mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1127 lines
37 KiB
1127 lines
37 KiB
/* |
|
* AC-3 Audio Decoder |
|
* This code is developed as part of Google Summer of Code 2006 Program. |
|
* |
|
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). |
|
* Copyright (c) 2007 Justin Ruggles |
|
* |
|
* Portions of this code are derived from liba52 |
|
* http://liba52.sourceforge.net |
|
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> |
|
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stddef.h> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#include "avcodec.h" |
|
#include "ac3_parser.h" |
|
#include "bitstream.h" |
|
#include "dsputil.h" |
|
#include "random.h" |
|
|
|
/** |
|
* Table of bin locations for rematrixing bands |
|
* reference: Section 7.5.2 Rematrixing : Frequency Band Definitions |
|
*/ |
|
static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 }; |
|
|
|
/* table for exponent to scale_factor mapping |
|
* scale_factor[i] = 2 ^ -(i + 15) |
|
*/ |
|
static float scale_factors[25]; |
|
|
|
/** table for grouping exponents */ |
|
static uint8_t exp_ungroup_tbl[128][3]; |
|
|
|
|
|
/** tables for ungrouping mantissas */ |
|
static float b1_mantissas[32][3]; |
|
static float b2_mantissas[128][3]; |
|
static float b3_mantissas[8]; |
|
static float b4_mantissas[128][2]; |
|
static float b5_mantissas[16]; |
|
|
|
/** |
|
* Quantization table: levels for symmetric. bits for asymmetric. |
|
* reference: Table 7.18 Mapping of bap to Quantizer |
|
*/ |
|
static const uint8_t qntztab[16] = { |
|
0, 3, 5, 7, 11, 15, |
|
5, 6, 7, 8, 9, 10, 11, 12, 14, 16 |
|
}; |
|
|
|
/** dynamic range table. converts codes to scale factors. */ |
|
static float dynrng_tbl[256]; |
|
|
|
/* Adjustmens in dB gain */ |
|
#define LEVEL_MINUS_3DB 0.7071067811865476 |
|
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605 |
|
#define LEVEL_MINUS_6DB 0.5000000000000000 |
|
#define LEVEL_MINUS_9DB 0.3535533905932738 |
|
#define LEVEL_ZERO 0.0000000000000000 |
|
#define LEVEL_ONE 1.0000000000000000 |
|
|
|
static const float gain_levels[6] = { |
|
LEVEL_ZERO, |
|
LEVEL_ONE, |
|
LEVEL_MINUS_3DB, |
|
LEVEL_MINUS_4POINT5DB, |
|
LEVEL_MINUS_6DB, |
|
LEVEL_MINUS_9DB |
|
}; |
|
|
|
/** |
|
* Table for center mix levels |
|
* reference: Section 5.4.2.4 cmixlev |
|
*/ |
|
static const uint8_t clevs[4] = { 2, 3, 4, 3 }; |
|
|
|
/** |
|
* Table for surround mix levels |
|
* reference: Section 5.4.2.5 surmixlev |
|
*/ |
|
static const uint8_t slevs[4] = { 2, 4, 0, 4 }; |
|
|
|
/** |
|
* Table for default stereo downmixing coefficients |
|
* reference: Section 7.8.2 Downmixing Into Two Channels |
|
*/ |
|
static const uint8_t ac3_default_coeffs[8][5][2] = { |
|
{ { 1, 0 }, { 0, 1 }, }, |
|
{ { 2, 2 }, }, |
|
{ { 1, 0 }, { 0, 1 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, }, |
|
{ { 1, 0 }, { 0, 1 }, { 4, 4 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, }, |
|
{ { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, }, |
|
}; |
|
|
|
/* override ac3.h to include coupling channel */ |
|
#undef AC3_MAX_CHANNELS |
|
#define AC3_MAX_CHANNELS 7 |
|
#define CPL_CH 0 |
|
|
|
#define AC3_OUTPUT_LFEON 8 |
|
|
|
typedef struct { |
|
int acmod; |
|
int dsurmod; |
|
|
|
int blksw[AC3_MAX_CHANNELS]; |
|
int dithflag[AC3_MAX_CHANNELS]; |
|
int dither_all; |
|
int cplinu; |
|
int chincpl[AC3_MAX_CHANNELS]; |
|
int phsflginu; |
|
int cplbndstrc[18]; |
|
int rematstr; |
|
int nrematbnd; |
|
int rematflg[4]; |
|
int expstr[AC3_MAX_CHANNELS]; |
|
int snroffst[AC3_MAX_CHANNELS]; |
|
int fgain[AC3_MAX_CHANNELS]; |
|
int deltbae[AC3_MAX_CHANNELS]; |
|
int deltnseg[AC3_MAX_CHANNELS]; |
|
uint8_t deltoffst[AC3_MAX_CHANNELS][8]; |
|
uint8_t deltlen[AC3_MAX_CHANNELS][8]; |
|
uint8_t deltba[AC3_MAX_CHANNELS][8]; |
|
|
|
/* Derived Attributes. */ |
|
int sampling_rate; |
|
int bit_rate; |
|
int frame_size; |
|
|
|
int nchans; //number of total channels |
|
int nfchans; //number of full-bandwidth channels |
|
int lfeon; //lfe channel in use |
|
int lfe_ch; ///< index of LFE channel |
|
int output_mode; ///< output channel configuration |
|
int out_channels; ///< number of output channels |
|
|
|
float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients |
|
float dynrng; //dynamic range gain |
|
float dynrng2; //dynamic range gain for 1+1 mode |
|
float cplco[AC3_MAX_CHANNELS][18]; //coupling coordinates |
|
int ncplbnd; //number of coupling bands |
|
int ncplsubnd; //number of coupling sub bands |
|
int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin |
|
int endmant[AC3_MAX_CHANNELS]; //channel end mantissas |
|
AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters |
|
|
|
int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents |
|
uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers |
|
int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents |
|
int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents |
|
int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values |
|
|
|
DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients |
|
|
|
/* For IMDCT. */ |
|
MDCTContext imdct_512; //for 512 sample imdct transform |
|
MDCTContext imdct_256; //for 256 sample imdct transform |
|
DSPContext dsp; //for optimization |
|
float add_bias; ///< offset for float_to_int16 conversion |
|
float mul_bias; ///< scaling for float_to_int16 conversion |
|
|
|
DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing |
|
DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output |
|
DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); //delay - added to the next block |
|
DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform |
|
DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing |
|
DECLARE_ALIGNED_16(float, window[256]); //window coefficients |
|
|
|
/* Miscellaneous. */ |
|
GetBitContext gb; |
|
AVRandomState dith_state; //for dither generation |
|
} AC3DecodeContext; |
|
|
|
/*********** BEGIN INIT HELPER FUNCTIONS ***********/ |
|
/** |
|
* Generate a Kaiser-Bessel Derived Window. |
|
*/ |
|
static void ac3_window_init(float *window) |
|
{ |
|
int i, j; |
|
double sum = 0.0, bessel, tmp; |
|
double local_window[256]; |
|
double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0); |
|
|
|
for (i = 0; i < 256; i++) { |
|
tmp = i * (256 - i) * alpha2; |
|
bessel = 1.0; |
|
for (j = 100; j > 0; j--) /* defaul to 100 iterations */ |
|
bessel = bessel * tmp / (j * j) + 1; |
|
sum += bessel; |
|
local_window[i] = sum; |
|
} |
|
|
|
sum++; |
|
for (i = 0; i < 256; i++) |
|
window[i] = sqrt(local_window[i] / sum); |
|
} |
|
|
|
static inline float |
|
symmetric_dequant(int code, int levels) |
|
{ |
|
return (code - (levels >> 1)) * (2.0f / levels); |
|
} |
|
|
|
/* |
|
* Initialize tables at runtime. |
|
*/ |
|
static void ac3_tables_init(void) |
|
{ |
|
int i; |
|
|
|
/* generate grouped mantissa tables |
|
reference: Section 7.3.5 Ungrouping of Mantissas */ |
|
for(i=0; i<32; i++) { |
|
/* bap=1 mantissas */ |
|
b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3); |
|
b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3); |
|
b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3); |
|
} |
|
for(i=0; i<128; i++) { |
|
/* bap=2 mantissas */ |
|
b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5); |
|
b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5); |
|
b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5); |
|
|
|
/* bap=4 mantissas */ |
|
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); |
|
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); |
|
} |
|
/* generate ungrouped mantissa tables |
|
reference: Tables 7.21 and 7.23 */ |
|
for(i=0; i<7; i++) { |
|
/* bap=3 mantissas */ |
|
b3_mantissas[i] = symmetric_dequant(i, 7); |
|
} |
|
for(i=0; i<15; i++) { |
|
/* bap=5 mantissas */ |
|
b5_mantissas[i] = symmetric_dequant(i, 15); |
|
} |
|
|
|
/* generate dynamic range table |
|
reference: Section 7.7.1 Dynamic Range Control */ |
|
for(i=0; i<256; i++) { |
|
int v = (i >> 5) - ((i >> 7) << 3) - 5; |
|
dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); |
|
} |
|
|
|
//generate scale factors |
|
for (i = 0; i < 25; i++) |
|
scale_factors[i] = pow(2.0, -i); |
|
|
|
/* generate exponent tables |
|
reference: Section 7.1.3 Exponent Decoding */ |
|
for(i=0; i<128; i++) { |
|
exp_ungroup_tbl[i][0] = i / 25; |
|
exp_ungroup_tbl[i][1] = (i % 25) / 5; |
|
exp_ungroup_tbl[i][2] = (i % 25) % 5; |
|
} |
|
} |
|
|
|
|
|
static int ac3_decode_init(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = avctx->priv_data; |
|
|
|
ac3_common_init(); |
|
ac3_tables_init(); |
|
ff_mdct_init(&ctx->imdct_256, 8, 1); |
|
ff_mdct_init(&ctx->imdct_512, 9, 1); |
|
ac3_window_init(ctx->window); |
|
dsputil_init(&ctx->dsp, avctx); |
|
av_init_random(0, &ctx->dith_state); |
|
|
|
if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { |
|
ctx->add_bias = 385.0f; |
|
ctx->mul_bias = 1.0f; |
|
} else { |
|
ctx->add_bias = 0.0f; |
|
ctx->mul_bias = 32767.0f; |
|
} |
|
|
|
return 0; |
|
} |
|
/*********** END INIT FUNCTIONS ***********/ |
|
|
|
/** |
|
* Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream. |
|
* GetBitContext within AC3DecodeContext must point to |
|
* start of the synchronized ac3 bitstream. |
|
*/ |
|
static int ac3_parse_header(AC3DecodeContext *ctx) |
|
{ |
|
AC3HeaderInfo hdr; |
|
GetBitContext *gb = &ctx->gb; |
|
float cmixlev, surmixlev; |
|
int err, i; |
|
|
|
err = ff_ac3_parse_header(gb->buffer, &hdr); |
|
if(err) |
|
return err; |
|
|
|
/* get decoding parameters from header info */ |
|
ctx->bit_alloc_params.fscod = hdr.fscod; |
|
ctx->acmod = hdr.acmod; |
|
cmixlev = gain_levels[clevs[hdr.cmixlev]]; |
|
surmixlev = gain_levels[slevs[hdr.surmixlev]]; |
|
ctx->dsurmod = hdr.dsurmod; |
|
ctx->lfeon = hdr.lfeon; |
|
ctx->bit_alloc_params.halfratecod = hdr.halfratecod; |
|
ctx->sampling_rate = hdr.sample_rate; |
|
ctx->bit_rate = hdr.bit_rate; |
|
ctx->nchans = hdr.channels; |
|
ctx->nfchans = ctx->nchans - ctx->lfeon; |
|
ctx->lfe_ch = ctx->nfchans + 1; |
|
ctx->frame_size = hdr.frame_size; |
|
|
|
/* set default output to all source channels */ |
|
ctx->out_channels = ctx->nchans; |
|
ctx->output_mode = ctx->acmod; |
|
if(ctx->lfeon) |
|
ctx->output_mode |= AC3_OUTPUT_LFEON; |
|
|
|
/* skip over portion of header which has already been read */ |
|
skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16); |
|
skip_bits(gb, 16); // skip crc1 |
|
skip_bits(gb, 8); // skip fscod and frmsizecod |
|
skip_bits(gb, 11); // skip bsid, bsmod, and acmod |
|
if(ctx->acmod == AC3_ACMOD_STEREO) { |
|
skip_bits(gb, 2); // skip dsurmod |
|
} else { |
|
if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO) |
|
skip_bits(gb, 2); // skip cmixlev |
|
if(ctx->acmod & 4) |
|
skip_bits(gb, 2); // skip surmixlev |
|
} |
|
skip_bits1(gb); // skip lfeon |
|
|
|
/* read the rest of the bsi. read twice for dual mono mode. */ |
|
i = !(ctx->acmod); |
|
do { |
|
skip_bits(gb, 5); //skip dialog normalization |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip compression |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip language code |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 7); //skip audio production information |
|
} while (i--); |
|
|
|
skip_bits(gb, 2); //skip copyright bit and original bitstream bit |
|
|
|
/* FIXME: read & use the xbsi1 downmix levels */ |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode1 |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode2 |
|
|
|
if (get_bits1(gb)) { |
|
i = get_bits(gb, 6); //additional bsi length |
|
do { |
|
skip_bits(gb, 8); |
|
} while(i--); |
|
} |
|
|
|
/* set stereo downmixing coefficients |
|
reference: Section 7.8.2 Downmixing Into Two Channels */ |
|
for(i=0; i<ctx->nfchans; i++) { |
|
ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]]; |
|
ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]]; |
|
} |
|
if(ctx->acmod > 1 && ctx->acmod & 1) { |
|
ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev; |
|
} |
|
if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) { |
|
int nf = ctx->acmod - 2; |
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB; |
|
} |
|
if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) { |
|
int nf = ctx->acmod - 4; |
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decodes the grouped exponents. |
|
* This function decodes the coded exponents according to exponent strategy |
|
* and stores them in the decoded exponents buffer. |
|
* |
|
* @param[in] gb GetBitContext which points to start of coded exponents |
|
* @param[in] expstr Exponent coding strategy |
|
* @param[in] ngrps Number of grouped exponents |
|
* @param[in] absexp Absolute exponent or DC exponent |
|
* @param[out] dexps Decoded exponents are stored in dexps |
|
*/ |
|
static void decode_exponents(GetBitContext *gb, int expstr, int ngrps, |
|
uint8_t absexp, int8_t *dexps) |
|
{ |
|
int i, j, grp, grpsize; |
|
int dexp[256]; |
|
int expacc, prevexp; |
|
|
|
/* unpack groups */ |
|
grpsize = expstr + (expstr == EXP_D45); |
|
for(grp=0,i=0; grp<ngrps; grp++) { |
|
expacc = get_bits(gb, 7); |
|
dexp[i++] = exp_ungroup_tbl[expacc][0]; |
|
dexp[i++] = exp_ungroup_tbl[expacc][1]; |
|
dexp[i++] = exp_ungroup_tbl[expacc][2]; |
|
} |
|
|
|
/* convert to absolute exps and expand groups */ |
|
prevexp = absexp; |
|
for(i=0; i<ngrps*3; i++) { |
|
prevexp = av_clip(prevexp + dexp[i]-2, 0, 24); |
|
for(j=0; j<grpsize; j++) { |
|
dexps[(i*grpsize)+j] = prevexp; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Generates transform coefficients for each coupled channel in the coupling |
|
* range using the coupling coefficients and coupling coordinates. |
|
* reference: Section 7.4.3 Coupling Coordinate Format |
|
*/ |
|
static void uncouple_channels(AC3DecodeContext *ctx) |
|
{ |
|
int i, j, ch, bnd, subbnd; |
|
|
|
subbnd = -1; |
|
i = ctx->startmant[CPL_CH]; |
|
for(bnd=0; bnd<ctx->ncplbnd; bnd++) { |
|
do { |
|
subbnd++; |
|
for(j=0; j<12; j++) { |
|
for(ch=1; ch<=ctx->nfchans; ch++) { |
|
if(ctx->chincpl[ch]) |
|
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f; |
|
} |
|
i++; |
|
} |
|
} while(ctx->cplbndstrc[subbnd]); |
|
} |
|
} |
|
|
|
typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */ |
|
float b1_mant[3]; |
|
float b2_mant[3]; |
|
float b4_mant[2]; |
|
int b1ptr; |
|
int b2ptr; |
|
int b4ptr; |
|
} mant_groups; |
|
|
|
/* Get the transform coefficients for particular channel */ |
|
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int i, gcode, tbap, start, end; |
|
uint8_t *exps; |
|
uint8_t *bap; |
|
float *coeffs; |
|
|
|
exps = ctx->dexps[ch_index]; |
|
bap = ctx->bap[ch_index]; |
|
coeffs = ctx->transform_coeffs[ch_index]; |
|
start = ctx->startmant[ch_index]; |
|
end = ctx->endmant[ch_index]; |
|
|
|
|
|
for (i = start; i < end; i++) { |
|
tbap = bap[i]; |
|
switch (tbap) { |
|
case 0: |
|
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f; |
|
break; |
|
|
|
case 1: |
|
if(m->b1ptr > 2) { |
|
gcode = get_bits(gb, 5); |
|
m->b1_mant[0] = b1_mantissas[gcode][0]; |
|
m->b1_mant[1] = b1_mantissas[gcode][1]; |
|
m->b1_mant[2] = b1_mantissas[gcode][2]; |
|
m->b1ptr = 0; |
|
} |
|
coeffs[i] = m->b1_mant[m->b1ptr++]; |
|
break; |
|
|
|
case 2: |
|
if(m->b2ptr > 2) { |
|
gcode = get_bits(gb, 7); |
|
m->b2_mant[0] = b2_mantissas[gcode][0]; |
|
m->b2_mant[1] = b2_mantissas[gcode][1]; |
|
m->b2_mant[2] = b2_mantissas[gcode][2]; |
|
m->b2ptr = 0; |
|
} |
|
coeffs[i] = m->b2_mant[m->b2ptr++]; |
|
break; |
|
|
|
case 3: |
|
coeffs[i] = b3_mantissas[get_bits(gb, 3)]; |
|
break; |
|
|
|
case 4: |
|
if(m->b4ptr > 1) { |
|
gcode = get_bits(gb, 7); |
|
m->b4_mant[0] = b4_mantissas[gcode][0]; |
|
m->b4_mant[1] = b4_mantissas[gcode][1]; |
|
m->b4ptr = 0; |
|
} |
|
coeffs[i] = m->b4_mant[m->b4ptr++]; |
|
break; |
|
|
|
case 5: |
|
coeffs[i] = b5_mantissas[get_bits(gb, 4)]; |
|
break; |
|
|
|
default: |
|
coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1]; |
|
break; |
|
} |
|
coeffs[i] *= scale_factors[exps[i]]; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Removes random dithering from coefficients with zero-bit mantissas |
|
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0) |
|
*/ |
|
static void remove_dithering(AC3DecodeContext *ctx) { |
|
int ch, i; |
|
int end=0; |
|
float *coeffs; |
|
uint8_t *bap; |
|
|
|
for(ch=1; ch<=ctx->nfchans; ch++) { |
|
if(!ctx->dithflag[ch]) { |
|
coeffs = ctx->transform_coeffs[ch]; |
|
bap = ctx->bap[ch]; |
|
if(ctx->chincpl[ch]) |
|
end = ctx->startmant[CPL_CH]; |
|
else |
|
end = ctx->endmant[ch]; |
|
for(i=0; i<end; i++) { |
|
if(bap[i] == 0) |
|
coeffs[i] = 0.0f; |
|
} |
|
if(ctx->chincpl[ch]) { |
|
bap = ctx->bap[CPL_CH]; |
|
for(; i<ctx->endmant[CPL_CH]; i++) { |
|
if(bap[i] == 0) |
|
coeffs[i] = 0.0f; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Get the transform coefficients. |
|
* This function extracts the tranform coefficients form the ac3 bitstream. |
|
* This function is called after bit allocation is performed. |
|
*/ |
|
static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
{ |
|
int ch, end; |
|
int got_cplchan = 0; |
|
mant_groups m; |
|
|
|
m.b1ptr = m.b2ptr = m.b4ptr = 3; |
|
|
|
for (ch = 1; ch <= ctx->nchans; ch++) { |
|
/* transform coefficients for individual channel */ |
|
if (get_transform_coeffs_ch(ctx, ch, &m)) |
|
return -1; |
|
/* tranform coefficients for coupling channels */ |
|
if (ctx->chincpl[ch]) { |
|
if (!got_cplchan) { |
|
if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) { |
|
av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n"); |
|
return -1; |
|
} |
|
uncouple_channels(ctx); |
|
got_cplchan = 1; |
|
} |
|
end = ctx->endmant[CPL_CH]; |
|
} else { |
|
end = ctx->endmant[ch]; |
|
} |
|
do |
|
ctx->transform_coeffs[ch][end] = 0; |
|
while(++end < 256); |
|
} |
|
|
|
/* if any channel doesn't use dithering, zero appropriate coefficients */ |
|
if(!ctx->dither_all) |
|
remove_dithering(ctx); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Performs stereo rematrixing. |
|
* reference: Section 7.5.4 Rematrixing : Decoding Technique |
|
*/ |
|
static void do_rematrixing(AC3DecodeContext *ctx) |
|
{ |
|
int bnd, i; |
|
int end, bndend; |
|
float tmp0, tmp1; |
|
|
|
end = FFMIN(ctx->endmant[1], ctx->endmant[2]); |
|
|
|
for(bnd=0; bnd<ctx->nrematbnd; bnd++) { |
|
if(ctx->rematflg[bnd]) { |
|
bndend = FFMIN(end, rematrix_band_tbl[bnd+1]); |
|
for(i=rematrix_band_tbl[bnd]; i<bndend; i++) { |
|
tmp0 = ctx->transform_coeffs[1][i]; |
|
tmp1 = ctx->transform_coeffs[2][i]; |
|
ctx->transform_coeffs[1][i] = tmp0 + tmp1; |
|
ctx->transform_coeffs[2][i] = tmp0 - tmp1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* This function performs the imdct on 256 sample transform |
|
* coefficients. |
|
*/ |
|
static void do_imdct_256(AC3DecodeContext *ctx, int chindex) |
|
{ |
|
int i, k; |
|
DECLARE_ALIGNED_16(float, x[128]); |
|
FFTComplex z[2][64]; |
|
float *o_ptr = ctx->tmp_output; |
|
|
|
for(i=0; i<2; i++) { |
|
/* de-interleave coefficients */ |
|
for(k=0; k<128; k++) { |
|
x[k] = ctx->transform_coeffs[chindex][2*k+i]; |
|
} |
|
|
|
/* run standard IMDCT */ |
|
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); |
|
|
|
/* reverse the post-rotation & reordering from standard IMDCT */ |
|
for(k=0; k<32; k++) { |
|
z[i][32+k].re = -o_ptr[128+2*k]; |
|
z[i][32+k].im = -o_ptr[2*k]; |
|
z[i][31-k].re = o_ptr[2*k+1]; |
|
z[i][31-k].im = o_ptr[128+2*k+1]; |
|
} |
|
} |
|
|
|
/* apply AC-3 post-rotation & reordering */ |
|
for(k=0; k<64; k++) { |
|
o_ptr[ 2*k ] = -z[0][ k].im; |
|
o_ptr[ 2*k+1] = z[0][63-k].re; |
|
o_ptr[128+2*k ] = -z[0][ k].re; |
|
o_ptr[128+2*k+1] = z[0][63-k].im; |
|
o_ptr[256+2*k ] = -z[1][ k].re; |
|
o_ptr[256+2*k+1] = z[1][63-k].im; |
|
o_ptr[384+2*k ] = z[1][ k].im; |
|
o_ptr[384+2*k+1] = -z[1][63-k].re; |
|
} |
|
} |
|
|
|
/* IMDCT Transform. */ |
|
static inline void do_imdct(AC3DecodeContext *ctx) |
|
{ |
|
int ch; |
|
int nchans; |
|
|
|
nchans = ctx->nfchans; |
|
if(ctx->output_mode & AC3_OUTPUT_LFEON) |
|
nchans++; |
|
|
|
for (ch=1; ch<=nchans; ch++) { |
|
if (ctx->blksw[ch]) { |
|
do_imdct_256(ctx, ch); |
|
} else { |
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, |
|
ctx->transform_coeffs[ch], |
|
ctx->tmp_imdct); |
|
} |
|
ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output, |
|
ctx->window, ctx->delay[ch-1], 0, 256, 1); |
|
ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256, |
|
ctx->window, 256); |
|
} |
|
} |
|
|
|
/** |
|
* Downmixes the output to stereo. |
|
*/ |
|
static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans, |
|
int output_mode, float coef[AC3_MAX_CHANNELS][2]) |
|
{ |
|
int i, j; |
|
float v0, v1, s0, s1; |
|
|
|
for(i=0; i<256; i++) { |
|
v0 = v1 = s0 = s1 = 0.0f; |
|
for(j=0; j<nfchans; j++) { |
|
v0 += samples[j][i] * coef[j][0]; |
|
v1 += samples[j][i] * coef[j][1]; |
|
s0 += coef[j][0]; |
|
s1 += coef[j][1]; |
|
} |
|
v0 /= s0; |
|
v1 /= s1; |
|
if(output_mode == AC3_ACMOD_MONO) { |
|
samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB; |
|
} else if(output_mode == AC3_ACMOD_STEREO) { |
|
samples[0][i] = v0; |
|
samples[1][i] = v1; |
|
} |
|
} |
|
} |
|
|
|
/* Parse the audio block from ac3 bitstream. |
|
* This function extract the audio block from the ac3 bitstream |
|
* and produces the output for the block. This function must |
|
* be called for each of the six audio block in the ac3 bitstream. |
|
*/ |
|
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
{ |
|
int nfchans = ctx->nfchans; |
|
int acmod = ctx->acmod; |
|
int i, bnd, seg, ch; |
|
GetBitContext *gb = &ctx->gb; |
|
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; |
|
|
|
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS); |
|
|
|
for (ch = 1; ch <= nfchans; ch++) /*block switch flag */ |
|
ctx->blksw[ch] = get_bits1(gb); |
|
|
|
ctx->dither_all = 1; |
|
for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */ |
|
ctx->dithflag[ch] = get_bits1(gb); |
|
if(!ctx->dithflag[ch]) |
|
ctx->dither_all = 0; |
|
} |
|
|
|
if (get_bits1(gb)) { /* dynamic range */ |
|
ctx->dynrng = dynrng_tbl[get_bits(gb, 8)]; |
|
} else if(blk == 0) { |
|
ctx->dynrng = 1.0; |
|
} |
|
|
|
if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */ |
|
if(get_bits1(gb)) { |
|
ctx->dynrng2 = dynrng_tbl[get_bits(gb, 8)]; |
|
} else if(blk == 0) { |
|
ctx->dynrng2 = 1.0; |
|
} |
|
} |
|
|
|
if (get_bits1(gb)) { /* coupling strategy */ |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
ctx->cplinu = get_bits1(gb); |
|
if (ctx->cplinu) { /* coupling in use */ |
|
int cplbegf, cplendf; |
|
|
|
for (ch = 1; ch <= nfchans; ch++) |
|
ctx->chincpl[ch] = get_bits1(gb); |
|
|
|
if (acmod == AC3_ACMOD_STEREO) |
|
ctx->phsflginu = get_bits1(gb); //phase flag in use |
|
|
|
cplbegf = get_bits(gb, 4); |
|
cplendf = get_bits(gb, 4); |
|
|
|
if (3 + cplendf - cplbegf < 0) { |
|
av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf); |
|
return -1; |
|
} |
|
|
|
ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf; |
|
ctx->startmant[CPL_CH] = cplbegf * 12 + 37; |
|
ctx->endmant[CPL_CH] = cplendf * 12 + 73; |
|
for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */ |
|
if (get_bits1(gb)) { |
|
ctx->cplbndstrc[bnd] = 1; |
|
ctx->ncplbnd--; |
|
} |
|
} |
|
} else { |
|
for (ch = 1; ch <= nfchans; ch++) |
|
ctx->chincpl[ch] = 0; |
|
} |
|
} |
|
|
|
if (ctx->cplinu) { |
|
int cplcoe = 0; |
|
|
|
for (ch = 1; ch <= nfchans; ch++) { |
|
if (ctx->chincpl[ch]) { |
|
if (get_bits1(gb)) { /* coupling co-ordinates */ |
|
int mstrcplco, cplcoexp, cplcomant; |
|
cplcoe = 1; |
|
mstrcplco = 3 * get_bits(gb, 2); |
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++) { |
|
cplcoexp = get_bits(gb, 4); |
|
cplcomant = get_bits(gb, 4); |
|
if (cplcoexp == 15) |
|
ctx->cplco[ch][bnd] = cplcomant / 16.0f; |
|
else |
|
ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f; |
|
ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) { |
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++) { |
|
if (get_bits1(gb)) |
|
ctx->cplco[2][bnd] = -ctx->cplco[2][bnd]; |
|
} |
|
} |
|
} |
|
|
|
if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */ |
|
ctx->rematstr = get_bits1(gb); |
|
if (ctx->rematstr) { |
|
ctx->nrematbnd = 4; |
|
if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61) |
|
ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37); |
|
for(bnd=0; bnd<ctx->nrematbnd; bnd++) |
|
ctx->rematflg[bnd] = get_bits1(gb); |
|
} |
|
} |
|
|
|
ctx->expstr[CPL_CH] = EXP_REUSE; |
|
ctx->expstr[ctx->lfe_ch] = EXP_REUSE; |
|
for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { |
|
if(ch == ctx->lfe_ch) |
|
ctx->expstr[ch] = get_bits(gb, 1); |
|
else |
|
ctx->expstr[ch] = get_bits(gb, 2); |
|
if(ctx->expstr[ch] != EXP_REUSE) |
|
bit_alloc_stages[ch] = 3; |
|
} |
|
|
|
for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */ |
|
ctx->startmant[ch] = 0; |
|
if (ctx->expstr[ch] != EXP_REUSE) { |
|
int prev = ctx->endmant[ch]; |
|
if (ctx->chincpl[ch]) |
|
ctx->endmant[ch] = ctx->startmant[CPL_CH]; |
|
else { |
|
int chbwcod = get_bits(gb, 6); |
|
if (chbwcod > 60) { |
|
av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod); |
|
return -1; |
|
} |
|
ctx->endmant[ch] = chbwcod * 3 + 73; |
|
} |
|
if(blk > 0 && ctx->endmant[ch] != prev) |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
} |
|
} |
|
ctx->startmant[ctx->lfe_ch] = 0; |
|
ctx->endmant[ctx->lfe_ch] = 7; |
|
|
|
for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { |
|
if (ctx->expstr[ch] != EXP_REUSE) { |
|
int grpsize, ngrps; |
|
grpsize = 3 << (ctx->expstr[ch] - 1); |
|
if(ch == CPL_CH) |
|
ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize; |
|
else if(ch == ctx->lfe_ch) |
|
ngrps = 2; |
|
else |
|
ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize; |
|
ctx->dexps[ch][0] = get_bits(gb, 4) << !ch; |
|
decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0], |
|
&ctx->dexps[ch][ctx->startmant[ch]+!!ch]); |
|
if(ch != CPL_CH && ch != ctx->lfe_ch) |
|
skip_bits(gb, 2); /* skip gainrng */ |
|
} |
|
} |
|
|
|
if (get_bits1(gb)) { /* bit allocation information */ |
|
ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)]; |
|
for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) { |
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
} |
|
} |
|
|
|
if (get_bits1(gb)) { /* snroffset */ |
|
int csnr; |
|
csnr = (get_bits(gb, 6) - 15) << 4; |
|
for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */ |
|
ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2; |
|
ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)]; |
|
} |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
} |
|
|
|
if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */ |
|
ctx->bit_alloc_params.cplfleak = get_bits(gb, 3); |
|
ctx->bit_alloc_params.cplsleak = get_bits(gb, 3); |
|
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); |
|
} |
|
|
|
if (get_bits1(gb)) { /* delta bit allocation information */ |
|
for (ch = !ctx->cplinu; ch <= nfchans; ch++) { |
|
ctx->deltbae[ch] = get_bits(gb, 2); |
|
if (ctx->deltbae[ch] == DBA_RESERVED) { |
|
av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); |
|
return -1; |
|
} |
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
} |
|
|
|
for (ch = !ctx->cplinu; ch <= nfchans; ch++) { |
|
if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */ |
|
ctx->deltnseg[ch] = get_bits(gb, 3); |
|
for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) { |
|
ctx->deltoffst[ch][seg] = get_bits(gb, 5); |
|
ctx->deltlen[ch][seg] = get_bits(gb, 4); |
|
ctx->deltba[ch][seg] = get_bits(gb, 3); |
|
} |
|
} |
|
} |
|
} else if(blk == 0) { |
|
for(ch=0; ch<=ctx->nchans; ch++) { |
|
ctx->deltbae[ch] = DBA_NONE; |
|
} |
|
} |
|
|
|
for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) { |
|
if(bit_alloc_stages[ch] > 2) { |
|
/* Exponent mapping into PSD and PSD integration */ |
|
ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], |
|
ctx->startmant[ch], ctx->endmant[ch], |
|
ctx->psd[ch], ctx->bndpsd[ch]); |
|
} |
|
if(bit_alloc_stages[ch] > 1) { |
|
/* Compute excitation function, Compute masking curve, and |
|
Apply delta bit allocation */ |
|
ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch], |
|
ctx->startmant[ch], ctx->endmant[ch], |
|
ctx->fgain[ch], (ch == ctx->lfe_ch), |
|
ctx->deltbae[ch], ctx->deltnseg[ch], |
|
ctx->deltoffst[ch], ctx->deltlen[ch], |
|
ctx->deltba[ch], ctx->mask[ch]); |
|
} |
|
if(bit_alloc_stages[ch] > 0) { |
|
/* Compute bit allocation */ |
|
ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], |
|
ctx->startmant[ch], ctx->endmant[ch], |
|
ctx->snroffst[ch], |
|
ctx->bit_alloc_params.floor, |
|
ctx->bap[ch]); |
|
} |
|
} |
|
|
|
if (get_bits1(gb)) { /* unused dummy data */ |
|
int skipl = get_bits(gb, 9); |
|
while(skipl--) |
|
skip_bits(gb, 8); |
|
} |
|
/* unpack the transform coefficients |
|
* * this also uncouples channels if coupling is in use. |
|
*/ |
|
if (get_transform_coeffs(ctx)) { |
|
av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); |
|
return -1; |
|
} |
|
|
|
/* recover coefficients if rematrixing is in use */ |
|
if(ctx->acmod == AC3_ACMOD_STEREO) |
|
do_rematrixing(ctx); |
|
|
|
/* apply scaling to coefficients (headroom, dynrng) */ |
|
for(ch=1; ch<=ctx->nchans; ch++) { |
|
float gain = 2.0f * ctx->mul_bias; |
|
if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) { |
|
gain *= ctx->dynrng2; |
|
} else { |
|
gain *= ctx->dynrng; |
|
} |
|
for(i=0; i<ctx->endmant[ch]; i++) { |
|
ctx->transform_coeffs[ch][i] *= gain; |
|
} |
|
} |
|
|
|
do_imdct(ctx); |
|
|
|
/* downmix output if needed */ |
|
if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && |
|
ctx->nfchans == ctx->out_channels)) { |
|
ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode, |
|
ctx->downmix_coeffs); |
|
} |
|
|
|
/* convert float to 16-bit integer */ |
|
for(ch=0; ch<ctx->out_channels; ch++) { |
|
for(i=0; i<256; i++) { |
|
ctx->output[ch][i] += ctx->add_bias; |
|
} |
|
ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Decode ac3 frame. |
|
* |
|
* @param avctx Pointer to AVCodecContext |
|
* @param data Pointer to pcm smaples |
|
* @param data_size Set to number of pcm samples produced by decoding |
|
* @param buf Data to be decoded |
|
* @param buf_size Size of the buffer |
|
*/ |
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
int16_t *out_samples = (int16_t *)data; |
|
int i, blk, ch; |
|
|
|
//Initialize the GetBitContext with the start of valid AC3 Frame. |
|
init_get_bits(&ctx->gb, buf, buf_size * 8); |
|
|
|
//Parse the syncinfo. |
|
if (ac3_parse_header(ctx)) { |
|
av_log(avctx, AV_LOG_ERROR, "\n"); |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
avctx->sample_rate = ctx->sampling_rate; |
|
avctx->bit_rate = ctx->bit_rate; |
|
|
|
/* channel config */ |
|
ctx->out_channels = ctx->nchans; |
|
if (avctx->channels == 0) { |
|
avctx->channels = ctx->out_channels; |
|
} else if(ctx->out_channels < avctx->channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n", |
|
ctx->out_channels, avctx->channels); |
|
return -1; |
|
} |
|
if(avctx->channels == 2) { |
|
ctx->output_mode = AC3_ACMOD_STEREO; |
|
} else if(avctx->channels == 1) { |
|
ctx->output_mode = AC3_ACMOD_MONO; |
|
} else if(avctx->channels != ctx->out_channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n", |
|
ctx->out_channels, avctx->channels); |
|
return -1; |
|
} |
|
ctx->out_channels = avctx->channels; |
|
|
|
//av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate); |
|
|
|
//Parse the Audio Blocks. |
|
for (blk = 0; blk < NB_BLOCKS; blk++) { |
|
if (ac3_parse_audio_block(ctx, blk)) { |
|
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); |
|
*data_size = 0; |
|
return ctx->frame_size; |
|
} |
|
for (i = 0; i < 256; i++) |
|
for (ch = 0; ch < ctx->out_channels; ch++) |
|
*(out_samples++) = ctx->int_output[ch][i]; |
|
} |
|
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); |
|
return ctx->frame_size; |
|
} |
|
|
|
/* Uninitialize ac3 decoder. |
|
*/ |
|
static int ac3_decode_end(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
ff_mdct_end(&ctx->imdct_512); |
|
ff_mdct_end(&ctx->imdct_256); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ac3_decoder = { |
|
.name = "ac3", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_AC3, |
|
.priv_data_size = sizeof (AC3DecodeContext), |
|
.init = ac3_decode_init, |
|
.close = ac3_decode_end, |
|
.decode = ac3_decode_frame, |
|
}; |
|
|
|
|