mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
509 lines
20 KiB
509 lines
20 KiB
/* |
|
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at) |
|
* |
|
* This file is part of libswresample |
|
* |
|
* libswresample is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* libswresample is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with libswresample; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "swresample_internal.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
|
|
#define TEMPLATE_REMATRIX_FLT |
|
#include "rematrix_template.c" |
|
#undef TEMPLATE_REMATRIX_FLT |
|
|
|
#define TEMPLATE_REMATRIX_DBL |
|
#include "rematrix_template.c" |
|
#undef TEMPLATE_REMATRIX_DBL |
|
|
|
#define TEMPLATE_REMATRIX_S16 |
|
#include "rematrix_template.c" |
|
#undef TEMPLATE_REMATRIX_S16 |
|
|
|
#define TEMPLATE_REMATRIX_S32 |
|
#include "rematrix_template.c" |
|
#undef TEMPLATE_REMATRIX_S32 |
|
|
|
#define FRONT_LEFT 0 |
|
#define FRONT_RIGHT 1 |
|
#define FRONT_CENTER 2 |
|
#define LOW_FREQUENCY 3 |
|
#define BACK_LEFT 4 |
|
#define BACK_RIGHT 5 |
|
#define FRONT_LEFT_OF_CENTER 6 |
|
#define FRONT_RIGHT_OF_CENTER 7 |
|
#define BACK_CENTER 8 |
|
#define SIDE_LEFT 9 |
|
#define SIDE_RIGHT 10 |
|
#define TOP_CENTER 11 |
|
#define TOP_FRONT_LEFT 12 |
|
#define TOP_FRONT_CENTER 13 |
|
#define TOP_FRONT_RIGHT 14 |
|
#define TOP_BACK_LEFT 15 |
|
#define TOP_BACK_CENTER 16 |
|
#define TOP_BACK_RIGHT 17 |
|
#define NUM_NAMED_CHANNELS 18 |
|
|
|
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride) |
|
{ |
|
int nb_in, nb_out, in, out; |
|
|
|
if (!s || s->in_convert) // s needs to be allocated but not initialized |
|
return AVERROR(EINVAL); |
|
memset(s->matrix, 0, sizeof(s->matrix)); |
|
nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout); |
|
nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout); |
|
for (out = 0; out < nb_out; out++) { |
|
for (in = 0; in < nb_in; in++) |
|
s->matrix[out][in] = matrix[in]; |
|
matrix += stride; |
|
} |
|
s->rematrix_custom = 1; |
|
return 0; |
|
} |
|
|
|
static int even(int64_t layout){ |
|
if(!layout) return 1; |
|
if(layout&(layout-1)) return 1; |
|
return 0; |
|
} |
|
|
|
static int clean_layout(SwrContext *s, int64_t layout){ |
|
if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) { |
|
char buf[128]; |
|
av_get_channel_layout_string(buf, sizeof(buf), -1, layout); |
|
av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf); |
|
return AV_CH_FRONT_CENTER; |
|
} |
|
|
|
return layout; |
|
} |
|
|
|
static int sane_layout(int64_t layout){ |
|
if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker |
|
return 0; |
|
if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front |
|
return 0; |
|
if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side |
|
return 0; |
|
if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT))) |
|
return 0; |
|
if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER))) |
|
return 0; |
|
if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
av_cold static int auto_matrix(SwrContext *s) |
|
{ |
|
int i, j, out_i; |
|
double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}}; |
|
int64_t unaccounted, in_ch_layout, out_ch_layout; |
|
double maxcoef=0; |
|
char buf[128]; |
|
const int matrix_encoding = s->matrix_encoding; |
|
float maxval; |
|
|
|
in_ch_layout = clean_layout(s, s->in_ch_layout); |
|
out_ch_layout = clean_layout(s, s->out_ch_layout); |
|
|
|
if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX |
|
&& (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0 |
|
) |
|
out_ch_layout = AV_CH_LAYOUT_STEREO; |
|
|
|
if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX |
|
&& (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0 |
|
) |
|
in_ch_layout = AV_CH_LAYOUT_STEREO; |
|
|
|
if(!sane_layout(in_ch_layout)){ |
|
av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout); |
|
av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if(!sane_layout(out_ch_layout)){ |
|
av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout); |
|
av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
memset(s->matrix, 0, sizeof(s->matrix)); |
|
for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){ |
|
if(in_ch_layout & out_ch_layout & (1ULL<<i)) |
|
matrix[i][i]= 1.0; |
|
} |
|
|
|
unaccounted= in_ch_layout & ~out_ch_layout; |
|
|
|
//FIXME implement dolby surround |
|
//FIXME implement full ac3 |
|
|
|
|
|
if(unaccounted & AV_CH_FRONT_CENTER){ |
|
if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){ |
|
if(in_ch_layout & AV_CH_LAYOUT_STEREO) { |
|
matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev; |
|
matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev; |
|
} else { |
|
matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2; |
|
matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2; |
|
} |
|
}else |
|
av_assert0(0); |
|
} |
|
if(unaccounted & AV_CH_LAYOUT_STEREO){ |
|
if(out_ch_layout & AV_CH_FRONT_CENTER){ |
|
matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2; |
|
matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2; |
|
if(in_ch_layout & AV_CH_FRONT_CENTER) |
|
matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2); |
|
}else |
|
av_assert0(0); |
|
} |
|
|
|
if(unaccounted & AV_CH_BACK_CENTER){ |
|
if(out_ch_layout & AV_CH_BACK_LEFT){ |
|
matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2; |
|
matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2; |
|
}else if(out_ch_layout & AV_CH_SIDE_LEFT){ |
|
matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2; |
|
matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2; |
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){ |
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY || |
|
matrix_encoding == AV_MATRIX_ENCODING_DPLII) { |
|
if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) { |
|
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2; |
|
} else { |
|
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev; |
|
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev; |
|
} |
|
} else { |
|
matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2; |
|
} |
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){ |
|
matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2; |
|
}else |
|
av_assert0(0); |
|
} |
|
if(unaccounted & AV_CH_BACK_LEFT){ |
|
if(out_ch_layout & AV_CH_BACK_CENTER){ |
|
matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2; |
|
matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2; |
|
}else if(out_ch_layout & AV_CH_SIDE_LEFT){ |
|
if(in_ch_layout & AV_CH_SIDE_LEFT){ |
|
matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2; |
|
matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2; |
|
}else{ |
|
matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0; |
|
matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0; |
|
} |
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){ |
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) { |
|
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2; |
|
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) { |
|
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2; |
|
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2; |
|
} else { |
|
matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev; |
|
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev; |
|
} |
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){ |
|
matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2; |
|
matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2; |
|
}else |
|
av_assert0(0); |
|
} |
|
|
|
if(unaccounted & AV_CH_SIDE_LEFT){ |
|
if(out_ch_layout & AV_CH_BACK_LEFT){ |
|
/* if back channels do not exist in the input, just copy side |
|
channels to back channels, otherwise mix side into back */ |
|
if (in_ch_layout & AV_CH_BACK_LEFT) { |
|
matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2; |
|
matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2; |
|
} else { |
|
matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0; |
|
matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0; |
|
} |
|
}else if(out_ch_layout & AV_CH_BACK_CENTER){ |
|
matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2; |
|
matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2; |
|
}else if(out_ch_layout & AV_CH_FRONT_LEFT){ |
|
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) { |
|
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2; |
|
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) { |
|
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2; |
|
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2; |
|
} else { |
|
matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev; |
|
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev; |
|
} |
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){ |
|
matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2; |
|
matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2; |
|
}else |
|
av_assert0(0); |
|
} |
|
|
|
if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){ |
|
if(out_ch_layout & AV_CH_FRONT_LEFT){ |
|
matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0; |
|
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0; |
|
}else if(out_ch_layout & AV_CH_FRONT_CENTER){ |
|
matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2; |
|
matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2; |
|
}else |
|
av_assert0(0); |
|
} |
|
/* mix LFE into front left/right or center */ |
|
if (unaccounted & AV_CH_LOW_FREQUENCY) { |
|
if (out_ch_layout & AV_CH_FRONT_CENTER) { |
|
matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level; |
|
} else if (out_ch_layout & AV_CH_FRONT_LEFT) { |
|
matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2; |
|
matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2; |
|
} else |
|
av_assert0(0); |
|
} |
|
|
|
for(out_i=i=0; i<64; i++){ |
|
double sum=0; |
|
int in_i=0; |
|
if((out_ch_layout & (1ULL<<i)) == 0) |
|
continue; |
|
for(j=0; j<64; j++){ |
|
if((in_ch_layout & (1ULL<<j)) == 0) |
|
continue; |
|
if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0])) |
|
s->matrix[out_i][in_i]= matrix[i][j]; |
|
else |
|
s->matrix[out_i][in_i]= i == j && (in_ch_layout & out_ch_layout & (1ULL<<i)); |
|
sum += fabs(s->matrix[out_i][in_i]); |
|
in_i++; |
|
} |
|
maxcoef= FFMAX(maxcoef, sum); |
|
out_i++; |
|
} |
|
if(s->rematrix_volume < 0) |
|
maxcoef = -s->rematrix_volume; |
|
|
|
if (s->rematrix_maxval > 0) { |
|
maxval = s->rematrix_maxval; |
|
} else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT |
|
|| av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) { |
|
maxval = 1.0; |
|
} else |
|
maxval = INT_MAX; |
|
|
|
if(maxcoef > maxval || s->rematrix_volume < 0){ |
|
maxcoef /= maxval; |
|
for(i=0; i<SWR_CH_MAX; i++) |
|
for(j=0; j<SWR_CH_MAX; j++){ |
|
s->matrix[i][j] /= maxcoef; |
|
} |
|
} |
|
|
|
if(s->rematrix_volume > 0){ |
|
for(i=0; i<SWR_CH_MAX; i++) |
|
for(j=0; j<SWR_CH_MAX; j++){ |
|
s->matrix[i][j] *= s->rematrix_volume; |
|
} |
|
} |
|
|
|
for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){ |
|
for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){ |
|
av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]); |
|
} |
|
av_log(NULL, AV_LOG_DEBUG, "\n"); |
|
} |
|
return 0; |
|
} |
|
|
|
av_cold int swri_rematrix_init(SwrContext *s){ |
|
int i, j; |
|
int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout); |
|
int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout); |
|
|
|
s->mix_any_f = NULL; |
|
|
|
if (!s->rematrix_custom) { |
|
int r = auto_matrix(s); |
|
if (r) |
|
return r; |
|
} |
|
if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){ |
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int)); |
|
s->native_one = av_mallocz(sizeof(int)); |
|
for (i = 0; i < nb_out; i++) |
|
for (j = 0; j < nb_in; j++) |
|
((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768); |
|
*((int*)s->native_one) = 32768; |
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_s16; |
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16; |
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s); |
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){ |
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float)); |
|
s->native_one = av_mallocz(sizeof(float)); |
|
for (i = 0; i < nb_out; i++) |
|
for (j = 0; j < nb_in; j++) |
|
((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; |
|
*((float*)s->native_one) = 1.0; |
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_float; |
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_float; |
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s); |
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){ |
|
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double)); |
|
s->native_one = av_mallocz(sizeof(double)); |
|
for (i = 0; i < nb_out; i++) |
|
for (j = 0; j < nb_in; j++) |
|
((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; |
|
*((double*)s->native_one) = 1.0; |
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_double; |
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_double; |
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s); |
|
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){ |
|
// Only for dithering currently |
|
// s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double)); |
|
s->native_one = av_mallocz(sizeof(int)); |
|
// for (i = 0; i < nb_out; i++) |
|
// for (j = 0; j < nb_in; j++) |
|
// ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; |
|
*((int*)s->native_one) = 32768; |
|
s->mix_1_1_f = (mix_1_1_func_type*)copy_s32; |
|
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32; |
|
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s); |
|
}else |
|
av_assert0(0); |
|
//FIXME quantize for integeres |
|
for (i = 0; i < SWR_CH_MAX; i++) { |
|
int ch_in=0; |
|
for (j = 0; j < SWR_CH_MAX; j++) { |
|
s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768); |
|
if(s->matrix[i][j]) |
|
s->matrix_ch[i][++ch_in]= j; |
|
} |
|
s->matrix_ch[i][0]= ch_in; |
|
} |
|
|
|
if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s); |
|
|
|
return 0; |
|
} |
|
|
|
av_cold void swri_rematrix_free(SwrContext *s){ |
|
av_freep(&s->native_matrix); |
|
av_freep(&s->native_one); |
|
av_freep(&s->native_simd_matrix); |
|
av_freep(&s->native_simd_one); |
|
} |
|
|
|
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){ |
|
int out_i, in_i, i, j; |
|
int len1 = 0; |
|
int off = 0; |
|
|
|
if(s->mix_any_f) { |
|
s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len); |
|
return 0; |
|
} |
|
|
|
if(s->mix_2_1_simd || s->mix_1_1_simd){ |
|
len1= len&~15; |
|
off = len1 * out->bps; |
|
} |
|
|
|
av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout)); |
|
av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout)); |
|
|
|
for(out_i=0; out_i<out->ch_count; out_i++){ |
|
switch(s->matrix_ch[out_i][0]){ |
|
case 0: |
|
if(mustcopy) |
|
memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt)); |
|
break; |
|
case 1: |
|
in_i= s->matrix_ch[out_i][1]; |
|
if(s->matrix[out_i][in_i]!=1.0){ |
|
if(s->mix_1_1_simd && len1) |
|
s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1); |
|
if(len != len1) |
|
s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1); |
|
}else if(mustcopy){ |
|
memcpy(out->ch[out_i], in->ch[in_i], len*out->bps); |
|
}else{ |
|
out->ch[out_i]= in->ch[in_i]; |
|
} |
|
break; |
|
case 2: { |
|
int in_i1 = s->matrix_ch[out_i][1]; |
|
int in_i2 = s->matrix_ch[out_i][2]; |
|
if(s->mix_2_1_simd && len1) |
|
s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1); |
|
else |
|
s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1); |
|
if(len != len1) |
|
s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1); |
|
break;} |
|
default: |
|
if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){ |
|
for(i=0; i<len; i++){ |
|
float v=0; |
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){ |
|
in_i= s->matrix_ch[out_i][1+j]; |
|
v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i]; |
|
} |
|
((float*)out->ch[out_i])[i]= v; |
|
} |
|
}else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){ |
|
for(i=0; i<len; i++){ |
|
double v=0; |
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){ |
|
in_i= s->matrix_ch[out_i][1+j]; |
|
v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i]; |
|
} |
|
((double*)out->ch[out_i])[i]= v; |
|
} |
|
}else{ |
|
for(i=0; i<len; i++){ |
|
int v=0; |
|
for(j=0; j<s->matrix_ch[out_i][0]; j++){ |
|
in_i= s->matrix_ch[out_i][1+j]; |
|
v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i]; |
|
} |
|
((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15; |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
}
|
|
|