ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma); |
|
ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma, |
|
h->sps.chroma_format_idc); |
|
|
|
if (CONFIG_ERROR_RESILIENCE) |
|
ff_dsputil_init(&h->dsp, h->avctx); |
|
ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma); |
|
} else { |
|
av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n", |
|
h->sps.bit_depth_luma); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback) |
|
{ |
|
switch (h->sps.bit_depth_luma) { |
|
case 9: |
|
if (CHROMA444(h)) { |
|
if (h->avctx->colorspace == AVCOL_SPC_RGB) { |
|
return AV_PIX_FMT_GBRP9; |
|
} else |
|
return AV_PIX_FMT_YUV444P9; |
|
} else if (CHROMA422(h)) |
|
return AV_PIX_FMT_YUV422P9; |
|
else |
|
return AV_PIX_FMT_YUV420P9; |
|
break; |
|
case 10: |
|
if (CHROMA444(h)) { |
|
if (h->avctx->colorspace == AVCOL_SPC_RGB) { |
|
return AV_PIX_FMT_GBRP10; |
|
} else |
|
return AV_PIX_FMT_YUV444P10; |
|
} else if (CHROMA422(h)) |
|
return AV_PIX_FMT_YUV422P10; |
|
else |
|
return AV_PIX_FMT_YUV420P10; |
|
break; |
|
case 12: |
|
if (CHROMA444(h)) { |
|
if (h->avctx->colorspace == AVCOL_SPC_RGB) { |
|
return AV_PIX_FMT_GBRP12; |
|
} else |
|
return AV_PIX_FMT_YUV444P12; |
|
} else if (CHROMA422(h)) |
|
return AV_PIX_FMT_YUV422P12; |
|
else |
|
return AV_PIX_FMT_YUV420P12; |
|
break; |
|
case 14: |
|
if (CHROMA444(h)) { |
|
if (h->avctx->colorspace == AVCOL_SPC_RGB) { |
|
return AV_PIX_FMT_GBRP14; |
|
} else |
|
return AV_PIX_FMT_YUV444P14; |
|
} else if (CHROMA422(h)) |
|
return AV_PIX_FMT_YUV422P14; |
|
else |
|
return AV_PIX_FMT_YUV420P14; |
|
break; |
|
case 8: |
|
if (CHROMA444(h)) { |
|
if (h->avctx->colorspace == AVCOL_SPC_RGB) { |
|
av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n"); |
|
return AV_PIX_FMT_GBR24P; |
|
} else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) { |
|
av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n"); |
|
} |
|
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P |
|
: AV_PIX_FMT_YUV444P; |
|
} else if (CHROMA422(h)) { |
|
return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P |
|
: AV_PIX_FMT_YUV422P; |
|
} else { |
|
int i; |
|
const enum AVPixelFormat * fmt = h->avctx->codec->pix_fmts ? |
|
h->avctx->codec->pix_fmts : |
|
h->avctx->color_range == AVCOL_RANGE_JPEG ? |
|
h264_hwaccel_pixfmt_list_jpeg_420 : |
|
h264_hwaccel_pixfmt_list_420; |
|
|
|
for (i=0; fmt[i] != AV_PIX_FMT_NONE; i++) |
|
if (fmt[i] == h->avctx->pix_fmt && !force_callback) |
|
return fmt[i]; |
|
return ff_thread_get_format(h->avctx, fmt); |
|
} |
|
break; |
|
default: |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Unsupported bit depth: %d\n", h->sps.bit_depth_luma); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* export coded and cropped frame dimensions to AVCodecContext */ |
|
static int init_dimensions(H264Context *h) |
|
{ |
|
int width = h->width - (h->sps.crop_right + h->sps.crop_left); |
|
int height = h->height - (h->sps.crop_top + h->sps.crop_bottom); |
|
av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width); |
|
av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height); |
|
|
|
/* handle container cropping */ |
|
if (!h->sps.crop && |
|
FFALIGN(h->avctx->width, 16) == h->width && |
|
FFALIGN(h->avctx->height, 16) == h->height) { |
|
width = h->avctx->width; |
|
height = h->avctx->height; |
|
} |
|
|
|
if (width <= 0 || height <= 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n", |
|
width, height); |
|
if (h->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
|
|
av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n"); |
|
h->sps.crop_bottom = h->sps.crop_top = h->sps.crop_right = h->sps.crop_left = 0; |
|
h->sps.crop = 0; |
|
|
|
width = h->width; |
|
height = h->height; |
|
} |
|
|
|
h->avctx->coded_width = h->width; |
|
h->avctx->coded_height = h->height; |
|
h->avctx->width = width; |
|
h->avctx->height = height; |
|
|
|
return 0; |
|
} |
|
|
|
static int h264_slice_header_init(H264Context *h, int reinit) |
|
{ |
|
int nb_slices = (HAVE_THREADS && |
|
h->avctx->active_thread_type & FF_THREAD_SLICE) ? |
|
h->avctx->thread_count : 1; |
|
int i, ret; |
|
|
|
h->avctx->sample_aspect_ratio = h->sps.sar; |
|
av_assert0(h->avctx->sample_aspect_ratio.den); |
|
av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt, |
|
&h->chroma_x_shift, &h->chroma_y_shift); |
|
|
|
if (h->sps.timing_info_present_flag) { |
|
int64_t den = h->sps.time_scale; |
|
if (h->x264_build < 44U) |
|
den *= 2; |
|
av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den, |
|
h->sps.num_units_in_tick, den, 1 << 30); |
|
} |
|
|
|
h->avctx->hwaccel = ff_find_hwaccel(h->avctx); |
|
|
|
if (reinit) |
|
free_tables(h, 0); |
|
h->first_field = 0; |
|
h->prev_interlaced_frame = 1; |
|
|
|
init_scan_tables(h); |
|
ret = ff_h264_alloc_tables(h); |
|
if (ret < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Could not allocate memory for h264\n"); |
|
return ret; |
|
} |
|
|
|
if (nb_slices > MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) { |
|
int max_slices; |
|
if (h->mb_height) |
|
max_slices = FFMIN(MAX_THREADS, h->mb_height); |
|
else |
|
max_slices = MAX_THREADS; |
|
av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices (%d)," |
|
" reducing to %d\n", nb_slices, max_slices); |
|
nb_slices = max_slices; |
|
} |
|
h->slice_context_count = nb_slices; |
|
|
|
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) { |
|
ret = context_init(h); |
|
if (ret < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); |
|
return ret; |
|
} |
|
} else { |
|
for (i = 1; i < h->slice_context_count; i++) { |
|
H264Context *c; |
|
c = h->thread_context[i] = av_mallocz(sizeof(H264Context)); |
|
if (!c) |
|
return AVERROR(ENOMEM); |
|
c->avctx = h->avctx; |
|
if (CONFIG_ERROR_RESILIENCE) { |
|
c->dsp = h->dsp; |
|
} |
|
c->vdsp = h->vdsp; |
|
c->h264dsp = h->h264dsp; |
|
c->h264qpel = h->h264qpel; |
|
c->h264chroma = h->h264chroma; |
|
c->sps = h->sps; |
|
c->pps = h->pps; |
|
c->pixel_shift = h->pixel_shift; |
|
c->cur_chroma_format_idc = h->cur_chroma_format_idc; |
|
c->width = h->width; |
|
c->height = h->height; |
|
c->linesize = h->linesize; |
|
c->uvlinesize = h->uvlinesize; |
|
c->chroma_x_shift = h->chroma_x_shift; |
|
c->chroma_y_shift = h->chroma_y_shift; |
|
c->qscale = h->qscale; |
|
c->droppable = h->droppable; |
|
c->data_partitioning = h->data_partitioning; |
|
c->low_delay = h->low_delay; |
|
c->mb_width = h->mb_width; |
|
c->mb_height = h->mb_height; |
|
c->mb_stride = h->mb_stride; |
|
c->mb_num = h->mb_num; |
|
c->flags = h->flags; |
|
c->workaround_bugs = h->workaround_bugs; |
|
c->pict_type = h->pict_type; |
|
|
|
init_scan_tables(c); |
|
clone_tables(c, h, i); |
|
c->context_initialized = 1; |
|
} |
|
|
|
for (i = 0; i < h->slice_context_count; i++) |
|
if ((ret = context_init(h->thread_context[i])) < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
h->context_initialized = 1; |
|
|
|
return 0; |
|
} |
|
|
|
int ff_set_ref_count(H264Context *h) |
|
{ |
|
int num_ref_idx_active_override_flag; |
|
|
|
// set defaults, might be overridden a few lines later |
|
h->ref_count[0] = h->pps.ref_count[0]; |
|
h->ref_count[1] = h->pps.ref_count[1]; |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I) { |
|
unsigned max[2]; |
|
max[0] = max[1] = h->picture_structure == PICT_FRAME ? 15 : 31; |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) |
|
h->direct_spatial_mv_pred = get_bits1(&h->gb); |
|
num_ref_idx_active_override_flag = get_bits1(&h->gb); |
|
|
|
if (num_ref_idx_active_override_flag) { |
|
h->ref_count[0] = get_ue_golomb(&h->gb) + 1; |
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
h->ref_count[1] = get_ue_golomb(&h->gb) + 1; |
|
} else |
|
// full range is spec-ok in this case, even for frames |
|
h->ref_count[1] = 1; |
|
} |
|
|
|
if (h->ref_count[0]-1 > max[0] || h->ref_count[1]-1 > max[1]){ |
|
av_log(h->avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", h->ref_count[0]-1, max[0], h->ref_count[1]-1, max[1]); |
|
h->ref_count[0] = h->ref_count[1] = 0; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B) |
|
h->list_count = 2; |
|
else |
|
h->list_count = 1; |
|
} else { |
|
h->list_count = 0; |
|
h->ref_count[0] = h->ref_count[1] = 0; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode a slice header. |
|
* This will also call ff_MPV_common_init() and frame_start() as needed. |
|
* |
|
* @param h h264context |
|
* @param h0 h264 master context (differs from 'h' when doing sliced based |
|
* parallel decoding) |
|
* |
|
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded |
|
*/ |
|
static int decode_slice_header(H264Context *h, H264Context *h0) |
|
{ |
|
unsigned int first_mb_in_slice; |
|
unsigned int pps_id; |
|
int ret; |
|
unsigned int slice_type, tmp, i, j; |
|
int last_pic_structure, last_pic_droppable; |
|
int must_reinit; |
|
int needs_reinit = 0; |
|
int field_pic_flag, bottom_field_flag; |
|
|
|
h->me.qpel_put = h->h264qpel.put_h264_qpel_pixels_tab; |
|
h->me.qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab; |
|
|
|
first_mb_in_slice = get_ue_golomb_long(&h->gb); |
|
|
|
if (first_mb_in_slice == 0) { // FIXME better field boundary detection |
|
if (h0->current_slice && FIELD_PICTURE(h)) { |
|
field_end(h, 1); |
|
} |
|
|
|
h0->current_slice = 0; |
|
if (!h0->first_field) { |
|
if (h->cur_pic_ptr && !h->droppable) { |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, |
|
h->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
h->cur_pic_ptr = NULL; |
|
} |
|
} |
|
|
|
slice_type = get_ue_golomb_31(&h->gb); |
|
if (slice_type > 9) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"slice type too large (%d) at %d %d\n", |
|
slice_type, h->mb_x, h->mb_y); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (slice_type > 4) { |
|
slice_type -= 5; |
|
h->slice_type_fixed = 1; |
|
} else |
|
h->slice_type_fixed = 0; |
|
|
|
slice_type = golomb_to_pict_type[slice_type]; |
|
h->slice_type = slice_type; |
|
h->slice_type_nos = slice_type & 3; |
|
|
|
// to make a few old functions happy, it's wrong though |
|
h->pict_type = h->slice_type; |
|
|
|
pps_id = get_ue_golomb(&h->gb); |
|
if (pps_id >= MAX_PPS_COUNT) { |
|
av_log(h->avctx, AV_LOG_ERROR, "pps_id %d out of range\n", pps_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (!h0->pps_buffers[pps_id]) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"non-existing PPS %u referenced\n", |
|
pps_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
h->pps = *h0->pps_buffers[pps_id]; |
|
|
|
if (!h0->sps_buffers[h->pps.sps_id]) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"non-existing SPS %u referenced\n", |
|
h->pps.sps_id); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (h->pps.sps_id != h->current_sps_id || |
|
h0->sps_buffers[h->pps.sps_id]->new) { |
|
h0->sps_buffers[h->pps.sps_id]->new = 0; |
|
|
|
h->current_sps_id = h->pps.sps_id; |
|
h->sps = *h0->sps_buffers[h->pps.sps_id]; |
|
|
|
if (h->mb_width != h->sps.mb_width || |
|
h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) || |
|
h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || |
|
h->cur_chroma_format_idc != h->sps.chroma_format_idc |
|
) |
|
needs_reinit = 1; |
|
|
|
if (h->bit_depth_luma != h->sps.bit_depth_luma || |
|
h->chroma_format_idc != h->sps.chroma_format_idc) { |
|
h->bit_depth_luma = h->sps.bit_depth_luma; |
|
h->chroma_format_idc = h->sps.chroma_format_idc; |
|
needs_reinit = 1; |
|
} |
|
if ((ret = h264_set_parameter_from_sps(h)) < 0) |
|
return ret; |
|
} |
|
|
|
h->avctx->profile = ff_h264_get_profile(&h->sps); |
|
h->avctx->level = h->sps.level_idc; |
|
h->avctx->refs = h->sps.ref_frame_count; |
|
|
|
must_reinit = (h->context_initialized && |
|
( 16*h->sps.mb_width != h->avctx->coded_width |
|
|| 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height |
|
|| h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma |
|
|| h->cur_chroma_format_idc != h->sps.chroma_format_idc |
|
|| av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio) |
|
|| h->mb_width != h->sps.mb_width |
|
|| h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) |
|
)); |
|
if (h0->avctx->pix_fmt != get_pixel_format(h0, 0)) |
|
must_reinit = 1; |
|
|
|
h->mb_width = h->sps.mb_width; |
|
h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); |
|
h->mb_num = h->mb_width * h->mb_height; |
|
h->mb_stride = h->mb_width + 1; |
|
|
|
h->b_stride = h->mb_width * 4; |
|
|
|
h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p |
|
|
|
h->width = 16 * h->mb_width; |
|
h->height = 16 * h->mb_height; |
|
|
|
ret = init_dimensions(h); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (h->sps.video_signal_type_present_flag) { |
|
h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG |
|
: AVCOL_RANGE_MPEG; |
|
if (h->sps.colour_description_present_flag) { |
|
if (h->avctx->colorspace != h->sps.colorspace) |
|
needs_reinit = 1; |
|
h->avctx->color_primaries = h->sps.color_primaries; |
|
h->avctx->color_trc = h->sps.color_trc; |
|
h->avctx->colorspace = h->sps.colorspace; |
|
} |
|
} |
|
|
|
if (h->context_initialized && |
|
(h->width != h->avctx->coded_width || |
|
h->height != h->avctx->coded_height || |
|
must_reinit || |
|
needs_reinit)) { |
|
if (h != h0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "changing width/height on " |
|
"slice %d\n", h0->current_slice + 1); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
flush_change(h); |
|
|
|
if ((ret = get_pixel_format(h, 1)) < 0) |
|
return ret; |
|
h->avctx->pix_fmt = ret; |
|
|
|
av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, " |
|
"pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt)); |
|
|
|
if ((ret = h264_slice_header_init(h, 1)) < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"h264_slice_header_init() failed\n"); |
|
return ret; |
|
} |
|
} |
|
if (!h->context_initialized) { |
|
if (h != h0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Cannot (re-)initialize context during parallel decoding.\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if ((ret = get_pixel_format(h, 1)) < 0) |
|
return ret; |
|
h->avctx->pix_fmt = ret; |
|
|
|
if ((ret = h264_slice_header_init(h, 0)) < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"h264_slice_header_init() failed\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
if (h == h0 && h->dequant_coeff_pps != pps_id) { |
|
h->dequant_coeff_pps = pps_id; |
|
init_dequant_tables(h); |
|
} |
|
|
|
h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num); |
|
|
|
h->mb_mbaff = 0; |
|
h->mb_aff_frame = 0; |
|
last_pic_structure = h0->picture_structure; |
|
last_pic_droppable = h0->droppable; |
|
h->droppable = h->nal_ref_idc == 0; |
|
if (h->sps.frame_mbs_only_flag) { |
|
h->picture_structure = PICT_FRAME; |
|
} else { |
|
if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { |
|
av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); |
|
return -1; |
|
} |
|
field_pic_flag = get_bits1(&h->gb); |
|
if (field_pic_flag) { |
|
bottom_field_flag = get_bits1(&h->gb); |
|
h->picture_structure = PICT_TOP_FIELD + bottom_field_flag; |
|
} else { |
|
h->picture_structure = PICT_FRAME; |
|
h->mb_aff_frame = h->sps.mb_aff; |
|
} |
|
} |
|
h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME; |
|
|
|
if (h0->current_slice != 0) { |
|
if (last_pic_structure != h->picture_structure || |
|
last_pic_droppable != h->droppable) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Changing field mode (%d -> %d) between slices is not allowed\n", |
|
last_pic_structure, h->picture_structure); |
|
h->picture_structure = last_pic_structure; |
|
h->droppable = last_pic_droppable; |
|
return AVERROR_INVALIDDATA; |
|
} else if (!h0->cur_pic_ptr) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"unset cur_pic_ptr on %d. slice\n", |
|
h0->current_slice + 1); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
/* Shorten frame num gaps so we don't have to allocate reference |
|
* frames just to throw them away */ |
|
if (h->frame_num != h->prev_frame_num) { |
|
int unwrap_prev_frame_num = h->prev_frame_num; |
|
int max_frame_num = 1 << h->sps.log2_max_frame_num; |
|
|
|
if (unwrap_prev_frame_num > h->frame_num) |
|
unwrap_prev_frame_num -= max_frame_num; |
|
|
|
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) { |
|
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1; |
|
if (unwrap_prev_frame_num < 0) |
|
unwrap_prev_frame_num += max_frame_num; |
|
|
|
h->prev_frame_num = unwrap_prev_frame_num; |
|
} |
|
} |
|
|
|
/* See if we have a decoded first field looking for a pair... |
|
* Here, we're using that to see if we should mark previously |
|
* decode frames as "finished". |
|
* We have to do that before the "dummy" in-between frame allocation, |
|
* since that can modify h->cur_pic_ptr. */ |
|
if (h0->first_field) { |
|
assert(h0->cur_pic_ptr); |
|
assert(h0->cur_pic_ptr->f.buf[0]); |
|
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); |
|
|
|
/* Mark old field/frame as completed */ |
|
if (h0->cur_pic_ptr->tf.owner == h0->avctx) { |
|
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, |
|
last_pic_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
/* figure out if we have a complementary field pair */ |
|
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { |
|
/* Previous field is unmatched. Don't display it, but let it |
|
* remain for reference if marked as such. */ |
|
if (last_pic_structure != PICT_FRAME) { |
|
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, |
|
last_pic_structure == PICT_TOP_FIELD); |
|
} |
|
} else { |
|
if (h0->cur_pic_ptr->frame_num != h->frame_num) { |
|
/* This and previous field were reference, but had |
|
* different frame_nums. Consider this field first in |
|
* pair. Throw away previous field except for reference |
|
* purposes. */ |
|
if (last_pic_structure != PICT_FRAME) { |
|
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, |
|
last_pic_structure == PICT_TOP_FIELD); |
|
} |
|
} else { |
|
/* Second field in complementary pair */ |
|
if (!((last_pic_structure == PICT_TOP_FIELD && |
|
h->picture_structure == PICT_BOTTOM_FIELD) || |
|
(last_pic_structure == PICT_BOTTOM_FIELD && |
|
h->picture_structure == PICT_TOP_FIELD))) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Invalid field mode combination %d/%d\n", |
|
last_pic_structure, h->picture_structure); |
|
h->picture_structure = last_pic_structure; |
|
h->droppable = last_pic_droppable; |
|
return AVERROR_INVALIDDATA; |
|
} else if (last_pic_droppable != h->droppable) { |
|
avpriv_request_sample(h->avctx, |
|
"Found reference and non-reference fields in the same frame, which"); |
|
h->picture_structure = last_pic_structure; |
|
h->droppable = last_pic_droppable; |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
} |
|
} |
|
|
|
while (h->frame_num != h->prev_frame_num && !h0->first_field && |
|
h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) { |
|
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; |
|
av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", |
|
h->frame_num, h->prev_frame_num); |
|
if (!h->sps.gaps_in_frame_num_allowed_flag) |
|
for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++) |
|
h->last_pocs[i] = INT_MIN; |
|
ret = h264_frame_start(h); |
|
if (ret < 0) |
|
return ret; |
|
h->prev_frame_num++; |
|
h->prev_frame_num %= 1 << h->sps.log2_max_frame_num; |
|
h->cur_pic_ptr->frame_num = h->prev_frame_num; |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0); |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1); |
|
ret = ff_generate_sliding_window_mmcos(h, 1); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return ret; |
|
ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return ret; |
|
/* Error concealment: If a ref is missing, copy the previous ref |
|
* in its place. |
|
* FIXME: Avoiding a memcpy would be nice, but ref handling makes |
|
* many assumptions about there being no actual duplicates. |
|
* FIXME: This does not copy padding for out-of-frame motion |
|
* vectors. Given we are concealing a lost frame, this probably |
|
* is not noticeable by comparison, but it should be fixed. */ |
|
if (h->short_ref_count) { |
|
if (prev) { |
|
av_image_copy(h->short_ref[0]->f.data, |
|
h->short_ref[0]->f.linesize, |
|
(const uint8_t **)prev->f.data, |
|
prev->f.linesize, |
|
h->avctx->pix_fmt, |
|
h->mb_width * 16, |
|
h->mb_height * 16); |
|
h->short_ref[0]->poc = prev->poc + 2; |
|
} |
|
h->short_ref[0]->frame_num = h->prev_frame_num; |
|
} |
|
} |
|
|
|
/* See if we have a decoded first field looking for a pair... |
|
* We're using that to see whether to continue decoding in that |
|
* frame, or to allocate a new one. */ |
|
if (h0->first_field) { |
|
assert(h0->cur_pic_ptr); |
|
assert(h0->cur_pic_ptr->f.buf[0]); |
|
assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); |
|
|
|
/* figure out if we have a complementary field pair */ |
|
if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { |
|
/* Previous field is unmatched. Don't display it, but let it |
|
* remain for reference if marked as such. */ |
|
h0->cur_pic_ptr = NULL; |
|
h0->first_field = FIELD_PICTURE(h); |
|
} else { |
|
if (h0->cur_pic_ptr->frame_num != h->frame_num) { |
|
ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, |
|
h0->picture_structure==PICT_BOTTOM_FIELD); |
|
/* This and the previous field had different frame_nums. |
|
* Consider this field first in pair. Throw away previous |
|
* one except for reference purposes. */ |
|
h0->first_field = 1; |
|
h0->cur_pic_ptr = NULL; |
|
} else { |
|
/* Second field in complementary pair */ |
|
h0->first_field = 0; |
|
} |
|
} |
|
} else { |
|
/* Frame or first field in a potentially complementary pair */ |
|
h0->first_field = FIELD_PICTURE(h); |
|
} |
|
|
|
if (!FIELD_PICTURE(h) || h0->first_field) { |
|
if (h264_frame_start(h) < 0) { |
|
h0->first_field = 0; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
release_unused_pictures(h, 0); |
|
} |
|
/* Some macroblocks can be accessed before they're available in case |
|
* of lost slices, MBAFF or threading. */ |
|
if (FIELD_PICTURE(h)) { |
|
for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++) |
|
memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table)); |
|
} else { |
|
memset(h->slice_table, -1, |
|
(h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table)); |
|
} |
|
h0->last_slice_type = -1; |
|
} |
|
if (h != h0 && (ret = clone_slice(h, h0)) < 0) |
|
return ret; |
|
|
|
/* can't be in alloc_tables because linesize isn't known there. |
|
* FIXME: redo bipred weight to not require extra buffer? */ |
|
for (i = 0; i < h->slice_context_count; i++) |
|
if (h->thread_context[i]) { |
|
ret = alloc_scratch_buffers(h->thread_context[i], h->linesize); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup |
|
|
|
av_assert1(h->mb_num == h->mb_width * h->mb_height); |
|
if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num || |
|
first_mb_in_slice >= h->mb_num) { |
|
av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width; |
|
h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) << |
|
FIELD_OR_MBAFF_PICTURE(h); |
|
if (h->picture_structure == PICT_BOTTOM_FIELD) |
|
h->resync_mb_y = h->mb_y = h->mb_y + 1; |
|
av_assert1(h->mb_y < h->mb_height); |
|
|
|
if (h->picture_structure == PICT_FRAME) { |
|
h->curr_pic_num = h->frame_num; |
|
h->max_pic_num = 1 << h->sps.log2_max_frame_num; |
|
} else { |
|
h->curr_pic_num = 2 * h->frame_num + 1; |
|
h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1); |
|
} |
|
|
|
if (h->nal_unit_type == NAL_IDR_SLICE) |
|
get_ue_golomb(&h->gb); /* idr_pic_id */ |
|
|
|
if (h->sps.poc_type == 0) { |
|
h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb); |
|
|
|
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) |
|
h->delta_poc_bottom = get_se_golomb(&h->gb); |
|
} |
|
|
|
if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) { |
|
h->delta_poc[0] = get_se_golomb(&h->gb); |
|
|
|
if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) |
|
h->delta_poc[1] = get_se_golomb(&h->gb); |
|
} |
|
|
|
ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc); |
|
|
|
if (h->pps.redundant_pic_cnt_present) |
|
h->redundant_pic_count = get_ue_golomb(&h->gb); |
|
|
|
ret = ff_set_ref_count(h); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (slice_type != AV_PICTURE_TYPE_I && |
|
(h0->current_slice == 0 || |
|
slice_type != h0->last_slice_type || |
|
memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) { |
|
|
|
ff_h264_fill_default_ref_list(h); |
|
} |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I) { |
|
ret = ff_h264_decode_ref_pic_list_reordering(h); |
|
if (ret < 0) { |
|
h->ref_count[1] = h->ref_count[0] = 0; |
|
return ret; |
|
} |
|
} |
|
|
|
if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) || |
|
(h->pps.weighted_bipred_idc == 1 && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B)) |
|
ff_pred_weight_table(h); |
|
else if (h->pps.weighted_bipred_idc == 2 && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
implicit_weight_table(h, -1); |
|
} else { |
|
h->use_weight = 0; |
|
for (i = 0; i < 2; i++) { |
|
h->luma_weight_flag[i] = 0; |
|
h->chroma_weight_flag[i] = 0; |
|
} |
|
} |
|
|
|
// If frame-mt is enabled, only update mmco tables for the first slice |
|
// in a field. Subsequent slices can temporarily clobber h->mmco_index |
|
// or h->mmco, which will cause ref list mix-ups and decoding errors |
|
// further down the line. This may break decoding if the first slice is |
|
// corrupt, thus we only do this if frame-mt is enabled. |
|
if (h->nal_ref_idc) { |
|
ret = ff_h264_decode_ref_pic_marking(h0, &h->gb, |
|
!(h->avctx->active_thread_type & FF_THREAD_FRAME) || |
|
h0->current_slice == 0); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (FRAME_MBAFF(h)) { |
|
ff_h264_fill_mbaff_ref_list(h); |
|
|
|
if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { |
|
implicit_weight_table(h, 0); |
|
implicit_weight_table(h, 1); |
|
} |
|
} |
|
|
|
if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred) |
|
ff_h264_direct_dist_scale_factor(h); |
|
ff_h264_direct_ref_list_init(h); |
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) { |
|
tmp = get_ue_golomb_31(&h->gb); |
|
if (tmp > 2) { |
|
av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
h->cabac_init_idc = tmp; |
|
} |
|
|
|
h->last_qscale_diff = 0; |
|
tmp = h->pps.init_qp + get_se_golomb(&h->gb); |
|
if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) { |
|
av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
h->qscale = tmp; |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); |
|
// FIXME qscale / qp ... stuff |
|
if (h->slice_type == AV_PICTURE_TYPE_SP) |
|
get_bits1(&h->gb); /* sp_for_switch_flag */ |
|
if (h->slice_type == AV_PICTURE_TYPE_SP || |
|
h->slice_type == AV_PICTURE_TYPE_SI) |
|
get_se_golomb(&h->gb); /* slice_qs_delta */ |
|
|
|
h->deblocking_filter = 1; |
|
h->slice_alpha_c0_offset = 52; |
|
h->slice_beta_offset = 52; |
|
if (h->pps.deblocking_filter_parameters_present) { |
|
tmp = get_ue_golomb_31(&h->gb); |
|
if (tmp > 2) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"deblocking_filter_idc %u out of range\n", tmp); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
h->deblocking_filter = tmp; |
|
if (h->deblocking_filter < 2) |
|
h->deblocking_filter ^= 1; // 1<->0 |
|
|
|
if (h->deblocking_filter) { |
|
h->slice_alpha_c0_offset += get_se_golomb(&h->gb) << 1; |
|
h->slice_beta_offset += get_se_golomb(&h->gb) << 1; |
|
if (h->slice_alpha_c0_offset > 104U || |
|
h->slice_beta_offset > 104U) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"deblocking filter parameters %d %d out of range\n", |
|
h->slice_alpha_c0_offset, h->slice_beta_offset); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
if (h->avctx->skip_loop_filter >= AVDISCARD_ALL || |
|
(h->avctx->skip_loop_filter >= AVDISCARD_NONKEY && |
|
h->slice_type_nos != AV_PICTURE_TYPE_I) || |
|
(h->avctx->skip_loop_filter >= AVDISCARD_BIDIR && |
|
h->slice_type_nos == AV_PICTURE_TYPE_B) || |
|
(h->avctx->skip_loop_filter >= AVDISCARD_NONREF && |
|
h->nal_ref_idc == 0)) |
|
h->deblocking_filter = 0; |
|
|
|
if (h->deblocking_filter == 1 && h0->max_contexts > 1) { |
|
if (h->avctx->flags2 & CODEC_FLAG2_FAST) { |
|
/* Cheat slightly for speed: |
|
* Do not bother to deblock across slices. */ |
|
h->deblocking_filter = 2; |
|
} else { |
|
h0->max_contexts = 1; |
|
if (!h0->single_decode_warning) { |
|
av_log(h->avctx, AV_LOG_INFO, |
|
"Cannot parallelize deblocking type 1, decoding such frames in sequential order\n"); |
|
h0->single_decode_warning = 1; |
|
} |
|
if (h != h0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Deblocking switched inside frame.\n"); |
|
return 1; |
|
} |
|
} |
|
} |
|
h->qp_thresh = 15 + 52 - |
|
FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - |
|
FFMAX3(0, |
|
h->pps.chroma_qp_index_offset[0], |
|
h->pps.chroma_qp_index_offset[1]) + |
|
6 * (h->sps.bit_depth_luma - 8); |
|
|
|
h0->last_slice_type = slice_type; |
|
memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count)); |
|
h->slice_num = ++h0->current_slice; |
|
|
|
if (h->slice_num) |
|
h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y; |
|
if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y |
|
&& h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y |
|
&& h->slice_num >= MAX_SLICES) { |
|
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case |
|
av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES); |
|
} |
|
|
|
for (j = 0; j < 2; j++) { |
|
int id_list[16]; |
|
int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j]; |
|
for (i = 0; i < 16; i++) { |
|
id_list[i] = 60; |
|
if (j < h->list_count && i < h->ref_count[j] && |
|
h->ref_list[j][i].f.buf[0]) { |
|
int k; |
|
AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer; |
|
for (k = 0; k < h->short_ref_count; k++) |
|
if (h->short_ref[k]->f.buf[0]->buffer == buf) { |
|
id_list[i] = k; |
|
break; |
|
} |
|
for (k = 0; k < h->long_ref_count; k++) |
|
if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) { |
|
id_list[i] = h->short_ref_count + k; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
ref2frm[0] = |
|
ref2frm[1] = -1; |
|
for (i = 0; i < 16; i++) |
|
ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3); |
|
ref2frm[18 + 0] = |
|
ref2frm[18 + 1] = -1; |
|
for (i = 16; i < 48; i++) |
|
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + |
|
(h->ref_list[j][i].reference & 3); |
|
} |
|
|
|
if (h->ref_count[0]) h->er.last_pic = &h->ref_list[0][0]; |
|
if (h->ref_count[1]) h->er.next_pic = &h->ref_list[1][0]; |
|
h->er.ref_count = h->ref_count[0]; |
|
|
|
if (h->avctx->debug & FF_DEBUG_PICT_INFO) { |
|
av_log(h->avctx, AV_LOG_DEBUG, |
|
"slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", |
|
h->slice_num, |
|
(h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"), |
|
first_mb_in_slice, |
|
av_get_picture_type_char(h->slice_type), |
|
h->slice_type_fixed ? " fix" : "", |
|
h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", |
|
pps_id, h->frame_num, |
|
h->cur_pic_ptr->field_poc[0], |
|
h->cur_pic_ptr->field_poc[1], |
|
h->ref_count[0], h->ref_count[1], |
|
h->qscale, |
|
h->deblocking_filter, |
|
h->slice_alpha_c0_offset / 2 - 26, h->slice_beta_offset / 2 - 26, |
|
h->use_weight, |
|
h->use_weight == 1 && h->use_weight_chroma ? "c" : "", |
|
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_h264_get_slice_type(const H264Context *h) |
|
{ |
|
switch (h->slice_type) { |
|
case AV_PICTURE_TYPE_P: |
|
return 0; |
|
case AV_PICTURE_TYPE_B: |
|
return 1; |
|
case AV_PICTURE_TYPE_I: |
|
return 2; |
|
case AV_PICTURE_TYPE_SP: |
|
return 3; |
|
case AV_PICTURE_TYPE_SI: |
|
return 4; |
|
default: |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
static av_always_inline void fill_filter_caches_inter(H264Context *h, |
|
int mb_type, int top_xy, |
|
int left_xy[LEFT_MBS], |
|
int top_type, |
|
int left_type[LEFT_MBS], |
|
int mb_xy, int list) |
|
{ |
|
int b_stride = h->b_stride; |
|
int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]]; |
|
int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; |
|
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) { |
|
if (USES_LIST(top_type, list)) { |
|
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; |
|
const int b8_xy = 4 * top_xy + 2; |
|
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); |
|
AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]); |
|
ref_cache[0 - 1 * 8] = |
|
ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]]; |
|
ref_cache[2 - 1 * 8] = |
|
ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]]; |
|
} else { |
|
AV_ZERO128(mv_dst - 1 * 8); |
|
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
} |
|
|
|
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) { |
|
if (USES_LIST(left_type[LTOP], list)) { |
|
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; |
|
const int b8_xy = 4 * left_xy[LTOP] + 1; |
|
int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); |
|
AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]); |
|
AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]); |
|
AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]); |
|
AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]); |
|
ref_cache[-1 + 0] = |
|
ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]]; |
|
ref_cache[-1 + 16] = |
|
ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]]; |
|
} else { |
|
AV_ZERO32(mv_dst - 1 + 0); |
|
AV_ZERO32(mv_dst - 1 + 8); |
|
AV_ZERO32(mv_dst - 1 + 16); |
|
AV_ZERO32(mv_dst - 1 + 24); |
|
ref_cache[-1 + 0] = |
|
ref_cache[-1 + 8] = |
|
ref_cache[-1 + 16] = |
|
ref_cache[-1 + 24] = LIST_NOT_USED; |
|
} |
|
} |
|
} |
|
|
|
if (!USES_LIST(mb_type, list)) { |
|
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4); |
|
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); |
|
return; |
|
} |
|
|
|
{ |
|
int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy]; |
|
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); |
|
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101; |
|
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101; |
|
AV_WN32A(&ref_cache[0 * 8], ref01); |
|
AV_WN32A(&ref_cache[1 * 8], ref01); |
|
AV_WN32A(&ref_cache[2 * 8], ref23); |
|
AV_WN32A(&ref_cache[3 * 8], ref23); |
|
} |
|
|
|
{ |
|
int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride]; |
|
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride); |
|
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride); |
|
} |
|
} |
|
|
|
/** |
|
* |
|
* @return non zero if the loop filter can be skipped |
|
*/ |
|
static int fill_filter_caches(H264Context *h, int mb_type) |
|
{ |
|
const int mb_xy = h->mb_xy; |
|
int top_xy, left_xy[LEFT_MBS]; |
|
int top_type, left_type[LEFT_MBS]; |
|
uint8_t *nnz; |
|
uint8_t *nnz_cache; |
|
|
|
top_xy = mb_xy - (h->mb_stride << MB_FIELD(h)); |
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra |
|
* stuff, I can't imagine that these complex rules are worth it. */ |
|
|
|
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; |
|
if (FRAME_MBAFF(h)) { |
|
const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]); |
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
|
if (h->mb_y & 1) { |
|
if (left_mb_field_flag != curr_mb_field_flag) |
|
left_xy[LTOP] -= h->mb_stride; |
|
} else { |
|
if (curr_mb_field_flag) |
|
top_xy += h->mb_stride & |
|
(((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1); |
|
if (left_mb_field_flag != curr_mb_field_flag) |
|
left_xy[LBOT] += h->mb_stride; |
|
} |
|
} |
|
|
|
h->top_mb_xy = top_xy; |
|
h->left_mb_xy[LTOP] = left_xy[LTOP]; |
|
h->left_mb_xy[LBOT] = left_xy[LBOT]; |
|
{ |
|
/* For sufficiently low qp, filtering wouldn't do anything. |
|
* This is a conservative estimate: could also check beta_offset |
|
* and more accurate chroma_qp. */ |
|
int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice |
|
int qp = h->cur_pic.qscale_table[mb_xy]; |
|
if (qp <= qp_thresh && |
|
(left_xy[LTOP] < 0 || |
|
((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) && |
|
(top_xy < 0 || |
|
((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) { |
|
if (!FRAME_MBAFF(h)) |
|
return 1; |
|
if ((left_xy[LTOP] < 0 || |
|
((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) && |
|
(top_xy < h->mb_stride || |
|
((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh)) |
|
return 1; |
|
} |
|
} |
|
|
|
top_type = h->cur_pic.mb_type[top_xy]; |
|
left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]]; |
|
left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]]; |
|
if (h->deblocking_filter == 2) { |
|
if (h->slice_table[top_xy] != h->slice_num) |
|
top_type = 0; |
|
if (h->slice_table[left_xy[LBOT]] != h->slice_num) |
|
left_type[LTOP] = left_type[LBOT] = 0; |
|
} else { |
|
if (h->slice_table[top_xy] == 0xFFFF) |
|
top_type = 0; |
|
if (h->slice_table[left_xy[LBOT]] == 0xFFFF) |
|
left_type[LTOP] = left_type[LBOT] = 0; |
|
} |
|
h->top_type = top_type; |
|
h->left_type[LTOP] = left_type[LTOP]; |
|
h->left_type[LBOT] = left_type[LBOT]; |
|
|
|
if (IS_INTRA(mb_type)) |
|
return 0; |
|
|
|
fill_filter_caches_inter(h, mb_type, top_xy, left_xy, |
|
top_type, left_type, mb_xy, 0); |
|
if (h->list_count == 2) |
|
fill_filter_caches_inter(h, mb_type, top_xy, left_xy, |
|
top_type, left_type, mb_xy, 1); |
|
|
|
nnz = h->non_zero_count[mb_xy]; |
|
nnz_cache = h->non_zero_count_cache; |
|
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]); |
|
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]); |
|
h->cbp = h->cbp_table[mb_xy]; |
|
|
|
if (top_type) { |
|
nnz = h->non_zero_count[top_xy]; |
|
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]); |
|
} |
|
|
|
if (left_type[LTOP]) { |
|
nnz = h->non_zero_count[left_xy[LTOP]]; |
|
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4]; |
|
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4]; |
|
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4]; |
|
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4]; |
|
} |
|
|
|
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ |
|
* from what the loop filter needs */ |
|
if (!CABAC(h) && h->pps.transform_8x8_mode) { |
|
if (IS_8x8DCT(top_type)) { |
|
nnz_cache[4 + 8 * 0] = |
|
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12; |
|
nnz_cache[6 + 8 * 0] = |
|
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12; |
|
} |
|
if (IS_8x8DCT(left_type[LTOP])) { |
|
nnz_cache[3 + 8 * 1] = |
|
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF |
|
} |
|
if (IS_8x8DCT(left_type[LBOT])) { |
|
nnz_cache[3 + 8 * 3] = |
|
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF |
|
} |
|
|
|
if (IS_8x8DCT(mb_type)) { |
|
nnz_cache[scan8[0]] = |
|
nnz_cache[scan8[1]] = |
|
nnz_cache[scan8[2]] = |
|
nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 4]] = |
|
nnz_cache[scan8[1 + 4]] = |
|
nnz_cache[scan8[2 + 4]] = |
|
nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 8]] = |
|
nnz_cache[scan8[1 + 8]] = |
|
nnz_cache[scan8[2 + 8]] = |
|
nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12; |
|
|
|
nnz_cache[scan8[0 + 12]] = |
|
nnz_cache[scan8[1 + 12]] = |
|
nnz_cache[scan8[2 + 12]] = |
|
nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void loop_filter(H264Context *h, int start_x, int end_x) |
|
{ |
|
uint8_t *dest_y, *dest_cb, *dest_cr; |
|
int linesize, uvlinesize, mb_x, mb_y; |
|
const int end_mb_y = h->mb_y + FRAME_MBAFF(h); |
|
const int old_slice_type = h->slice_type; |
|
const int pixel_shift = h->pixel_shift; |
|
const int block_h = 16 >> h->chroma_y_shift; |
|
|
|
if (h->deblocking_filter) { |
|
for (mb_x = start_x; mb_x < end_x; mb_x++) |
|
for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) { |
|
int mb_xy, mb_type; |
|
mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride; |
|
h->slice_num = h->slice_table[mb_xy]; |
|
mb_type = h->cur_pic.mb_type[mb_xy]; |
|
h->list_count = h->list_counts[mb_xy]; |
|
|
|
if (FRAME_MBAFF(h)) |
|
h->mb_mbaff = |
|
h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); |
|
|
|
h->mb_x = mb_x; |
|
h->mb_y = mb_y; |
|
dest_y = h->cur_pic.f.data[0] + |
|
((mb_x << pixel_shift) + mb_y * h->linesize) * 16; |
|
dest_cb = h->cur_pic.f.data[1] + |
|
(mb_x << pixel_shift) * (8 << CHROMA444(h)) + |
|
mb_y * h->uvlinesize * block_h; |
|
dest_cr = h->cur_pic.f.data[2] + |
|
(mb_x << pixel_shift) * (8 << CHROMA444(h)) + |
|
mb_y * h->uvlinesize * block_h; |
|
// FIXME simplify above |
|
|
|
if (MB_FIELD(h)) { |
|
linesize = h->mb_linesize = h->linesize * 2; |
|
uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2; |
|
if (mb_y & 1) { // FIXME move out of this function? |
|
dest_y -= h->linesize * 15; |
|
dest_cb -= h->uvlinesize * (block_h - 1); |
|
dest_cr -= h->uvlinesize * (block_h - 1); |
|
} |
|
} else { |
|
linesize = h->mb_linesize = h->linesize; |
|
uvlinesize = h->mb_uvlinesize = h->uvlinesize; |
|
} |
|
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, |
|
uvlinesize, 0); |
|
if (fill_filter_caches(h, mb_type)) |
|
continue; |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]); |
|
|
|
if (FRAME_MBAFF(h)) { |
|
ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, |
|
linesize, uvlinesize); |
|
} else { |
|
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, |
|
dest_cr, linesize, uvlinesize); |
|
} |
|
} |
|
} |
|
h->slice_type = old_slice_type; |
|
h->mb_x = end_x; |
|
h->mb_y = end_mb_y - FRAME_MBAFF(h); |
|
h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); |
|
h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); |
|
} |
|
|
|
static void predict_field_decoding_flag(H264Context *h) |
|
{ |
|
const int mb_xy = h->mb_x + h->mb_y * h->mb_stride; |
|
int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ? |
|
h->cur_pic.mb_type[mb_xy - 1] : |
|
(h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ? |
|
h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0; |
|
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; |
|
} |
|
|
|
/** |
|
* Draw edges and report progress for the last MB row. |
|
*/ |
|
static void decode_finish_row(H264Context *h) |
|
{ |
|
int top = 16 * (h->mb_y >> FIELD_PICTURE(h)); |
|
int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h); |
|
int height = 16 << FRAME_MBAFF(h); |
|
int deblock_border = (16 + 4) << FRAME_MBAFF(h); |
|
|
|
if (h->deblocking_filter) { |
|
if ((top + height) >= pic_height) |
|
height += deblock_border; |
|
top -= deblock_border; |
|
} |
|
|
|
if (top >= pic_height || (top + height) < 0) |
|
return; |
|
|
|
height = FFMIN(height, pic_height - top); |
|
if (top < 0) { |
|
height = top + height; |
|
top = 0; |
|
} |
|
|
|
ff_h264_draw_horiz_band(h, top, height); |
|
|
|
if (h->droppable || h->er.error_occurred) |
|
return; |
|
|
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1, |
|
h->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
static void er_add_slice(H264Context *h, int startx, int starty, |
|
int endx, int endy, int status) |
|
{ |
|
if (CONFIG_ERROR_RESILIENCE) { |
|
ERContext *er = &h->er; |
|
|
|
ff_er_add_slice(er, startx, starty, endx, endy, status); |
|
} |
|
} |
|
|
|
static int decode_slice(struct AVCodecContext *avctx, void *arg) |
|
{ |
|
H264Context *h = *(void **)arg; |
|
int lf_x_start = h->mb_x; |
|
|
|
h->mb_skip_run = -1; |
|
|
|
av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3)); |
|
|
|
h->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME || |
|
avctx->codec_id != AV_CODEC_ID_H264 || |
|
(CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY)); |
|
|
|
if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->er.error_status_table) { |
|
const int start_i = av_clip(h->resync_mb_x + h->resync_mb_y * h->mb_width, 0, h->mb_num - 1); |
|
if (start_i) { |
|
int prev_status = h->er.error_status_table[h->er.mb_index2xy[start_i - 1]]; |
|
prev_status &= ~ VP_START; |
|
if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) |
|
h->er.error_occurred = 1; |
|
} |
|
} |
|
|
|
if (h->pps.cabac) { |
|
/* realign */ |
|
align_get_bits(&h->gb); |
|
|
|
/* init cabac */ |
|
ff_init_cabac_decoder(&h->cabac, |
|
h->gb.buffer + get_bits_count(&h->gb) / 8, |
|
(get_bits_left(&h->gb) + 7) / 8); |
|
|
|
ff_h264_init_cabac_states(h); |
|
|
|
for (;;) { |
|
// START_TIMER |
|
int ret = ff_h264_decode_mb_cabac(h); |
|
int eos; |
|
// STOP_TIMER("decode_mb_cabac") |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
|
|
// FIXME optimal? or let mb_decode decode 16x32 ? |
|
if (ret >= 0 && FRAME_MBAFF(h)) { |
|
h->mb_y++; |
|
|
|
ret = ff_h264_decode_mb_cabac(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
h->mb_y--; |
|
} |
|
eos = get_cabac_terminate(&h->cabac); |
|
|
|
if ((h->workaround_bugs & FF_BUG_TRUNCATED) && |
|
h->cabac.bytestream > h->cabac.bytestream_end + 2) { |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, |
|
h->mb_y, ER_MB_END); |
|
if (h->mb_x >= lf_x_start) |
|
loop_filter(h, lf_x_start, h->mb_x + 1); |
|
return 0; |
|
} |
|
if (h->cabac.bytestream > h->cabac.bytestream_end + 2 ) |
|
av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %td\n", h->cabac.bytestream_end - h->cabac.bytestream); |
|
if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"error while decoding MB %d %d, bytestream (%td)\n", |
|
h->mb_x, h->mb_y, |
|
h->cabac.bytestream_end - h->cabac.bytestream); |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, |
|
h->mb_y, ER_MB_ERROR); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (++h->mb_x >= h->mb_width) { |
|
loop_filter(h, lf_x_start, h->mb_x); |
|
h->mb_x = lf_x_start = 0; |
|
decode_finish_row(h); |
|
++h->mb_y; |
|
if (FIELD_OR_MBAFF_PICTURE(h)) { |
|
++h->mb_y; |
|
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height) |
|
predict_field_decoding_flag(h); |
|
} |
|
} |
|
|
|
if (eos || h->mb_y >= h->mb_height) { |
|
tprintf(h->avctx, "slice end %d %d\n", |
|
get_bits_count(&h->gb), h->gb.size_in_bits); |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, |
|
h->mb_y, ER_MB_END); |
|
if (h->mb_x > lf_x_start) |
|
loop_filter(h, lf_x_start, h->mb_x); |
|
return 0; |
|
} |
|
} |
|
} else { |
|
for (;;) { |
|
int ret = ff_h264_decode_mb_cavlc(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
|
|
// FIXME optimal? or let mb_decode decode 16x32 ? |
|
if (ret >= 0 && FRAME_MBAFF(h)) { |
|
h->mb_y++; |
|
ret = ff_h264_decode_mb_cavlc(h); |
|
|
|
if (ret >= 0) |
|
ff_h264_hl_decode_mb(h); |
|
h->mb_y--; |
|
} |
|
|
|
if (ret < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"error while decoding MB %d %d\n", h->mb_x, h->mb_y); |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, |
|
h->mb_y, ER_MB_ERROR); |
|
return ret; |
|
} |
|
|
|
if (++h->mb_x >= h->mb_width) { |
|
loop_filter(h, lf_x_start, h->mb_x); |
|
h->mb_x = lf_x_start = 0; |
|
decode_finish_row(h); |
|
++h->mb_y; |
|
if (FIELD_OR_MBAFF_PICTURE(h)) { |
|
++h->mb_y; |
|
if (FRAME_MBAFF(h) && h->mb_y < h->mb_height) |
|
predict_field_decoding_flag(h); |
|
} |
|
if (h->mb_y >= h->mb_height) { |
|
tprintf(h->avctx, "slice end %d %d\n", |
|
get_bits_count(&h->gb), h->gb.size_in_bits); |
|
|
|
if ( get_bits_left(&h->gb) == 0 |
|
|| get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) { |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, |
|
h->mb_x - 1, h->mb_y, |
|
ER_MB_END); |
|
|
|
return 0; |
|
} else { |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, |
|
h->mb_x, h->mb_y, |
|
ER_MB_END); |
|
|
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) { |
|
tprintf(h->avctx, "slice end %d %d\n", |
|
get_bits_count(&h->gb), h->gb.size_in_bits); |
|
|
|
if (get_bits_left(&h->gb) == 0) { |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, |
|
h->mb_x - 1, h->mb_y, |
|
ER_MB_END); |
|
if (h->mb_x > lf_x_start) |
|
loop_filter(h, lf_x_start, h->mb_x); |
|
|
|
return 0; |
|
} else { |
|
er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, |
|
h->mb_y, ER_MB_ERROR); |
|
|
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Call decode_slice() for each context. |
|
* |
|
* @param h h264 master context |
|
* @param context_count number of contexts to execute |
|
*/ |
|
static int execute_decode_slices(H264Context *h, int context_count) |
|
{ |
|
AVCodecContext *const avctx = h->avctx; |
|
H264Context *hx; |
|
int i; |
|
|
|
if (h->avctx->hwaccel || |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
return 0; |
|
if (context_count == 1) { |
|
return decode_slice(avctx, &h); |
|
} else { |
|
av_assert0(context_count > 0); |
|
for (i = 1; i < context_count; i++) { |
|
hx = h->thread_context[i]; |
|
if (CONFIG_ERROR_RESILIENCE) { |
|
hx->er.error_count = 0; |
|
} |
|
hx->x264_build = h->x264_build; |
|
} |
|
|
|
avctx->execute(avctx, decode_slice, h->thread_context, |
|
NULL, context_count, sizeof(void *)); |
|
|
|
/* pull back stuff from slices to master context */ |
|
hx = h->thread_context[context_count - 1]; |
|
h->mb_x = hx->mb_x; |
|
h->mb_y = hx->mb_y; |
|
h->droppable = hx->droppable; |
|
h->picture_structure = hx->picture_structure; |
|
if (CONFIG_ERROR_RESILIENCE) { |
|
for (i = 1; i < context_count; i++) |
|
h->er.error_count += h->thread_context[i]->er.error_count; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static const uint8_t start_code[] = { 0x00, 0x00, 0x01 }; |
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, |
|
int parse_extradata) |
|
{ |
|
AVCodecContext *const avctx = h->avctx; |
|
H264Context *hx; ///< thread context |
|
int buf_index; |
|
int context_count; |
|
int next_avc; |
|
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME); |
|
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts |
|
int nal_index; |
|
int idr_cleared=0; |
|
int first_slice = 0; |
|
int ret = 0; |
|
|
|
h->nal_unit_type= 0; |
|
|
|
if(!h->slice_context_count) |
|
h->slice_context_count= 1; |
|
h->max_contexts = h->slice_context_count; |
|
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) { |
|
h->current_slice = 0; |
|
if (!h->first_field) |
|
h->cur_pic_ptr = NULL; |
|
ff_h264_reset_sei(h); |
|
} |
|
|
|
if (h->nal_length_size == 4) { |
|
if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) { |
|
h->is_avc = 0; |
|
}else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size) |
|
h->is_avc = 1; |
|
} |
|
|
|
for (; pass <= 1; pass++) { |
|
buf_index = 0; |
|
context_count = 0; |
|
next_avc = h->is_avc ? 0 : buf_size; |
|
nal_index = 0; |
|
for (;;) { |
|
int consumed; |
|
int dst_length; |
|
int bit_length; |
|
const uint8_t *ptr; |
|
int i, nalsize = 0; |
|
int err; |
|
|
|
if (buf_index >= next_avc) { |
|
if (buf_index >= buf_size - h->nal_length_size) |
|
break; |
|
nalsize = 0; |
|
for (i = 0; i < h->nal_length_size; i++) |
|
nalsize = (nalsize << 8) | buf[buf_index++]; |
|
if (nalsize <= 0 || nalsize > buf_size - buf_index) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"AVC: nal size %d\n", nalsize); |
|
break; |
|
} |
|
next_avc = buf_index + nalsize; |
|
} else { |
|
// start code prefix search |
|
for (; buf_index + 3 < next_avc; buf_index++) |
|
// This should always succeed in the first iteration. |
|
if (buf[buf_index] == 0 && |
|
buf[buf_index + 1] == 0 && |
|
buf[buf_index + 2] == 1) |
|
break; |
|
|
|
if (buf_index + 3 >= buf_size) { |
|
buf_index = buf_size; |
|
break; |
|
} |
|
|
|
buf_index += 3; |
|
if (buf_index >= next_avc) |
|
continue; |
|
} |
|
|
|
hx = h->thread_context[context_count]; |
|
|
|
ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length, |
|
&consumed, next_avc - buf_index); |
|
if (ptr == NULL || dst_length < 0) { |
|
ret = -1; |
|
goto end; |
|
} |
|
i = buf_index + consumed; |
|
if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc && |
|
buf[i] == 0x00 && buf[i + 1] == 0x00 && |
|
buf[i + 2] == 0x01 && buf[i + 3] == 0xE0) |
|
h->workaround_bugs |= FF_BUG_TRUNCATED; |
|
|
|
if (!(h->workaround_bugs & FF_BUG_TRUNCATED)) |
|
while (dst_length > 0 && ptr[dst_length - 1] == 0) |
|
dst_length--; |
|
bit_length = !dst_length ? 0 |
|
: (8 * dst_length - |
|
decode_rbsp_trailing(h, ptr + dst_length - 1)); |
|
|
|
if (h->avctx->debug & FF_DEBUG_STARTCODE) |
|
av_log(h->avctx, AV_LOG_DEBUG, |
|
"NAL %d/%d at %d/%d length %d pass %d\n", |
|
hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length, pass); |
|
|
|
if (h->is_avc && (nalsize != consumed) && nalsize) |
|
av_log(h->avctx, AV_LOG_DEBUG, |
|
"AVC: Consumed only %d bytes instead of %d\n", |
|
consumed, nalsize); |
|
|
|
buf_index += consumed; |
|
nal_index++; |
|
|
|
if (pass == 0) { |
|
/* packets can sometimes contain multiple PPS/SPS, |
|
* e.g. two PAFF field pictures in one packet, or a demuxer |
|
* which splits NALs strangely if so, when frame threading we |
|
* can't start the next thread until we've read all of them */ |
|
switch (hx->nal_unit_type) { |
|
case NAL_SPS: |
|
case NAL_PPS: |
|
nals_needed = nal_index; |
|
break; |
|
case NAL_DPA: |
|
case NAL_IDR_SLICE: |
|
case NAL_SLICE: |
|
init_get_bits(&hx->gb, ptr, bit_length); |
|
if (!get_ue_golomb(&hx->gb) || !first_slice) |
|
nals_needed = nal_index; |
|
if (!first_slice) |
|
first_slice = hx->nal_unit_type; |
|
} |
|
continue; |
|
} |
|
|
|
if (!first_slice) |
|
switch (hx->nal_unit_type) { |
|
case NAL_DPA: |
|
case NAL_IDR_SLICE: |
|
case NAL_SLICE: |
|
first_slice = hx->nal_unit_type; |
|
} |
|
|
|
if (avctx->skip_frame >= AVDISCARD_NONREF && |
|
h->nal_ref_idc == 0 && |
|
h->nal_unit_type != NAL_SEI) |
|
continue; |
|
|
|
again: |
|
/* Ignore per frame NAL unit type during extradata |
|
* parsing. Decoding slices is not possible in codec init |
|
* with frame-mt */ |
|
if (parse_extradata) { |
|
switch (hx->nal_unit_type) { |
|
case NAL_IDR_SLICE: |
|
case NAL_SLICE: |
|
case NAL_DPA: |
|
case NAL_DPB: |
|
case NAL_DPC: |
|
av_log(h->avctx, AV_LOG_WARNING, |
|
"Ignoring NAL %d in global header/extradata\n", |
|
hx->nal_unit_type); |
|
// fall through to next case |
|
case NAL_AUXILIARY_SLICE: |
|
hx->nal_unit_type = NAL_FF_IGNORE; |
|
} |
|
} |
|
|
|
err = 0; |
|
|
|
switch (hx->nal_unit_type) { |
|
case NAL_IDR_SLICE: |
|
if (first_slice != NAL_IDR_SLICE) { |
|
av_log(h->avctx, AV_LOG_ERROR, |
|
"Invalid mix of idr and non-idr slices\n"); |
|
ret = -1; |
|
goto end; |
|
} |
|
if(!idr_cleared) |
|
idr(h); // FIXME ensure we don't lose some frames if there is reordering |
|
idr_cleared = 1; |
|
case NAL_SLICE: |
|
init_get_bits(&hx->gb, ptr, bit_length); |
|
hx->intra_gb_ptr = |
|
hx->inter_gb_ptr = &hx->gb; |
|
hx->data_partitioning = 0; |
|
|
|
if ((err = decode_slice_header(hx, h))) |
|
break; |
|
|
|
if (h->sei_recovery_frame_cnt >= 0) { |
|
if (h->frame_num != h->sei_recovery_frame_cnt || hx->slice_type_nos != AV_PICTURE_TYPE_I) |
|
h->valid_recovery_point = 1; |
|
|
|
if ( h->recovery_frame < 0 |
|
|| ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt) { |
|
h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) & |
|
((1 << h->sps.log2_max_frame_num) - 1); |
|
|
|
if (!h->valid_recovery_point) |
|
h->recovery_frame = h->frame_num; |
|
} |
|
} |
|
|
|
h->cur_pic_ptr->f.key_frame |= |
|
(hx->nal_unit_type == NAL_IDR_SLICE); |
|
|
|
if (hx->nal_unit_type == NAL_IDR_SLICE || |
|
h->recovery_frame == h->frame_num) { |
|
h->recovery_frame = -1; |
|
h->cur_pic_ptr->recovered = 1; |
|
} |
|
// If we have an IDR, all frames after it in decoded order are |
|
// "recovered". |
|
if (hx->nal_unit_type == NAL_IDR_SLICE) |
|
h->frame_recovered |= FRAME_RECOVERED_IDR; |
|
h->frame_recovered |= 3*!!(avctx->flags2 & CODEC_FLAG2_SHOW_ALL); |
|
h->frame_recovered |= 3*!!(avctx->flags & CODEC_FLAG_OUTPUT_CORRUPT); |
|
#if 1 |
|
h->cur_pic_ptr->recovered |= h->frame_recovered; |
|
#else |
|
h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); |
|
#endif |
|
|
|
if (h->current_slice == 1) { |
|
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) |
|
decode_postinit(h, nal_index >= nals_needed); |
|
|
|
if (h->avctx->hwaccel && |
|
(ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0) |
|
return ret; |
|
if (CONFIG_H264_VDPAU_DECODER && |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) |
|
ff_vdpau_h264_picture_start(h); |
|
} |
|
|
|
if (hx->redundant_pic_count == 0 && |
|
(avctx->skip_frame < AVDISCARD_NONREF || |
|
hx->nal_ref_idc) && |
|
(avctx->skip_frame < AVDISCARD_BIDIR || |
|
hx->slice_type_nos != AV_PICTURE_TYPE_B) && |
|
(avctx->skip_frame < AVDISCARD_NONKEY || |
|
hx->slice_type_nos == AV_PICTURE_TYPE_I) && |
|
avctx->skip_frame < AVDISCARD_ALL) { |
|
if (avctx->hwaccel) { |
|
ret = avctx->hwaccel->decode_slice(avctx, |
|
&buf[buf_index - consumed], |
|
consumed); |
|
if (ret < 0) |
|
return ret; |
|
} else if (CONFIG_H264_VDPAU_DECODER && |
|
h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) { |
|
ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], |
|
start_code, |
|
sizeof(start_code)); |
|
ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], |
|
&buf[buf_index - consumed], |
|
consumed); |
|
} else |
|
context_count++; |
|
} |
|
break; |
|
case NAL_DPA: |
|
init_get_bits(&hx->gb, ptr, bit_length); |
|
hx->intra_gb_ptr = |
|
hx->inter_gb_ptr = NULL; |
|
|
|
if ((err = decode_slice_header(hx, h)) < 0) |
|
break; |
|
|
|
hx->data_partitioning = 1; |
|
break; |
|
case NAL_DPB: |
|
init_get_bits(&hx->intra_gb, ptr, bit_length); |
|
hx->intra_gb_ptr = &hx->intra_gb; |
|
break; |
|
case NAL_DPC: |
|
init_get_bits(&hx->inter_gb, ptr, bit_length); |
|
hx->inter_gb_ptr = &hx->inter_gb; |
|
|
|
av_log(h->avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n"); |
|
break; |
|
|
|
if (hx->redundant_pic_count == 0 && |
|
hx->intra_gb_ptr && |
|
hx->data_partitioning && |
|
h->cur_pic_ptr && h->context_initialized && |
|
(avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && |
|
(avctx->skip_frame < AVDISCARD_BIDIR || |
|
hx->slice_type_nos != AV_PICTURE_TYPE_B) && |
|
(avctx->skip_frame < AVDISCARD_NONKEY || |
|
hx->slice_type_nos == AV_PICTURE_TYPE_I) && |
|
avctx->skip_frame < AVDISCARD_ALL) |
|
context_count++; |
|
break; |
|
case NAL_SEI: |
|
init_get_bits(&h->gb, ptr, bit_length); |
|
ff_h264_decode_sei(h); |
|
break; |
|
case NAL_SPS: |
|
init_get_bits(&h->gb, ptr, bit_length); |
|
if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? nalsize : 1)) { |
|
av_log(h->avctx, AV_LOG_DEBUG, |
|
"SPS decoding failure, trying again with the complete NAL\n"); |
|
if (h->is_avc) |
|
av_assert0(next_avc - buf_index + consumed == nalsize); |
|
if ((next_avc - buf_index + consumed - 1) >= INT_MAX/8) |
|
break; |
|
init_get_bits(&h->gb, &buf[buf_index + 1 - consumed], |
|
8*(next_avc - buf_index + consumed - 1)); |
|
ff_h264_decode_seq_parameter_set(h); |
|
} |
|
|
|
break; |
|
case NAL_PPS: |
|
init_get_bits(&h->gb, ptr, bit_length); |
|
ff_h264_decode_picture_parameter_set(h, bit_length); |
|
break; |
|
case NAL_AUD: |
|
case NAL_END_SEQUENCE: |
|
case NAL_END_STREAM: |
|
case NAL_FILLER_DATA: |
|
case NAL_SPS_EXT: |
|
case NAL_AUXILIARY_SLICE: |
|
break; |
|
case NAL_FF_IGNORE: |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", |
|
hx->nal_unit_type, bit_length); |
|
} |
|
|
|
if (context_count == h->max_contexts) { |
|
execute_decode_slices(h, context_count); |
|
context_count = 0; |
|
} |
|
|
|
if (err < 0) |
|
av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); |
|
else if (err == 1) { |
|
/* Slice could not be decoded in parallel mode, copy down |
|
* NAL unit stuff to context 0 and restart. Note that |
|
* rbsp_buffer is not transferred, but since we no longer |
|
* run in parallel mode this should not be an issue. */ |
|
h->nal_unit_type = hx->nal_unit_type; |
|
h->nal_ref_idc = hx->nal_ref_idc; |
|
hx = h; |
|
goto again; |
|
} |
|
} |
|
} |
|
if (context_count) |
|
execute_decode_slices(h, context_count); |
|
|
|
end: |
|
/* clean up */ |
|
if (h->cur_pic_ptr && !h->droppable) { |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, |
|
h->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
return (ret < 0) ? ret : buf_index; |
|
} |
|
|
|
/** |
|
* Return the number of bytes consumed for building the current frame. |
|
*/ |
|
static int get_consumed_bytes(int pos, int buf_size) |
|
{ |
|
if (pos == 0) |
|
pos = 1; // avoid infinite loops (i doubt that is needed but ...) |
|
if (pos + 10 > buf_size) |
|
pos = buf_size; // oops ;) |
|
|
|
return pos; |
|
} |
|
|
|
static int output_frame(H264Context *h, AVFrame *dst, Picture *srcp) |
|
{ |
|
AVFrame *src = &srcp->f; |
|
int i; |
|
int ret = av_frame_ref(dst, src); |
|
if (ret < 0) |
|
return ret; |
|
|
|
av_dict_set(&dst->metadata, "stereo_mode", ff_h264_sei_stereo_mode(h), 0); |
|
|
|
if (!srcp->crop) |
|
return 0; |
|
|
|
for (i = 0; i < 3; i++) { |
|
int hshift = (i > 0) ? h->chroma_x_shift : 0; |
|
int vshift = (i > 0) ? h->chroma_y_shift : 0; |
|
int off = ((srcp->crop_left >> hshift) << h->pixel_shift) + |
|
(srcp->crop_top >> vshift) * dst->linesize[i]; |
|
dst->data[i] += off; |
|
} |
|
return 0; |
|
} |
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
H264Context *h = avctx->priv_data; |
|
AVFrame *pict = data; |
|
int buf_index = 0; |
|
Picture *out; |
|
int i, out_idx; |
|
int ret; |
|
|
|
h->flags = avctx->flags; |
|
|
|
/* end of stream, output what is still in the buffers */ |
|
if (buf_size == 0) { |
|
out: |
|
|
|
h->cur_pic_ptr = NULL; |
|
h->first_field = 0; |
|
|
|
// FIXME factorize this with the output code below |
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; |
|
h->delayed_pic[i] && |
|
!h->delayed_pic[i]->f.key_frame && |
|
!h->delayed_pic[i]->mmco_reset; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
|
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
|
|
if (out) { |
|
out->reference &= ~DELAYED_PIC_REF; |
|
ret = output_frame(h, pict, out); |
|
if (ret < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
|
|
return buf_index; |
|
} |
|
if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){ |
|
int cnt= buf[5]&0x1f; |
|
const uint8_t *p= buf+6; |
|
while(cnt--){ |
|
int nalsize= AV_RB16(p) + 2; |
|
if(nalsize > buf_size - (p-buf) || p[2]!=0x67) |
|
goto not_extra; |
|
p += nalsize; |
|
} |
|
cnt = *(p++); |
|
if(!cnt) |
|
goto not_extra; |
|
while(cnt--){ |
|
int nalsize= AV_RB16(p) + 2; |
|
if(nalsize > buf_size - (p-buf) || p[2]!=0x68) |
|
goto not_extra; |
|
p += nalsize; |
|
} |
|
|
|
return ff_h264_decode_extradata(h, buf, buf_size); |
|
} |
|
not_extra: |
|
|
|
buf_index = decode_nal_units(h, buf, buf_size, 0); |
|
if (buf_index < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { |
|
av_assert0(buf_index <= buf_size); |
|
goto out; |
|
} |
|
|
|
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { |
|
if (avctx->skip_frame >= AVDISCARD_NONREF || |
|
buf_size >= 4 && !memcmp("Q264", buf, 4)) |
|
return buf_size; |
|
av_log(avctx, AV_LOG_ERROR, "no frame!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) || |
|
(h->mb_y >= h->mb_height && h->mb_height)) { |
|
if (avctx->flags2 & CODEC_FLAG2_CHUNKS) |
|
decode_postinit(h, 1); |
|
|
|
field_end(h, 0); |
|
|
|
/* Wait for second field. */ |
|
*got_frame = 0; |
|
if (h->next_output_pic && ( |
|
h->next_output_pic->recovered)) { |
|
if (!h->next_output_pic->recovered) |
|
h->next_output_pic->f.flags |= AV_FRAME_FLAG_CORRUPT; |
|
|
|
ret = output_frame(h, pict, h->next_output_pic); |
|
if (ret < 0) |
|
return ret; |
|
*got_frame = 1; |
|
if (CONFIG_MPEGVIDEO) { |
|
ff_print_debug_info2(h->avctx, h->next_output_pic, pict, h->er.mbskip_table, |
|
&h->low_delay, |
|
h->mb_width, h->mb_height, h->mb_stride, 1); |
|
} |
|
} |
|
} |
|
|
|
assert(pict->buf[0] || !*got_frame); |
|
|
|
return get_consumed_bytes(buf_index, buf_size); |
|
} |
|
|
|
av_cold void ff_h264_free_context(H264Context *h) |
|
{ |
|
int i; |
|
|
|
free_tables(h, 1); // FIXME cleanup init stuff perhaps |
|
|
|
for (i = 0; i < MAX_SPS_COUNT; i++) |
|
av_freep(h->sps_buffers + i); |
|
|
|
for (i = 0; i < MAX_PPS_COUNT; i++) |
|
av_freep(h->pps_buffers + i); |
|
} |
|
|
|
static av_cold int h264_decode_end(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
|
|
ff_h264_remove_all_refs(h); |
|
ff_h264_free_context(h); |
|
|
|
unref_picture(h, &h->cur_pic); |
|
|
|
return 0; |
|
} |
|
|
|
static const AVProfile profiles[] = { |
|
{ FF_PROFILE_H264_BASELINE, "Baseline" }, |
|
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" }, |
|
{ FF_PROFILE_H264_MAIN, "Main" }, |
|
{ FF_PROFILE_H264_EXTENDED, "Extended" }, |
|
{ FF_PROFILE_H264_HIGH, "High" }, |
|
{ FF_PROFILE_H264_HIGH_10, "High 10" }, |
|
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" }, |
|
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" }, |
|
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" }, |
|
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" }, |
|
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" }, |
|
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" }, |
|
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" }, |
|
{ FF_PROFILE_UNKNOWN }, |
|
}; |
|
|
|
static const AVOption h264_options[] = { |
|
{"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 1, 0}, |
|
{"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 4, 0}, |
|
{NULL} |
|
}; |
|
|
|
static const AVClass h264_class = { |
|
.class_name = "H264 Decoder", |
|
.item_name = av_default_item_name, |
|
.option = h264_options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static const AVClass h264_vdpau_class = { |
|
.class_name = "H264 VDPAU Decoder", |
|
.item_name = av_default_item_name, |
|
.option = h264_options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_h264_decoder = { |
|
.name = "h264", |
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_H264, |
|
.priv_data_size = sizeof(H264Context), |
|
.init = ff_h264_decode_init, |
|
.close = h264_decode_end, |
|
.decode = decode_frame, |
|
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | |
|
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | |
|
CODEC_CAP_FRAME_THREADS, |
|
.flush = flush_dpb, |
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), |
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context), |
|
.profiles = NULL_IF_CONFIG_SMALL(profiles), |
|
.priv_class = &h264_class, |
|
}; |
|
|
|
#if CONFIG_H264_VDPAU_DECODER |
|
AVCodec ff_h264_vdpau_decoder = { |
|
.name = "h264_vdpau", |
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_H264, |
|
.priv_data_size = sizeof(H264Context), |
|
.init = ff_h264_decode_init, |
|
.close = h264_decode_end, |
|
.decode = decode_frame, |
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, |
|
.flush = flush_dpb, |
|
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_VDPAU_H264, |
|
AV_PIX_FMT_NONE}, |
|
.profiles = NULL_IF_CONFIG_SMALL(profiles), |
|
.priv_class = &h264_vdpau_class, |
|
}; |
|
#endif
|
|
|