mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
4.2 KiB
160 lines
4.2 KiB
/* |
|
* linear least squares model |
|
* |
|
* Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* linear least squares model |
|
*/ |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#include "attributes.h" |
|
#include "version.h" |
|
#include "lls.h" |
|
|
|
static void update_lls(LLSModel *m, double *var) |
|
{ |
|
int i, j; |
|
|
|
for (i = 0; i <= m->indep_count; i++) { |
|
for (j = i; j <= m->indep_count; j++) { |
|
m->covariance[i][j] += var[i] * var[j]; |
|
} |
|
} |
|
} |
|
|
|
void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order) |
|
{ |
|
int i, j, k; |
|
double (*factor)[MAX_VARS_ALIGN] = (void *) &m->covariance[1][0]; |
|
double (*covar) [MAX_VARS_ALIGN] = (void *) &m->covariance[1][1]; |
|
double *covar_y = m->covariance[0]; |
|
int count = m->indep_count; |
|
|
|
for (i = 0; i < count; i++) { |
|
for (j = i; j < count; j++) { |
|
double sum = covar[i][j]; |
|
|
|
for (k = i - 1; k >= 0; k--) |
|
sum -= factor[i][k] * factor[j][k]; |
|
|
|
if (i == j) { |
|
if (sum < threshold) |
|
sum = 1.0; |
|
factor[i][i] = sqrt(sum); |
|
} else { |
|
factor[j][i] = sum / factor[i][i]; |
|
} |
|
} |
|
} |
|
|
|
for (i = 0; i < count; i++) { |
|
double sum = covar_y[i + 1]; |
|
|
|
for (k = i - 1; k >= 0; k--) |
|
sum -= factor[i][k] * m->coeff[0][k]; |
|
|
|
m->coeff[0][i] = sum / factor[i][i]; |
|
} |
|
|
|
for (j = count - 1; j >= min_order; j--) { |
|
for (i = j; i >= 0; i--) { |
|
double sum = m->coeff[0][i]; |
|
|
|
for (k = i + 1; k <= j; k++) |
|
sum -= factor[k][i] * m->coeff[j][k]; |
|
|
|
m->coeff[j][i] = sum / factor[i][i]; |
|
} |
|
|
|
m->variance[j] = covar_y[0]; |
|
|
|
for (i = 0; i <= j; i++) { |
|
double sum = m->coeff[j][i] * covar[i][i] - 2 * covar_y[i + 1]; |
|
|
|
for (k = 0; k < i; k++) |
|
sum += 2 * m->coeff[j][k] * covar[k][i]; |
|
|
|
m->variance[j] += m->coeff[j][i] * sum; |
|
} |
|
} |
|
} |
|
|
|
static double evaluate_lls(LLSModel *m, double *param, int order) |
|
{ |
|
int i; |
|
double out = 0; |
|
|
|
for (i = 0; i <= order; i++) |
|
out += param[i] * m->coeff[order][i]; |
|
|
|
return out; |
|
} |
|
|
|
av_cold void avpriv_init_lls(LLSModel *m, int indep_count) |
|
{ |
|
memset(m, 0, sizeof(LLSModel)); |
|
m->indep_count = indep_count; |
|
m->update_lls = update_lls; |
|
m->evaluate_lls = evaluate_lls; |
|
if (ARCH_X86) |
|
ff_init_lls_x86(m); |
|
} |
|
|
|
#ifdef TEST |
|
|
|
#include <stdio.h> |
|
#include <limits.h> |
|
#include "lfg.h" |
|
|
|
int main(void) |
|
{ |
|
LLSModel m; |
|
int i, order; |
|
AVLFG lfg; |
|
|
|
av_lfg_init(&lfg, 1); |
|
avpriv_init_lls(&m, 3); |
|
|
|
for (i = 0; i < 100; i++) { |
|
LOCAL_ALIGNED(32, double, var, [4]); |
|
double eval; |
|
|
|
var[0] = (av_lfg_get(&lfg) / (double) UINT_MAX - 0.5) * 2; |
|
var[1] = var[0] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; |
|
var[2] = var[1] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; |
|
var[3] = var[2] + av_lfg_get(&lfg) / (double) UINT_MAX - 0.5; |
|
m.update_lls(&m, var); |
|
avpriv_solve_lls(&m, 0.001, 0); |
|
for (order = 0; order < 3; order++) { |
|
eval = m.evaluate_lls(&m, var + 1, order); |
|
printf("real:%9f order:%d pred:%9f var:%f coeffs:%f %9f %9f\n", |
|
var[0], order, eval, sqrt(m.variance[order] / (i + 1)), |
|
m.coeff[order][0], m.coeff[order][1], |
|
m.coeff[order][2]); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
#endif
|
|
|