mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
8.4 KiB
213 lines
8.4 KiB
/* |
|
* Audio Processing Technology codec for Bluetooth (aptX) |
|
* |
|
* Copyright (C) 2017 Aurelien Jacobs <aurel@gnuage.org> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "config_components.h" |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "aptx.h" |
|
|
|
/* |
|
* Half-band QMF synthesis filter realized with a polyphase FIR filter. |
|
* Join 2 subbands and upsample by 2. |
|
* So for each 2 subbands sample that goes in, a pair of samples goes out. |
|
*/ |
|
av_always_inline |
|
static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS], |
|
const int32_t coeffs[NB_FILTERS][FILTER_TAPS], |
|
int shift, |
|
int32_t low_subband_input, |
|
int32_t high_subband_input, |
|
int32_t samples[NB_FILTERS]) |
|
{ |
|
int32_t subbands[NB_FILTERS]; |
|
int i; |
|
|
|
subbands[0] = low_subband_input + high_subband_input; |
|
subbands[1] = low_subband_input - high_subband_input; |
|
|
|
for (i = 0; i < NB_FILTERS; i++) { |
|
aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]); |
|
samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); |
|
} |
|
} |
|
|
|
/* |
|
* Two stage QMF synthesis tree. |
|
* Join 4 subbands and upsample by 4. |
|
* So for each 4 subbands sample that goes in, a group of 4 samples goes out. |
|
*/ |
|
static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf, |
|
int32_t subband_samples[4], |
|
int32_t samples[4]) |
|
{ |
|
int32_t intermediate_samples[4]; |
|
int i; |
|
|
|
/* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */ |
|
for (i = 0; i < 2; i++) |
|
aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i], |
|
aptx_qmf_inner_coeffs, 22, |
|
subband_samples[2*i+0], |
|
subband_samples[2*i+1], |
|
&intermediate_samples[2*i]); |
|
|
|
/* Join 2 samples from intermediate subbands upsampled to 4 samples. */ |
|
for (i = 0; i < 2; i++) |
|
aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal, |
|
aptx_qmf_outer_coeffs, 21, |
|
intermediate_samples[0+i], |
|
intermediate_samples[2+i], |
|
&samples[2*i]); |
|
} |
|
|
|
|
|
static void aptx_decode_channel(Channel *channel, int32_t samples[4]) |
|
{ |
|
int32_t subband_samples[4]; |
|
int subband; |
|
for (subband = 0; subband < NB_SUBBANDS; subband++) |
|
subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample; |
|
aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples); |
|
} |
|
|
|
static void aptx_unpack_codeword(Channel *channel, uint16_t codeword) |
|
{ |
|
channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, 7); |
|
channel->quantize[1].quantized_sample = sign_extend(codeword >> 7, 4); |
|
channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2); |
|
channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3); |
|
channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1) |
|
| aptx_quantized_parity(channel); |
|
} |
|
|
|
static void aptxhd_unpack_codeword(Channel *channel, uint32_t codeword) |
|
{ |
|
channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, 9); |
|
channel->quantize[1].quantized_sample = sign_extend(codeword >> 9, 6); |
|
channel->quantize[2].quantized_sample = sign_extend(codeword >> 15, 4); |
|
channel->quantize[3].quantized_sample = sign_extend(codeword >> 19, 5); |
|
channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1) |
|
| aptx_quantized_parity(channel); |
|
} |
|
|
|
static int aptx_decode_samples(AptXContext *ctx, |
|
const uint8_t *input, |
|
int32_t samples[NB_CHANNELS][4]) |
|
{ |
|
int channel, ret; |
|
|
|
for (channel = 0; channel < NB_CHANNELS; channel++) { |
|
ff_aptx_generate_dither(&ctx->channels[channel]); |
|
|
|
if (ctx->hd) |
|
aptxhd_unpack_codeword(&ctx->channels[channel], |
|
AV_RB24(input + 3*channel)); |
|
else |
|
aptx_unpack_codeword(&ctx->channels[channel], |
|
AV_RB16(input + 2*channel)); |
|
ff_aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd); |
|
} |
|
|
|
ret = aptx_check_parity(ctx->channels, &ctx->sync_idx); |
|
|
|
for (channel = 0; channel < NB_CHANNELS; channel++) |
|
aptx_decode_channel(&ctx->channels[channel], samples[channel]); |
|
|
|
return ret; |
|
} |
|
|
|
static int aptx_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
AptXContext *s = avctx->priv_data; |
|
AVFrame *frame = data; |
|
int pos, opos, channel, sample, ret; |
|
|
|
if (avpkt->size < s->block_size) { |
|
av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* get output buffer */ |
|
frame->ch_layout.nb_channels = NB_CHANNELS; |
|
frame->format = AV_SAMPLE_FMT_S32P; |
|
frame->nb_samples = 4 * avpkt->size / s->block_size; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
|
|
for (pos = 0, opos = 0; opos < frame->nb_samples; pos += s->block_size, opos += 4) { |
|
int32_t samples[NB_CHANNELS][4]; |
|
|
|
if (aptx_decode_samples(s, &avpkt->data[pos], samples)) { |
|
av_log(avctx, AV_LOG_ERROR, "Synchronization error\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
for (channel = 0; channel < NB_CHANNELS; channel++) |
|
for (sample = 0; sample < 4; sample++) |
|
AV_WN32A(&frame->data[channel][4*(opos+sample)], |
|
samples[channel][sample] * 256); |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
return s->block_size * frame->nb_samples / 4; |
|
} |
|
|
|
#if CONFIG_APTX_DECODER |
|
const AVCodec ff_aptx_decoder = { |
|
.name = "aptx", |
|
.long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_APTX, |
|
.priv_data_size = sizeof(AptXContext), |
|
.init = ff_aptx_init, |
|
.decode = aptx_decode_frame, |
|
.capabilities = AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
#if FF_API_OLD_CHANNEL_LAYOUT |
|
.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, |
|
#endif |
|
.ch_layouts = (const AVChannelLayout[]) { AV_CHANNEL_LAYOUT_STEREO, { 0 } }, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_NONE }, |
|
}; |
|
#endif |
|
|
|
#if CONFIG_APTX_HD_DECODER |
|
const AVCodec ff_aptx_hd_decoder = { |
|
.name = "aptx_hd", |
|
.long_name = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_APTX_HD, |
|
.priv_data_size = sizeof(AptXContext), |
|
.init = ff_aptx_init, |
|
.decode = aptx_decode_frame, |
|
.capabilities = AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
#if FF_API_OLD_CHANNEL_LAYOUT |
|
.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, |
|
#endif |
|
.ch_layouts = (const AVChannelLayout[]) { AV_CHANNEL_LAYOUT_STEREO, { 0 } }, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_NONE }, |
|
}; |
|
#endif
|
|
|