mirror of https://github.com/FFmpeg/FFmpeg.git
370 lines
14 KiB
370 lines
14 KiB
/* |
|
* AAC Spectral Band Replication decoding functions |
|
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) |
|
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC Spectral Band Replication decoding functions |
|
* @author Robert Swain ( rob opendot cl ) |
|
*/ |
|
#define USE_FIXED 0 |
|
|
|
#include "aac.h" |
|
#include "sbr.h" |
|
#include "aacsbr.h" |
|
#include "aacsbrdata.h" |
|
#include "fft.h" |
|
#include "internal.h" |
|
#include "aacps.h" |
|
#include "sbrdsp.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/libm.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/mem_internal.h" |
|
|
|
#include <stdint.h> |
|
#include <float.h> |
|
#include <math.h> |
|
|
|
#if ARCH_MIPS |
|
#include "mips/aacsbr_mips.h" |
|
#endif /* ARCH_MIPS */ |
|
|
|
static VLC vlc_sbr[10]; |
|
static void aacsbr_func_ptr_init(AACSBRContext *c); |
|
|
|
static void make_bands(int16_t* bands, int start, int stop, int num_bands) |
|
{ |
|
int k, previous, present; |
|
float base, prod; |
|
|
|
base = powf((float)stop / start, 1.0f / num_bands); |
|
prod = start; |
|
previous = start; |
|
|
|
for (k = 0; k < num_bands-1; k++) { |
|
prod *= base; |
|
present = lrintf(prod); |
|
bands[k] = present - previous; |
|
previous = present; |
|
} |
|
bands[num_bands-1] = stop - previous; |
|
} |
|
|
|
/// Dequantization and stereo decoding (14496-3 sp04 p203) |
|
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) |
|
{ |
|
int k, e; |
|
int ch; |
|
static const double exp2_tab[2] = {1, M_SQRT2}; |
|
if (id_aac == TYPE_CPE && sbr->bs_coupling) { |
|
int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24; |
|
for (e = 1; e <= sbr->data[0].bs_num_env; e++) { |
|
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { |
|
float temp1, temp2, fac; |
|
if (sbr->data[0].bs_amp_res) { |
|
temp1 = ff_exp2fi(sbr->data[0].env_facs_q[e][k] + 7); |
|
temp2 = ff_exp2fi(pan_offset - sbr->data[1].env_facs_q[e][k]); |
|
} |
|
else { |
|
temp1 = ff_exp2fi((sbr->data[0].env_facs_q[e][k]>>1) + 7) * |
|
exp2_tab[sbr->data[0].env_facs_q[e][k] & 1]; |
|
temp2 = ff_exp2fi((pan_offset - sbr->data[1].env_facs_q[e][k])>>1) * |
|
exp2_tab[(pan_offset - sbr->data[1].env_facs_q[e][k]) & 1]; |
|
} |
|
if (temp1 > 1E20) { |
|
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); |
|
temp1 = 1; |
|
} |
|
fac = temp1 / (1.0f + temp2); |
|
sbr->data[0].env_facs[e][k] = fac; |
|
sbr->data[1].env_facs[e][k] = fac * temp2; |
|
} |
|
} |
|
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { |
|
for (k = 0; k < sbr->n_q; k++) { |
|
float temp1 = ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs_q[e][k] + 1); |
|
float temp2 = ff_exp2fi(12 - sbr->data[1].noise_facs_q[e][k]); |
|
float fac; |
|
av_assert0(temp1 <= 1E20); |
|
fac = temp1 / (1.0f + temp2); |
|
sbr->data[0].noise_facs[e][k] = fac; |
|
sbr->data[1].noise_facs[e][k] = fac * temp2; |
|
} |
|
} |
|
} else { // SCE or one non-coupled CPE |
|
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { |
|
for (e = 1; e <= sbr->data[ch].bs_num_env; e++) |
|
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){ |
|
if (sbr->data[ch].bs_amp_res) |
|
sbr->data[ch].env_facs[e][k] = ff_exp2fi(sbr->data[ch].env_facs_q[e][k] + 6); |
|
else |
|
sbr->data[ch].env_facs[e][k] = ff_exp2fi((sbr->data[ch].env_facs_q[e][k]>>1) + 6) |
|
* exp2_tab[sbr->data[ch].env_facs_q[e][k] & 1]; |
|
if (sbr->data[ch].env_facs[e][k] > 1E20) { |
|
av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n"); |
|
sbr->data[ch].env_facs[e][k] = 1; |
|
} |
|
} |
|
|
|
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) |
|
for (k = 0; k < sbr->n_q; k++) |
|
sbr->data[ch].noise_facs[e][k] = |
|
ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs_q[e][k]); |
|
} |
|
} |
|
} |
|
|
|
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering |
|
* (14496-3 sp04 p214) |
|
* Warning: This routine does not seem numerically stable. |
|
*/ |
|
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, |
|
float (*alpha0)[2], float (*alpha1)[2], |
|
const float X_low[32][40][2], int k0) |
|
{ |
|
int k; |
|
for (k = 0; k < k0; k++) { |
|
LOCAL_ALIGNED_16(float, phi, [3], [2][2]); |
|
float dk; |
|
|
|
dsp->autocorrelate(X_low[k], phi); |
|
|
|
dk = phi[2][1][0] * phi[1][0][0] - |
|
(phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f; |
|
|
|
if (!dk) { |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
} else { |
|
float temp_real, temp_im; |
|
temp_real = phi[0][0][0] * phi[1][1][0] - |
|
phi[0][0][1] * phi[1][1][1] - |
|
phi[0][1][0] * phi[1][0][0]; |
|
temp_im = phi[0][0][0] * phi[1][1][1] + |
|
phi[0][0][1] * phi[1][1][0] - |
|
phi[0][1][1] * phi[1][0][0]; |
|
|
|
alpha1[k][0] = temp_real / dk; |
|
alpha1[k][1] = temp_im / dk; |
|
} |
|
|
|
if (!phi[1][0][0]) { |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} else { |
|
float temp_real, temp_im; |
|
temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + |
|
alpha1[k][1] * phi[1][1][1]; |
|
temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - |
|
alpha1[k][0] * phi[1][1][1]; |
|
|
|
alpha0[k][0] = -temp_real / phi[1][0][0]; |
|
alpha0[k][1] = -temp_im / phi[1][0][0]; |
|
} |
|
|
|
if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f || |
|
alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} |
|
} |
|
} |
|
|
|
/// Chirp Factors (14496-3 sp04 p214) |
|
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) |
|
{ |
|
int i; |
|
float new_bw; |
|
static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; |
|
|
|
for (i = 0; i < sbr->n_q; i++) { |
|
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { |
|
new_bw = 0.6f; |
|
} else |
|
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; |
|
|
|
if (new_bw < ch_data->bw_array[i]) { |
|
new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; |
|
} else |
|
new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; |
|
ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; |
|
} |
|
} |
|
|
|
/** |
|
* Calculation of levels of additional HF signal components (14496-3 sp04 p219) |
|
* and Calculation of gain (14496-3 sp04 p219) |
|
*/ |
|
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, |
|
SBRData *ch_data, const int e_a[2]) |
|
{ |
|
int e, k, m; |
|
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) |
|
static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
int delta = !((e == e_a[1]) || (e == e_a[0])); |
|
for (k = 0; k < sbr->n_lim; k++) { |
|
float gain_boost, gain_max; |
|
float sum[2] = { 0.0f, 0.0f }; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]); |
|
sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); |
|
sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); |
|
if (!sbr->s_mapped[e][m]) { |
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / |
|
((1.0f + sbr->e_curr[e][m]) * |
|
(1.0f + sbr->q_mapped[e][m] * delta))); |
|
} else { |
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] / |
|
((1.0f + sbr->e_curr[e][m]) * |
|
(1.0f + sbr->q_mapped[e][m]))); |
|
} |
|
sbr->gain[e][m] += FLT_MIN; |
|
} |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] += sbr->e_origmapped[e][m]; |
|
sum[1] += sbr->e_curr[e][m]; |
|
} |
|
gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); |
|
gain_max = FFMIN(100000.f, gain_max); |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; |
|
sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); |
|
sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); |
|
} |
|
sum[0] = sum[1] = 0.0f; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] += sbr->e_origmapped[e][m]; |
|
sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] |
|
+ sbr->s_m[e][m] * sbr->s_m[e][m] |
|
+ (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m]; |
|
} |
|
gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); |
|
gain_boost = FFMIN(1.584893192f, gain_boost); |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sbr->gain[e][m] *= gain_boost; |
|
sbr->q_m[e][m] *= gain_boost; |
|
sbr->s_m[e][m] *= gain_boost; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// Assembling HF Signals (14496-3 sp04 p220) |
|
static void sbr_hf_assemble(float Y1[38][64][2], |
|
const float X_high[64][40][2], |
|
SpectralBandReplication *sbr, SBRData *ch_data, |
|
const int e_a[2]) |
|
{ |
|
int e, i, j, m; |
|
const int h_SL = 4 * !sbr->bs_smoothing_mode; |
|
const int kx = sbr->kx[1]; |
|
const int m_max = sbr->m[1]; |
|
static const float h_smooth[5] = { |
|
0.33333333333333, |
|
0.30150283239582, |
|
0.21816949906249, |
|
0.11516383427084, |
|
0.03183050093751, |
|
}; |
|
float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; |
|
int indexnoise = ch_data->f_indexnoise; |
|
int indexsine = ch_data->f_indexsine; |
|
|
|
if (sbr->reset) { |
|
for (i = 0; i < h_SL; i++) { |
|
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} else if (h_SL) { |
|
for (i = 0; i < 4; i++) { |
|
memcpy(g_temp[i + 2 * ch_data->t_env[0]], |
|
g_temp[i + 2 * ch_data->t_env_num_env_old], |
|
sizeof(g_temp[0])); |
|
memcpy(q_temp[i + 2 * ch_data->t_env[0]], |
|
q_temp[i + 2 * ch_data->t_env_num_env_old], |
|
sizeof(q_temp[0])); |
|
} |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
LOCAL_ALIGNED_16(float, g_filt_tab, [48]); |
|
LOCAL_ALIGNED_16(float, q_filt_tab, [48]); |
|
float *g_filt, *q_filt; |
|
|
|
if (h_SL && e != e_a[0] && e != e_a[1]) { |
|
g_filt = g_filt_tab; |
|
q_filt = q_filt_tab; |
|
for (m = 0; m < m_max; m++) { |
|
const int idx1 = i + h_SL; |
|
g_filt[m] = 0.0f; |
|
q_filt[m] = 0.0f; |
|
for (j = 0; j <= h_SL; j++) { |
|
g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j]; |
|
q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j]; |
|
} |
|
} |
|
} else { |
|
g_filt = g_temp[i + h_SL]; |
|
q_filt = q_temp[i]; |
|
} |
|
|
|
sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max, |
|
i + ENVELOPE_ADJUSTMENT_OFFSET); |
|
|
|
if (e != e_a[0] && e != e_a[1]) { |
|
sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e], |
|
q_filt, indexnoise, |
|
kx, m_max); |
|
} else { |
|
int idx = indexsine&1; |
|
int A = (1-((indexsine+(kx & 1))&2)); |
|
int B = (A^(-idx)) + idx; |
|
float *out = &Y1[i][kx][idx]; |
|
float *in = sbr->s_m[e]; |
|
for (m = 0; m+1 < m_max; m+=2) { |
|
out[2*m ] += in[m ] * A; |
|
out[2*m+2] += in[m+1] * B; |
|
} |
|
if(m_max&1) |
|
out[2*m ] += in[m ] * A; |
|
} |
|
indexnoise = (indexnoise + m_max) & 0x1ff; |
|
indexsine = (indexsine + 1) & 3; |
|
} |
|
} |
|
ch_data->f_indexnoise = indexnoise; |
|
ch_data->f_indexsine = indexsine; |
|
} |
|
|
|
#include "aacsbr_template.c"
|
|
|