mirror of https://github.com/FFmpeg/FFmpeg.git
243 lines
6.3 KiB
243 lines
6.3 KiB
/* |
|
* principal component analysis (PCA) |
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavutil/pca.c |
|
* principal component analysis (PCA) |
|
*/ |
|
|
|
#include "common.h" |
|
#include "pca.h" |
|
|
|
typedef struct PCA{ |
|
int count; |
|
int n; |
|
double *covariance; |
|
double *mean; |
|
}PCA; |
|
|
|
PCA *ff_pca_init(int n){ |
|
PCA *pca; |
|
if(n<=0) |
|
return NULL; |
|
|
|
pca= av_mallocz(sizeof(PCA)); |
|
pca->n= n; |
|
pca->count=0; |
|
pca->covariance= av_mallocz(sizeof(double)*n*n); |
|
pca->mean= av_mallocz(sizeof(double)*n); |
|
|
|
return pca; |
|
} |
|
|
|
void ff_pca_free(PCA *pca){ |
|
av_freep(&pca->covariance); |
|
av_freep(&pca->mean); |
|
av_free(pca); |
|
} |
|
|
|
void ff_pca_add(PCA *pca, double *v){ |
|
int i, j; |
|
const int n= pca->n; |
|
|
|
for(i=0; i<n; i++){ |
|
pca->mean[i] += v[i]; |
|
for(j=i; j<n; j++) |
|
pca->covariance[j + i*n] += v[i]*v[j]; |
|
} |
|
pca->count++; |
|
} |
|
|
|
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ |
|
int i, j, pass; |
|
int k=0; |
|
const int n= pca->n; |
|
double z[n]; |
|
|
|
memset(eigenvector, 0, sizeof(double)*n*n); |
|
|
|
for(j=0; j<n; j++){ |
|
pca->mean[j] /= pca->count; |
|
eigenvector[j + j*n] = 1.0; |
|
for(i=0; i<=j; i++){ |
|
pca->covariance[j + i*n] /= pca->count; |
|
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; |
|
pca->covariance[i + j*n] = pca->covariance[j + i*n]; |
|
} |
|
eigenvalue[j]= pca->covariance[j + j*n]; |
|
z[j]= 0; |
|
} |
|
|
|
for(pass=0; pass < 50; pass++){ |
|
double sum=0; |
|
|
|
for(i=0; i<n; i++) |
|
for(j=i+1; j<n; j++) |
|
sum += fabs(pca->covariance[j + i*n]); |
|
|
|
if(sum == 0){ |
|
for(i=0; i<n; i++){ |
|
double maxvalue= -1; |
|
for(j=i; j<n; j++){ |
|
if(eigenvalue[j] > maxvalue){ |
|
maxvalue= eigenvalue[j]; |
|
k= j; |
|
} |
|
} |
|
eigenvalue[k]= eigenvalue[i]; |
|
eigenvalue[i]= maxvalue; |
|
for(j=0; j<n; j++){ |
|
double tmp= eigenvector[k + j*n]; |
|
eigenvector[k + j*n]= eigenvector[i + j*n]; |
|
eigenvector[i + j*n]= tmp; |
|
} |
|
} |
|
return pass; |
|
} |
|
|
|
for(i=0; i<n; i++){ |
|
for(j=i+1; j<n; j++){ |
|
double covar= pca->covariance[j + i*n]; |
|
double t,c,s,tau,theta, h; |
|
|
|
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 |
|
continue; |
|
if(fabs(covar) == 0.0) //FIXME should not be needed |
|
continue; |
|
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ |
|
pca->covariance[j + i*n]=0.0; |
|
continue; |
|
} |
|
|
|
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); |
|
theta=0.5*h/covar; |
|
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); |
|
if(theta < 0.0) t = -t; |
|
|
|
c=1.0/sqrt(1+t*t); |
|
s=t*c; |
|
tau=s/(1.0+c); |
|
z[i] -= t*covar; |
|
z[j] += t*covar; |
|
|
|
#define ROTATE(a,i,j,k,l) {\ |
|
double g=a[j + i*n];\ |
|
double h=a[l + k*n];\ |
|
a[j + i*n]=g-s*(h+g*tau);\ |
|
a[l + k*n]=h+s*(g-h*tau); } |
|
for(k=0; k<n; k++) { |
|
if(k!=i && k!=j){ |
|
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) |
|
} |
|
ROTATE(eigenvector,k,i,k,j) |
|
} |
|
pca->covariance[j + i*n]=0.0; |
|
} |
|
} |
|
for (i=0; i<n; i++) { |
|
eigenvalue[i] += z[i]; |
|
z[i]=0.0; |
|
} |
|
} |
|
|
|
return -1; |
|
} |
|
|
|
#ifdef TEST |
|
|
|
#undef printf |
|
#undef random |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
|
|
int main(void){ |
|
PCA *pca; |
|
int i, j, k; |
|
#define LEN 8 |
|
double eigenvector[LEN*LEN]; |
|
double eigenvalue[LEN]; |
|
|
|
pca= ff_pca_init(LEN); |
|
|
|
for(i=0; i<9000000; i++){ |
|
double v[2*LEN+100]; |
|
double sum=0; |
|
int pos= random()%LEN; |
|
int v2= (random()%101) - 50; |
|
v[0]= (random()%101) - 50; |
|
for(j=1; j<8; j++){ |
|
if(j<=pos) v[j]= v[0]; |
|
else v[j]= v2; |
|
sum += v[j]; |
|
} |
|
/* for(j=0; j<LEN; j++){ |
|
v[j] -= v[pos]; |
|
}*/ |
|
// sum += random()%10; |
|
/* for(j=0; j<LEN; j++){ |
|
v[j] -= sum/LEN; |
|
}*/ |
|
// lbt1(v+100,v+100,LEN); |
|
ff_pca_add(pca, v); |
|
} |
|
|
|
|
|
ff_pca(pca, eigenvector, eigenvalue); |
|
for(i=0; i<LEN; i++){ |
|
pca->count= 1; |
|
pca->mean[i]= 0; |
|
|
|
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x| |
|
|
|
|
|
// pca.covariance[i + i*LEN]= pow(0.5, fabs |
|
for(j=i; j<LEN; j++){ |
|
printf("%f ", pca->covariance[i + j*LEN]); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
#if 1 |
|
for(i=0; i<LEN; i++){ |
|
double v[LEN]; |
|
double error=0; |
|
memset(v, 0, sizeof(v)); |
|
for(j=0; j<LEN; j++){ |
|
for(k=0; k<LEN; k++){ |
|
v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
|
} |
|
v[j] /= eigenvalue[i]; |
|
error += fabs(v[j] - eigenvector[i + j*LEN]); |
|
} |
|
printf("%f ", error); |
|
} |
|
printf("\n"); |
|
#endif |
|
for(i=0; i<LEN; i++){ |
|
for(j=0; j<LEN; j++){ |
|
printf("%9.6f ", eigenvector[i + j*LEN]); |
|
} |
|
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
|
} |
|
|
|
return 0; |
|
} |
|
#endif
|
|
|