mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
6.7 KiB
236 lines
6.7 KiB
/** |
|
* LPC utility code |
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/lls.h" |
|
#include "dsputil.h" |
|
|
|
#define LPC_USE_DOUBLE |
|
#include "lpc.h" |
|
|
|
|
|
/** |
|
* Apply Welch window function to audio block |
|
*/ |
|
static void apply_welch_window(const int32_t *data, int len, double *w_data) |
|
{ |
|
int i, n2; |
|
double w; |
|
double c; |
|
|
|
assert(!(len&1)); //the optimization in r11881 does not support odd len |
|
//if someone wants odd len extend the change in r11881 |
|
|
|
n2 = (len >> 1); |
|
c = 2.0 / (len - 1.0); |
|
|
|
w_data+=n2; |
|
data+=n2; |
|
for(i=0; i<n2; i++) { |
|
w = c - n2 + i; |
|
w = 1.0 - (w * w); |
|
w_data[-i-1] = data[-i-1] * w; |
|
w_data[+i ] = data[+i ] * w; |
|
} |
|
} |
|
|
|
/** |
|
* Calculates autocorrelation data from audio samples |
|
* A Welch window function is applied before calculation. |
|
*/ |
|
void ff_lpc_compute_autocorr(const int32_t *data, int len, int lag, |
|
double *autoc) |
|
{ |
|
int i, j; |
|
double tmp[len + lag + 1]; |
|
double *data1= tmp + lag; |
|
|
|
apply_welch_window(data, len, data1); |
|
|
|
for(j=0; j<lag; j++) |
|
data1[j-lag]= 0.0; |
|
data1[len] = 0.0; |
|
|
|
for(j=0; j<lag; j+=2){ |
|
double sum0 = 1.0, sum1 = 1.0; |
|
for(i=j; i<len; i++){ |
|
sum0 += data1[i] * data1[i-j]; |
|
sum1 += data1[i] * data1[i-j-1]; |
|
} |
|
autoc[j ] = sum0; |
|
autoc[j+1] = sum1; |
|
} |
|
|
|
if(j==lag){ |
|
double sum = 1.0; |
|
for(i=j-1; i<len; i+=2){ |
|
sum += data1[i ] * data1[i-j ] |
|
+ data1[i+1] * data1[i-j+1]; |
|
} |
|
autoc[j] = sum; |
|
} |
|
} |
|
|
|
/** |
|
* Quantize LPC coefficients |
|
*/ |
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
|
int32_t *lpc_out, int *shift, int max_shift, int zero_shift) |
|
{ |
|
int i; |
|
double cmax, error; |
|
int32_t qmax; |
|
int sh; |
|
|
|
/* define maximum levels */ |
|
qmax = (1 << (precision - 1)) - 1; |
|
|
|
/* find maximum coefficient value */ |
|
cmax = 0.0; |
|
for(i=0; i<order; i++) { |
|
cmax= FFMAX(cmax, fabs(lpc_in[i])); |
|
} |
|
|
|
/* if maximum value quantizes to zero, return all zeros */ |
|
if(cmax * (1 << max_shift) < 1.0) { |
|
*shift = zero_shift; |
|
memset(lpc_out, 0, sizeof(int32_t) * order); |
|
return; |
|
} |
|
|
|
/* calculate level shift which scales max coeff to available bits */ |
|
sh = max_shift; |
|
while((cmax * (1 << sh) > qmax) && (sh > 0)) { |
|
sh--; |
|
} |
|
|
|
/* since negative shift values are unsupported in decoder, scale down |
|
coefficients instead */ |
|
if(sh == 0 && cmax > qmax) { |
|
double scale = ((double)qmax) / cmax; |
|
for(i=0; i<order; i++) { |
|
lpc_in[i] *= scale; |
|
} |
|
} |
|
|
|
/* output quantized coefficients and level shift */ |
|
error=0; |
|
for(i=0; i<order; i++) { |
|
error -= lpc_in[i] * (1 << sh); |
|
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); |
|
error -= lpc_out[i]; |
|
} |
|
*shift = sh; |
|
} |
|
|
|
static int estimate_best_order(double *ref, int min_order, int max_order) |
|
{ |
|
int i, est; |
|
|
|
est = min_order; |
|
for(i=max_order-1; i>=min_order-1; i--) { |
|
if(ref[i] > 0.10) { |
|
est = i+1; |
|
break; |
|
} |
|
} |
|
return est; |
|
} |
|
|
|
/** |
|
* Calculate LPC coefficients for multiple orders |
|
* |
|
* @param use_lpc LPC method for determining coefficients |
|
* 0 = LPC with fixed pre-defined coeffs |
|
* 1 = LPC with coeffs determined by Levinson-Durbin recursion |
|
* 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes. |
|
*/ |
|
int ff_lpc_calc_coefs(DSPContext *s, |
|
const int32_t *samples, int blocksize, int min_order, |
|
int max_order, int precision, |
|
int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc, |
|
int omethod, int max_shift, int zero_shift) |
|
{ |
|
double autoc[MAX_LPC_ORDER+1]; |
|
double ref[MAX_LPC_ORDER]; |
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int i, j, pass; |
|
int opt_order; |
|
|
|
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0); |
|
|
|
if(use_lpc == 1){ |
|
s->lpc_compute_autocorr(samples, blocksize, max_order, autoc); |
|
|
|
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); |
|
|
|
for(i=0; i<max_order; i++) |
|
ref[i] = fabs(lpc[i][i]); |
|
}else{ |
|
LLSModel m[2]; |
|
double var[MAX_LPC_ORDER+1], av_uninit(weight); |
|
|
|
for(pass=0; pass<use_lpc-1; pass++){ |
|
av_init_lls(&m[pass&1], max_order); |
|
|
|
weight=0; |
|
for(i=max_order; i<blocksize; i++){ |
|
for(j=0; j<=max_order; j++) |
|
var[j]= samples[i-j]; |
|
|
|
if(pass){ |
|
double eval, inv, rinv; |
|
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); |
|
eval= (512>>pass) + fabs(eval - var[0]); |
|
inv = 1/eval; |
|
rinv = sqrt(inv); |
|
for(j=0; j<=max_order; j++) |
|
var[j] *= rinv; |
|
weight += inv; |
|
}else |
|
weight++; |
|
|
|
av_update_lls(&m[pass&1], var, 1.0); |
|
} |
|
av_solve_lls(&m[pass&1], 0.001, 0); |
|
} |
|
|
|
for(i=0; i<max_order; i++){ |
|
for(j=0; j<max_order; j++) |
|
lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; |
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; |
|
} |
|
for(i=max_order-1; i>0; i--) |
|
ref[i] = ref[i-1] - ref[i]; |
|
} |
|
opt_order = max_order; |
|
|
|
if(omethod == ORDER_METHOD_EST) { |
|
opt_order = estimate_best_order(ref, min_order, max_order); |
|
i = opt_order-1; |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); |
|
} else { |
|
for(i=min_order-1; i<max_order; i++) { |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); |
|
} |
|
} |
|
|
|
return opt_order; |
|
}
|
|
|