mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
11 KiB
279 lines
11 KiB
/* |
|
* Audio Processing Technology codec for Bluetooth (aptX) |
|
* |
|
* Copyright (C) 2017 Aurelien Jacobs <aurel@gnuage.org> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "aptx.h" |
|
#include "encode.h" |
|
|
|
/* |
|
* Half-band QMF analysis filter realized with a polyphase FIR filter. |
|
* Split into 2 subbands and downsample by 2. |
|
* So for each pair of samples that goes in, one sample goes out, |
|
* split into 2 separate subbands. |
|
*/ |
|
av_always_inline |
|
static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS], |
|
const int32_t coeffs[NB_FILTERS][FILTER_TAPS], |
|
int shift, |
|
int32_t samples[NB_FILTERS], |
|
int32_t *low_subband_output, |
|
int32_t *high_subband_output) |
|
{ |
|
int32_t subbands[NB_FILTERS]; |
|
int i; |
|
|
|
for (i = 0; i < NB_FILTERS; i++) { |
|
aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]); |
|
subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); |
|
} |
|
|
|
*low_subband_output = av_clip_intp2(subbands[0] + subbands[1], 23); |
|
*high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23); |
|
} |
|
|
|
/* |
|
* Two stage QMF analysis tree. |
|
* Split 4 input samples into 4 subbands and downsample by 4. |
|
* So for each group of 4 samples that goes in, one sample goes out, |
|
* split into 4 separate subbands. |
|
*/ |
|
static void aptx_qmf_tree_analysis(QMFAnalysis *qmf, |
|
int32_t samples[4], |
|
int32_t subband_samples[4]) |
|
{ |
|
int32_t intermediate_samples[4]; |
|
int i; |
|
|
|
/* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */ |
|
for (i = 0; i < 2; i++) |
|
aptx_qmf_polyphase_analysis(qmf->outer_filter_signal, |
|
aptx_qmf_outer_coeffs, 23, |
|
&samples[2*i], |
|
&intermediate_samples[0+i], |
|
&intermediate_samples[2+i]); |
|
|
|
/* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */ |
|
for (i = 0; i < 2; i++) |
|
aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i], |
|
aptx_qmf_inner_coeffs, 23, |
|
&intermediate_samples[2*i], |
|
&subband_samples[2*i+0], |
|
&subband_samples[2*i+1]); |
|
} |
|
|
|
av_always_inline |
|
static int32_t aptx_bin_search(int32_t value, int32_t factor, |
|
const int32_t *intervals, int32_t nb_intervals) |
|
{ |
|
int32_t idx = 0; |
|
int i; |
|
|
|
for (i = nb_intervals >> 1; i > 0; i >>= 1) |
|
if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24)) |
|
idx += i; |
|
|
|
return idx; |
|
} |
|
|
|
static void aptx_quantize_difference(Quantize *quantize, |
|
int32_t sample_difference, |
|
int32_t dither, |
|
int32_t quantization_factor, |
|
ConstTables *tables) |
|
{ |
|
const int32_t *intervals = tables->quantize_intervals; |
|
int32_t quantized_sample, dithered_sample, parity_change; |
|
int32_t d, mean, interval, inv, sample_difference_abs; |
|
int64_t error; |
|
|
|
sample_difference_abs = FFABS(sample_difference); |
|
sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1); |
|
|
|
quantized_sample = aptx_bin_search(sample_difference_abs >> 4, |
|
quantization_factor, |
|
intervals, tables->tables_size); |
|
|
|
d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23); |
|
d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23); |
|
|
|
intervals += quantized_sample; |
|
mean = (intervals[1] + intervals[0]) / 2; |
|
interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1); |
|
|
|
dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32); |
|
error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor); |
|
quantize->error = FFABS(rshift64(error, 23)); |
|
|
|
parity_change = quantized_sample; |
|
if (error < 0) |
|
quantized_sample--; |
|
else |
|
parity_change--; |
|
|
|
inv = -(sample_difference < 0); |
|
quantize->quantized_sample = quantized_sample ^ inv; |
|
quantize->quantized_sample_parity_change = parity_change ^ inv; |
|
} |
|
|
|
static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd) |
|
{ |
|
int32_t subband_samples[4]; |
|
int subband; |
|
aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples); |
|
ff_aptx_generate_dither(channel); |
|
for (subband = 0; subband < NB_SUBBANDS; subband++) { |
|
int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23); |
|
aptx_quantize_difference(&channel->quantize[subband], diff, |
|
channel->dither[subband], |
|
channel->invert_quantize[subband].quantization_factor, |
|
&ff_aptx_quant_tables[hd][subband]); |
|
} |
|
} |
|
|
|
static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx) |
|
{ |
|
if (aptx_check_parity(channels, idx)) { |
|
int i; |
|
Channel *c; |
|
static const int map[] = { 1, 2, 0, 3 }; |
|
Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]]; |
|
for (c = &channels[NB_CHANNELS-1]; c >= channels; c--) |
|
for (i = 0; i < NB_SUBBANDS; i++) |
|
if (c->quantize[map[i]].error < min->error) |
|
min = &c->quantize[map[i]]; |
|
|
|
/* Forcing the desired parity is done by offsetting by 1 the quantized |
|
* sample from the subband featuring the smallest quantization error. */ |
|
min->quantized_sample = min->quantized_sample_parity_change; |
|
} |
|
} |
|
|
|
static uint16_t aptx_pack_codeword(Channel *channel) |
|
{ |
|
int32_t parity = aptx_quantized_parity(channel); |
|
return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13) |
|
| (((channel->quantize[2].quantized_sample & 0x03) ) << 11) |
|
| (((channel->quantize[1].quantized_sample & 0x0F) ) << 7) |
|
| (((channel->quantize[0].quantized_sample & 0x7F) ) << 0); |
|
} |
|
|
|
static uint32_t aptxhd_pack_codeword(Channel *channel) |
|
{ |
|
int32_t parity = aptx_quantized_parity(channel); |
|
return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19) |
|
| (((channel->quantize[2].quantized_sample & 0x00F) ) << 15) |
|
| (((channel->quantize[1].quantized_sample & 0x03F) ) << 9) |
|
| (((channel->quantize[0].quantized_sample & 0x1FF) ) << 0); |
|
} |
|
|
|
static void aptx_encode_samples(AptXContext *ctx, |
|
int32_t samples[NB_CHANNELS][4], |
|
uint8_t *output) |
|
{ |
|
int channel; |
|
for (channel = 0; channel < NB_CHANNELS; channel++) |
|
aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd); |
|
|
|
aptx_insert_sync(ctx->channels, &ctx->sync_idx); |
|
|
|
for (channel = 0; channel < NB_CHANNELS; channel++) { |
|
ff_aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd); |
|
if (ctx->hd) |
|
AV_WB24(output + 3*channel, |
|
aptxhd_pack_codeword(&ctx->channels[channel])); |
|
else |
|
AV_WB16(output + 2*channel, |
|
aptx_pack_codeword(&ctx->channels[channel])); |
|
} |
|
} |
|
|
|
static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
AptXContext *s = avctx->priv_data; |
|
int pos, ipos, channel, sample, output_size, ret; |
|
|
|
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) |
|
return ret; |
|
|
|
output_size = s->block_size * frame->nb_samples/4; |
|
if ((ret = ff_get_encode_buffer(avctx, avpkt, output_size, 0)) < 0) |
|
return ret; |
|
|
|
for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) { |
|
int32_t samples[NB_CHANNELS][4]; |
|
|
|
for (channel = 0; channel < NB_CHANNELS; channel++) |
|
for (sample = 0; sample < 4; sample++) |
|
samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8; |
|
|
|
aptx_encode_samples(s, samples, avpkt->data + pos); |
|
} |
|
|
|
ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration); |
|
*got_packet_ptr = 1; |
|
return 0; |
|
} |
|
|
|
static av_cold int aptx_close(AVCodecContext *avctx) |
|
{ |
|
AptXContext *s = avctx->priv_data; |
|
ff_af_queue_close(&s->afq); |
|
return 0; |
|
} |
|
|
|
#if CONFIG_APTX_ENCODER |
|
const AVCodec ff_aptx_encoder = { |
|
.name = "aptx", |
|
.long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_APTX, |
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME, |
|
.priv_data_size = sizeof(AptXContext), |
|
.init = ff_aptx_init, |
|
.encode2 = aptx_encode_frame, |
|
.close = aptx_close, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_NONE }, |
|
.supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0}, |
|
}; |
|
#endif |
|
|
|
#if CONFIG_APTX_HD_ENCODER |
|
const AVCodec ff_aptx_hd_encoder = { |
|
.name = "aptx_hd", |
|
.long_name = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_APTX_HD, |
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME, |
|
.priv_data_size = sizeof(AptXContext), |
|
.init = ff_aptx_init, |
|
.encode2 = aptx_encode_frame, |
|
.close = aptx_close, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_NONE }, |
|
.supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0}, |
|
}; |
|
#endif
|
|
|