mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
613 lines
24 KiB
613 lines
24 KiB
/* |
|
* Copyright (c) 2013 |
|
* MIPS Technologies, Inc., California. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. Neither the name of the MIPS Technologies, Inc., nor the names of its |
|
* contributors may be used to endorse or promote products derived from |
|
* this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* AAC Spectral Band Replication decoding functions (fixed-point) |
|
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) |
|
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC Spectral Band Replication decoding functions (fixed-point) |
|
* Note: Rounding-to-nearest used unless otherwise stated |
|
* @author Robert Swain ( rob opendot cl ) |
|
* @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com ) |
|
*/ |
|
#define USE_FIXED 1 |
|
|
|
#include "aac.h" |
|
#include "sbr.h" |
|
#include "aacsbr.h" |
|
#include "aacsbrdata.h" |
|
#include "aacsbr_fixed_tablegen.h" |
|
#include "fft.h" |
|
#include "aacps.h" |
|
#include "sbrdsp.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/libm.h" |
|
#include "libavutil/avassert.h" |
|
|
|
#include <stdint.h> |
|
#include <float.h> |
|
#include <math.h> |
|
|
|
static VLC vlc_sbr[10]; |
|
static void aacsbr_func_ptr_init(AACSBRContext *c); |
|
static const int CONST_LN2 = Q31(0.6931471806/256); // ln(2)/256 |
|
static const int CONST_RECIP_LN2 = Q31(0.7213475204); // 0.5/ln(2) |
|
static const int CONST_076923 = Q31(0.76923076923076923077f); |
|
|
|
static const int fixed_log_table[10] = |
|
{ |
|
Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6), |
|
Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11) |
|
}; |
|
|
|
static int fixed_log(int x) |
|
{ |
|
int i, ret, xpow, tmp; |
|
|
|
ret = x; |
|
xpow = x; |
|
for (i=0; i<10; i+=2){ |
|
xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31); |
|
tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31); |
|
ret -= tmp; |
|
|
|
xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31); |
|
tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31); |
|
ret += tmp; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static const int fixed_exp_table[7] = |
|
{ |
|
Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120), |
|
Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320) |
|
}; |
|
|
|
static int fixed_exp(int x) |
|
{ |
|
int i, ret, xpow, tmp; |
|
|
|
ret = 0x800000 + x; |
|
xpow = x; |
|
for (i=0; i<7; i++){ |
|
xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23); |
|
tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31); |
|
ret += tmp; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static void make_bands(int16_t* bands, int start, int stop, int num_bands) |
|
{ |
|
int k, previous, present; |
|
int base, prod, nz = 0; |
|
|
|
base = (stop << 23) / start; |
|
while (base < 0x40000000){ |
|
base <<= 1; |
|
nz++; |
|
} |
|
base = fixed_log(base - 0x80000000); |
|
base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands; |
|
base = fixed_exp(base); |
|
|
|
previous = start; |
|
prod = start << 23; |
|
|
|
for (k = 0; k < num_bands-1; k++) { |
|
prod = (int)(((int64_t)prod * base + 0x400000) >> 23); |
|
present = (prod + 0x400000) >> 23; |
|
bands[k] = present - previous; |
|
previous = present; |
|
} |
|
bands[num_bands-1] = stop - previous; |
|
} |
|
|
|
/// Dequantization and stereo decoding (14496-3 sp04 p203) |
|
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) |
|
{ |
|
int k, e; |
|
int ch; |
|
|
|
if (id_aac == TYPE_CPE && sbr->bs_coupling) { |
|
int alpha = sbr->data[0].bs_amp_res ? 2 : 1; |
|
int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24; |
|
for (e = 1; e <= sbr->data[0].bs_num_env; e++) { |
|
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { |
|
SoftFloat temp1, temp2, fac; |
|
|
|
temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14; |
|
if (temp1.exp & 1) |
|
temp1.mant = 759250125; |
|
else |
|
temp1.mant = 0x20000000; |
|
temp1.exp = (temp1.exp >> 1) + 1; |
|
if (temp1.exp > 66) { // temp1 > 1E20 |
|
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); |
|
temp1 = FLOAT_1; |
|
} |
|
|
|
temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha; |
|
if (temp2.exp & 1) |
|
temp2.mant = 759250125; |
|
else |
|
temp2.mant = 0x20000000; |
|
temp2.exp = (temp2.exp >> 1) + 1; |
|
fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2)); |
|
sbr->data[0].env_facs[e][k] = fac; |
|
sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2); |
|
} |
|
} |
|
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { |
|
for (k = 0; k < sbr->n_q; k++) { |
|
SoftFloat temp1, temp2, fac; |
|
|
|
temp1.exp = NOISE_FLOOR_OFFSET - \ |
|
sbr->data[0].noise_facs_q[e][k] + 2; |
|
temp1.mant = 0x20000000; |
|
av_assert0(temp1.exp <= 66); |
|
temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1; |
|
temp2.mant = 0x20000000; |
|
fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2)); |
|
sbr->data[0].noise_facs[e][k] = fac; |
|
sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2); |
|
} |
|
} |
|
} else { // SCE or one non-coupled CPE |
|
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { |
|
int alpha = sbr->data[ch].bs_amp_res ? 2 : 1; |
|
for (e = 1; e <= sbr->data[ch].bs_num_env; e++) |
|
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){ |
|
SoftFloat temp1; |
|
|
|
temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12; |
|
if (temp1.exp & 1) |
|
temp1.mant = 759250125; |
|
else |
|
temp1.mant = 0x20000000; |
|
temp1.exp = (temp1.exp >> 1) + 1; |
|
if (temp1.exp > 66) { // temp1 > 1E20 |
|
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); |
|
temp1 = FLOAT_1; |
|
} |
|
sbr->data[ch].env_facs[e][k] = temp1; |
|
} |
|
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) |
|
for (k = 0; k < sbr->n_q; k++){ |
|
sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \ |
|
sbr->data[ch].noise_facs_q[e][k] + 1; |
|
sbr->data[ch].noise_facs[e][k].mant = 0x20000000; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering |
|
* (14496-3 sp04 p214) |
|
* Warning: This routine does not seem numerically stable. |
|
*/ |
|
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, |
|
int (*alpha0)[2], int (*alpha1)[2], |
|
const int X_low[32][40][2], int k0) |
|
{ |
|
int k; |
|
int shift, round; |
|
|
|
for (k = 0; k < k0; k++) { |
|
SoftFloat phi[3][2][2]; |
|
SoftFloat a00, a01, a10, a11; |
|
SoftFloat dk; |
|
|
|
dsp->autocorrelate(X_low[k], phi); |
|
|
|
dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]), |
|
av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]), |
|
av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999)); |
|
|
|
if (!dk.mant) { |
|
a10 = FLOAT_0; |
|
a11 = FLOAT_0; |
|
} else { |
|
SoftFloat temp_real, temp_im; |
|
temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]), |
|
av_mul_sf(phi[0][0][1], phi[1][1][1])), |
|
av_mul_sf(phi[0][1][0], phi[1][0][0])); |
|
temp_im = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]), |
|
av_mul_sf(phi[0][0][1], phi[1][1][0])), |
|
av_mul_sf(phi[0][1][1], phi[1][0][0])); |
|
|
|
a10 = av_div_sf(temp_real, dk); |
|
a11 = av_div_sf(temp_im, dk); |
|
} |
|
|
|
if (!phi[1][0][0].mant) { |
|
a00 = FLOAT_0; |
|
a01 = FLOAT_0; |
|
} else { |
|
SoftFloat temp_real, temp_im; |
|
temp_real = av_add_sf(phi[0][0][0], |
|
av_add_sf(av_mul_sf(a10, phi[1][1][0]), |
|
av_mul_sf(a11, phi[1][1][1]))); |
|
temp_im = av_add_sf(phi[0][0][1], |
|
av_sub_sf(av_mul_sf(a11, phi[1][1][0]), |
|
av_mul_sf(a10, phi[1][1][1]))); |
|
|
|
temp_real.mant = -temp_real.mant; |
|
temp_im.mant = -temp_im.mant; |
|
a00 = av_div_sf(temp_real, phi[1][0][0]); |
|
a01 = av_div_sf(temp_im, phi[1][0][0]); |
|
} |
|
|
|
shift = a00.exp; |
|
if (shift >= 3) |
|
alpha0[k][0] = 0x7fffffff; |
|
else if (shift <= -30) |
|
alpha0[k][0] = 0; |
|
else { |
|
shift = 1-shift; |
|
if (shift <= 0) |
|
alpha0[k][0] = a00.mant * (1<<-shift); |
|
else { |
|
round = 1 << (shift-1); |
|
alpha0[k][0] = (a00.mant + round) >> shift; |
|
} |
|
} |
|
|
|
shift = a01.exp; |
|
if (shift >= 3) |
|
alpha0[k][1] = 0x7fffffff; |
|
else if (shift <= -30) |
|
alpha0[k][1] = 0; |
|
else { |
|
shift = 1-shift; |
|
if (shift <= 0) |
|
alpha0[k][1] = a01.mant * (1<<-shift); |
|
else { |
|
round = 1 << (shift-1); |
|
alpha0[k][1] = (a01.mant + round) >> shift; |
|
} |
|
} |
|
shift = a10.exp; |
|
if (shift >= 3) |
|
alpha1[k][0] = 0x7fffffff; |
|
else if (shift <= -30) |
|
alpha1[k][0] = 0; |
|
else { |
|
shift = 1-shift; |
|
if (shift <= 0) |
|
alpha1[k][0] = a10.mant * (1<<-shift); |
|
else { |
|
round = 1 << (shift-1); |
|
alpha1[k][0] = (a10.mant + round) >> shift; |
|
} |
|
} |
|
|
|
shift = a11.exp; |
|
if (shift >= 3) |
|
alpha1[k][1] = 0x7fffffff; |
|
else if (shift <= -30) |
|
alpha1[k][1] = 0; |
|
else { |
|
shift = 1-shift; |
|
if (shift <= 0) |
|
alpha1[k][1] = a11.mant * (1<<-shift); |
|
else { |
|
round = 1 << (shift-1); |
|
alpha1[k][1] = (a11.mant + round) >> shift; |
|
} |
|
} |
|
|
|
shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \ |
|
(int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \ |
|
0x40000000) >> 31); |
|
if (shift >= 0x20000000){ |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} |
|
|
|
shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \ |
|
(int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \ |
|
0x40000000) >> 31); |
|
if (shift >= 0x20000000){ |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} |
|
} |
|
} |
|
|
|
/// Chirp Factors (14496-3 sp04 p214) |
|
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) |
|
{ |
|
int i; |
|
int new_bw; |
|
static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 }; |
|
int64_t accu; |
|
|
|
for (i = 0; i < sbr->n_q; i++) { |
|
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) |
|
new_bw = 1288490189; |
|
else |
|
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; |
|
|
|
if (new_bw < ch_data->bw_array[i]){ |
|
accu = (int64_t)new_bw * 1610612736; |
|
accu += (int64_t)ch_data->bw_array[i] * 0x20000000; |
|
new_bw = (int)((accu + 0x40000000) >> 31); |
|
} else { |
|
accu = (int64_t)new_bw * 1946157056; |
|
accu += (int64_t)ch_data->bw_array[i] * 201326592; |
|
new_bw = (int)((accu + 0x40000000) >> 31); |
|
} |
|
ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw; |
|
} |
|
} |
|
|
|
/** |
|
* Calculation of levels of additional HF signal components (14496-3 sp04 p219) |
|
* and Calculation of gain (14496-3 sp04 p219) |
|
*/ |
|
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, |
|
SBRData *ch_data, const int e_a[2]) |
|
{ |
|
int e, k, m; |
|
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) |
|
static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 }, |
|
{ 758351638, 1 }, { 625000000, 34 } }; |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
int delta = !((e == e_a[1]) || (e == e_a[0])); |
|
for (k = 0; k < sbr->n_lim; k++) { |
|
SoftFloat gain_boost, gain_max; |
|
SoftFloat sum[2]; |
|
sum[0] = sum[1] = FLOAT_0; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m], |
|
av_add_sf(FLOAT_1, sbr->q_mapped[e][m])); |
|
sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m])); |
|
sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0))); |
|
if (!sbr->s_mapped[e][m]) { |
|
if (delta) { |
|
sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m], |
|
av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]), |
|
av_add_sf(FLOAT_1, sbr->q_mapped[e][m])))); |
|
} else { |
|
sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m], |
|
av_add_sf(FLOAT_1, sbr->e_curr[e][m]))); |
|
} |
|
} else { |
|
sbr->gain[e][m] = av_sqrt_sf( |
|
av_div_sf( |
|
av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]), |
|
av_mul_sf( |
|
av_add_sf(FLOAT_1, sbr->e_curr[e][m]), |
|
av_add_sf(FLOAT_1, sbr->q_mapped[e][m])))); |
|
} |
|
sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN); |
|
} |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]); |
|
sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]); |
|
} |
|
gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains], |
|
av_sqrt_sf( |
|
av_div_sf( |
|
av_add_sf(FLOAT_EPSILON, sum[0]), |
|
av_add_sf(FLOAT_EPSILON, sum[1])))); |
|
if (av_gt_sf(gain_max, FLOAT_100000)) |
|
gain_max = FLOAT_100000; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
SoftFloat q_m_max = av_div_sf( |
|
av_mul_sf(sbr->q_m[e][m], gain_max), |
|
sbr->gain[e][m]); |
|
if (av_gt_sf(sbr->q_m[e][m], q_m_max)) |
|
sbr->q_m[e][m] = q_m_max; |
|
if (av_gt_sf(sbr->gain[e][m], gain_max)) |
|
sbr->gain[e][m] = gain_max; |
|
} |
|
sum[0] = sum[1] = FLOAT_0; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]); |
|
sum[1] = av_add_sf(sum[1], |
|
av_mul_sf( |
|
av_mul_sf(sbr->e_curr[e][m], |
|
sbr->gain[e][m]), |
|
sbr->gain[e][m])); |
|
sum[1] = av_add_sf(sum[1], |
|
av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m])); |
|
if (delta && !sbr->s_m[e][m].mant) |
|
sum[1] = av_add_sf(sum[1], |
|
av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m])); |
|
} |
|
gain_boost = av_sqrt_sf( |
|
av_div_sf( |
|
av_add_sf(FLOAT_EPSILON, sum[0]), |
|
av_add_sf(FLOAT_EPSILON, sum[1]))); |
|
if (av_gt_sf(gain_boost, FLOAT_1584893192)) |
|
gain_boost = FLOAT_1584893192; |
|
|
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost); |
|
sbr->q_m[e][m] = av_mul_sf(sbr->q_m[e][m], gain_boost); |
|
sbr->s_m[e][m] = av_mul_sf(sbr->s_m[e][m], gain_boost); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// Assembling HF Signals (14496-3 sp04 p220) |
|
static void sbr_hf_assemble(int Y1[38][64][2], |
|
const int X_high[64][40][2], |
|
SpectralBandReplication *sbr, SBRData *ch_data, |
|
const int e_a[2]) |
|
{ |
|
int e, i, j, m; |
|
const int h_SL = 4 * !sbr->bs_smoothing_mode; |
|
const int kx = sbr->kx[1]; |
|
const int m_max = sbr->m[1]; |
|
static const SoftFloat h_smooth[5] = { |
|
{ 715827883, -1 }, |
|
{ 647472402, -1 }, |
|
{ 937030863, -2 }, |
|
{ 989249804, -3 }, |
|
{ 546843842, -4 }, |
|
}; |
|
SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; |
|
int indexnoise = ch_data->f_indexnoise; |
|
int indexsine = ch_data->f_indexsine; |
|
|
|
if (sbr->reset) { |
|
for (i = 0; i < h_SL; i++) { |
|
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} else if (h_SL) { |
|
for (i = 0; i < 4; i++) { |
|
memcpy(g_temp[i + 2 * ch_data->t_env[0]], |
|
g_temp[i + 2 * ch_data->t_env_num_env_old], |
|
sizeof(g_temp[0])); |
|
memcpy(q_temp[i + 2 * ch_data->t_env[0]], |
|
q_temp[i + 2 * ch_data->t_env_num_env_old], |
|
sizeof(q_temp[0])); |
|
} |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
SoftFloat g_filt_tab[48]; |
|
SoftFloat q_filt_tab[48]; |
|
SoftFloat *g_filt, *q_filt; |
|
|
|
if (h_SL && e != e_a[0] && e != e_a[1]) { |
|
g_filt = g_filt_tab; |
|
q_filt = q_filt_tab; |
|
for (m = 0; m < m_max; m++) { |
|
const int idx1 = i + h_SL; |
|
g_filt[m].mant = g_filt[m].exp = 0; |
|
q_filt[m].mant = q_filt[m].exp = 0; |
|
for (j = 0; j <= h_SL; j++) { |
|
g_filt[m] = av_add_sf(g_filt[m], |
|
av_mul_sf(g_temp[idx1 - j][m], |
|
h_smooth[j])); |
|
q_filt[m] = av_add_sf(q_filt[m], |
|
av_mul_sf(q_temp[idx1 - j][m], |
|
h_smooth[j])); |
|
} |
|
} |
|
} else { |
|
g_filt = g_temp[i + h_SL]; |
|
q_filt = q_temp[i]; |
|
} |
|
|
|
sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max, |
|
i + ENVELOPE_ADJUSTMENT_OFFSET); |
|
|
|
if (e != e_a[0] && e != e_a[1]) { |
|
sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e], |
|
q_filt, indexnoise, |
|
kx, m_max); |
|
} else { |
|
int idx = indexsine&1; |
|
int A = (1-((indexsine+(kx & 1))&2)); |
|
int B = (A^(-idx)) + idx; |
|
int *out = &Y1[i][kx][idx]; |
|
int shift; |
|
unsigned round; |
|
|
|
SoftFloat *in = sbr->s_m[e]; |
|
for (m = 0; m+1 < m_max; m+=2) { |
|
int shift2; |
|
shift = 22 - in[m ].exp; |
|
shift2= 22 - in[m+1].exp; |
|
if (shift < 1 || shift2 < 1) { |
|
av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2); |
|
return; |
|
} |
|
if (shift < 32) { |
|
round = 1 << (shift-1); |
|
out[2*m ] += (int)(in[m ].mant * A + round) >> shift; |
|
} |
|
|
|
if (shift2 < 32) { |
|
round = 1 << (shift2-1); |
|
out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2; |
|
} |
|
} |
|
if(m_max&1) |
|
{ |
|
shift = 22 - in[m ].exp; |
|
if (shift < 1) { |
|
av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift); |
|
return; |
|
} else if (shift < 32) { |
|
round = 1 << (shift-1); |
|
out[2*m ] += (int)(in[m ].mant * A + round) >> shift; |
|
} |
|
} |
|
} |
|
indexnoise = (indexnoise + m_max) & 0x1ff; |
|
indexsine = (indexsine + 1) & 3; |
|
} |
|
} |
|
ch_data->f_indexnoise = indexnoise; |
|
ch_data->f_indexsine = indexsine; |
|
} |
|
|
|
#include "aacsbr_template.c"
|
|
|