mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
614 lines
23 KiB
614 lines
23 KiB
/* |
|
* G.729, G729 Annex D postfilter |
|
* Copyright (c) 2008 Vladimir Voroshilov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
#include <inttypes.h> |
|
#include <limits.h> |
|
|
|
#include "avcodec.h" |
|
#include "g729.h" |
|
#include "acelp_pitch_delay.h" |
|
#include "g729postfilter.h" |
|
#include "celp_math.h" |
|
#include "acelp_filters.h" |
|
#include "acelp_vectors.h" |
|
#include "celp_filters.h" |
|
|
|
#define FRAC_BITS 15 |
|
#include "mathops.h" |
|
|
|
/** |
|
* short interpolation filter (of length 33, according to spec) |
|
* for computing signal with non-integer delay |
|
*/ |
|
static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = { |
|
0, 31650, 28469, 23705, 18050, 12266, 7041, 2873, |
|
0, -1597, -2147, -1992, -1492, -933, -484, -188, |
|
}; |
|
|
|
/** |
|
* long interpolation filter (of length 129, according to spec) |
|
* for computing signal with non-integer delay |
|
*/ |
|
static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = { |
|
0, 31915, 29436, 25569, 20676, 15206, 9639, 4439, |
|
0, -3390, -5579, -6549, -6414, -5392, -3773, -1874, |
|
0, 1595, 2727, 3303, 3319, 2850, 2030, 1023, |
|
0, -887, -1527, -1860, -1876, -1614, -1150, -579, |
|
0, 501, 859, 1041, 1044, 892, 631, 315, |
|
0, -266, -453, -543, -538, -455, -317, -156, |
|
0, 130, 218, 258, 253, 212, 147, 72, |
|
0, -59, -101, -122, -123, -106, -77, -40, |
|
}; |
|
|
|
/** |
|
* formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1) |
|
*/ |
|
static const int16_t formant_pp_factor_num_pow[10]= { |
|
/* (0.15) */ |
|
18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83 |
|
}; |
|
|
|
/** |
|
* formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1) |
|
*/ |
|
static const int16_t formant_pp_factor_den_pow[10] = { |
|
/* (0.15) */ |
|
22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925 |
|
}; |
|
|
|
/** |
|
* \brief Residual signal calculation (4.2.1 if G.729) |
|
* \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM) |
|
* \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients |
|
* \param in input speech data to process |
|
* \param subframe_size size of one subframe |
|
* |
|
* \note in buffer must contain 10 items of previous speech data before top of the buffer |
|
* \remark It is safe to pass the same buffer for input and output. |
|
*/ |
|
static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in, |
|
int subframe_size) |
|
{ |
|
int i, n; |
|
|
|
for (n = subframe_size - 1; n >= 0; n--) { |
|
int sum = 0x800; |
|
for (i = 0; i < 10; i++) |
|
sum += filter_coeffs[i] * in[n - i - 1]; |
|
|
|
out[n] = in[n] + (sum >> 12); |
|
} |
|
} |
|
|
|
/** |
|
* \brief long-term postfilter (4.2.1) |
|
* \param dsp initialized DSP context |
|
* \param pitch_delay_int integer part of the pitch delay in the first subframe |
|
* \param residual filtering input data |
|
* \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter |
|
* \param subframe_size size of subframe |
|
* |
|
* \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise |
|
*/ |
|
static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int, |
|
const int16_t* residual, int16_t *residual_filt, |
|
int subframe_size) |
|
{ |
|
int i, k, tmp, tmp2; |
|
int sum; |
|
int L_temp0; |
|
int L_temp1; |
|
int64_t L64_temp0; |
|
int64_t L64_temp1; |
|
int16_t shift; |
|
int corr_int_num, corr_int_den; |
|
|
|
int ener; |
|
int16_t sh_ener; |
|
|
|
int16_t gain_num,gain_den; //selected signal's gain numerator and denominator |
|
int16_t sh_gain_num, sh_gain_den; |
|
int gain_num_square; |
|
|
|
int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator |
|
int16_t sh_gain_long_num, sh_gain_long_den; |
|
|
|
int16_t best_delay_int, best_delay_frac; |
|
|
|
int16_t delayed_signal_offset; |
|
int lt_filt_factor_a, lt_filt_factor_b; |
|
|
|
int16_t * selected_signal; |
|
const int16_t * selected_signal_const; //Necessary to avoid compiler warning |
|
|
|
int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE]; |
|
int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1]; |
|
int corr_den[ANALYZED_FRAC_DELAYS][2]; |
|
|
|
tmp = 0; |
|
for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++) |
|
tmp |= FFABS(residual[i]); |
|
|
|
if(!tmp) |
|
shift = 3; |
|
else |
|
shift = av_log2(tmp) - 11; |
|
|
|
if (shift > 0) |
|
for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) |
|
sig_scaled[i] = residual[i] >> shift; |
|
else |
|
for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) |
|
sig_scaled[i] = (unsigned)residual[i] << -shift; |
|
|
|
/* Start of best delay searching code */ |
|
gain_num = 0; |
|
|
|
ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, |
|
sig_scaled + RES_PREV_DATA_SIZE, |
|
subframe_size); |
|
if (ener) { |
|
sh_ener = av_log2(ener) - 14; |
|
sh_ener = FFMAX(sh_ener, 0); |
|
ener >>= sh_ener; |
|
/* Search for best pitch delay. |
|
|
|
sum{ r(n) * r(k,n) ] }^2 |
|
R'(k)^2 := ------------------------- |
|
sum{ r(k,n) * r(k,n) } |
|
|
|
|
|
R(T) := sum{ r(n) * r(n-T) ] } |
|
|
|
|
|
where |
|
r(n-T) is integer delayed signal with delay T |
|
r(k,n) is non-integer delayed signal with integer delay best_delay |
|
and fractional delay k */ |
|
|
|
/* Find integer delay best_delay which maximizes correlation R(T). |
|
|
|
This is also equals to numerator of R'(0), |
|
since the fine search (second step) is done with 1/8 |
|
precision around best_delay. */ |
|
corr_int_num = 0; |
|
best_delay_int = pitch_delay_int - 1; |
|
for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) { |
|
sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, |
|
sig_scaled + RES_PREV_DATA_SIZE - i, |
|
subframe_size); |
|
if (sum > corr_int_num) { |
|
corr_int_num = sum; |
|
best_delay_int = i; |
|
} |
|
} |
|
if (corr_int_num) { |
|
/* Compute denominator of pseudo-normalized correlation R'(0). */ |
|
corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int, |
|
sig_scaled + RES_PREV_DATA_SIZE - best_delay_int, |
|
subframe_size); |
|
|
|
/* Compute signals with non-integer delay k (with 1/8 precision), |
|
where k is in [0;6] range. |
|
Entire delay is qual to best_delay+(k+1)/8 |
|
This is archieved by applying an interpolation filter of |
|
legth 33 to source signal. */ |
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
|
ff_acelp_interpolate(&delayed_signal[k][0], |
|
&sig_scaled[RES_PREV_DATA_SIZE - best_delay_int], |
|
ff_g729_interp_filt_short, |
|
ANALYZED_FRAC_DELAYS+1, |
|
8 - k - 1, |
|
SHORT_INT_FILT_LEN, |
|
subframe_size + 1); |
|
} |
|
|
|
/* Compute denominator of pseudo-normalized correlation R'(k). |
|
|
|
corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0) |
|
corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1 |
|
|
|
Also compute maximum value of above denominators over all k. */ |
|
tmp = corr_int_den; |
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
|
sum = adsp->scalarproduct_int16(&delayed_signal[k][1], |
|
&delayed_signal[k][1], |
|
subframe_size - 1); |
|
corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ]; |
|
corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size]; |
|
|
|
tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]); |
|
} |
|
|
|
sh_gain_den = av_log2(tmp) - 14; |
|
if (sh_gain_den >= 0) { |
|
|
|
sh_gain_num = FFMAX(sh_gain_den, sh_ener); |
|
/* Loop through all k and find delay that maximizes |
|
R'(k) correlation. |
|
Search is done in [int(T0)-1; intT(0)+1] range |
|
with 1/8 precision. */ |
|
delayed_signal_offset = 1; |
|
best_delay_frac = 0; |
|
gain_den = corr_int_den >> sh_gain_den; |
|
gain_num = corr_int_num >> sh_gain_num; |
|
gain_num_square = gain_num * gain_num; |
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
|
for (i = 0; i < 2; i++) { |
|
int16_t gain_num_short, gain_den_short; |
|
int gain_num_short_square; |
|
/* Compute numerator of pseudo-normalized |
|
correlation R'(k). */ |
|
sum = adsp->scalarproduct_int16(&delayed_signal[k][i], |
|
sig_scaled + RES_PREV_DATA_SIZE, |
|
subframe_size); |
|
gain_num_short = FFMAX(sum >> sh_gain_num, 0); |
|
|
|
/* |
|
gain_num_short_square gain_num_square |
|
R'(T)^2 = -----------------------, max R'(T)^2= -------------- |
|
den gain_den |
|
*/ |
|
gain_num_short_square = gain_num_short * gain_num_short; |
|
gain_den_short = corr_den[k][i] >> sh_gain_den; |
|
|
|
tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS); |
|
tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS); |
|
|
|
// R'(T)^2 > max R'(T)^2 |
|
if (tmp > tmp2) { |
|
gain_num = gain_num_short; |
|
gain_den = gain_den_short; |
|
gain_num_square = gain_num_short_square; |
|
delayed_signal_offset = i; |
|
best_delay_frac = k + 1; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
R'(T)^2 |
|
2 * --------- < 1 |
|
R(0) |
|
*/ |
|
L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1); |
|
L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener); |
|
if (L64_temp0 < L64_temp1) |
|
gain_num = 0; |
|
} // if(sh_gain_den >= 0) |
|
} // if(corr_int_num) |
|
} // if(ener) |
|
/* End of best delay searching code */ |
|
|
|
if (!gain_num) { |
|
memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t)); |
|
|
|
/* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */ |
|
return 0; |
|
} |
|
if (best_delay_frac) { |
|
/* Recompute delayed signal with an interpolation filter of length 129. */ |
|
ff_acelp_interpolate(residual_filt, |
|
&sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset], |
|
ff_g729_interp_filt_long, |
|
ANALYZED_FRAC_DELAYS + 1, |
|
8 - best_delay_frac, |
|
LONG_INT_FILT_LEN, |
|
subframe_size + 1); |
|
/* Compute R'(k) correlation's numerator. */ |
|
sum = adsp->scalarproduct_int16(residual_filt, |
|
sig_scaled + RES_PREV_DATA_SIZE, |
|
subframe_size); |
|
|
|
if (sum < 0) { |
|
gain_long_num = 0; |
|
sh_gain_long_num = 0; |
|
} else { |
|
tmp = av_log2(sum) - 14; |
|
tmp = FFMAX(tmp, 0); |
|
sum >>= tmp; |
|
gain_long_num = sum; |
|
sh_gain_long_num = tmp; |
|
} |
|
|
|
/* Compute R'(k) correlation's denominator. */ |
|
sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size); |
|
|
|
tmp = av_log2(sum) - 14; |
|
tmp = FFMAX(tmp, 0); |
|
sum >>= tmp; |
|
gain_long_den = sum; |
|
sh_gain_long_den = tmp; |
|
|
|
/* Select between original and delayed signal. |
|
Delayed signal will be selected if it increases R'(k) |
|
correlation. */ |
|
L_temp0 = gain_num * gain_num; |
|
L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS); |
|
|
|
L_temp1 = gain_long_num * gain_long_num; |
|
L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS); |
|
|
|
tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den); |
|
if (tmp > 0) |
|
L_temp0 >>= tmp; |
|
else |
|
L_temp1 >>= -tmp; |
|
|
|
/* Check if longer filter increases the values of R'(k). */ |
|
if (L_temp1 > L_temp0) { |
|
/* Select long filter. */ |
|
selected_signal = residual_filt; |
|
gain_num = gain_long_num; |
|
gain_den = gain_long_den; |
|
sh_gain_num = sh_gain_long_num; |
|
sh_gain_den = sh_gain_long_den; |
|
} else |
|
/* Select short filter. */ |
|
selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset]; |
|
|
|
/* Rescale selected signal to original value. */ |
|
if (shift > 0) |
|
for (i = 0; i < subframe_size; i++) |
|
selected_signal[i] <<= shift; |
|
else |
|
for (i = 0; i < subframe_size; i++) |
|
selected_signal[i] >>= -shift; |
|
|
|
/* necessary to avoid compiler warning */ |
|
selected_signal_const = selected_signal; |
|
} // if(best_delay_frac) |
|
else |
|
selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset); |
|
#ifdef G729_BITEXACT |
|
tmp = sh_gain_num - sh_gain_den; |
|
if (tmp > 0) |
|
gain_den >>= tmp; |
|
else |
|
gain_num >>= -tmp; |
|
|
|
if (gain_num > gain_den) |
|
lt_filt_factor_a = MIN_LT_FILT_FACTOR_A; |
|
else { |
|
gain_num >>= 2; |
|
gain_den >>= 1; |
|
lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num); |
|
} |
|
#else |
|
L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1; |
|
L64_temp1 = ((int64_t)gain_den) << sh_gain_den; |
|
lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A); |
|
#endif |
|
|
|
/* Filter through selected filter. */ |
|
lt_filt_factor_b = 32767 - lt_filt_factor_a + 1; |
|
|
|
ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE, |
|
selected_signal_const, |
|
lt_filt_factor_a, lt_filt_factor_b, |
|
1<<14, 15, subframe_size); |
|
|
|
// Long-term prediction gain is larger than 3dB. |
|
return 1; |
|
} |
|
|
|
/** |
|
* \brief Calculate reflection coefficient for tilt compensation filter (4.2.3). |
|
* \param dsp initialized DSP context |
|
* \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter |
|
* \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter |
|
* \param speech speech to update |
|
* \param subframe_size size of subframe |
|
* |
|
* \return (3.12) reflection coefficient |
|
* |
|
* \remark The routine also calculates the gain term for the short-term |
|
* filter (gf) and multiplies the speech data by 1/gf. |
|
* |
|
* \note All members of lp_gn, except 10-19 must be equal to zero. |
|
*/ |
|
static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn, |
|
const int16_t *lp_gd, int16_t* speech, |
|
int subframe_size) |
|
{ |
|
int rh1,rh0; // (3.12) |
|
int temp; |
|
int i; |
|
int gain_term; |
|
|
|
lp_gn[10] = 4096; //1.0 in (3.12) |
|
|
|
/* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */ |
|
ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800); |
|
/* Now lp_gn (starting with 10) contains impulse response |
|
of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */ |
|
|
|
rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20); |
|
rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20); |
|
|
|
/* downscale to avoid overflow */ |
|
temp = av_log2(rh0) - 14; |
|
if (temp > 0) { |
|
rh0 >>= temp; |
|
rh1 >>= temp; |
|
} |
|
|
|
if (FFABS(rh1) > rh0 || !rh0) |
|
return 0; |
|
|
|
gain_term = 0; |
|
for (i = 0; i < 20; i++) |
|
gain_term += FFABS(lp_gn[i + 10]); |
|
gain_term >>= 2; // (3.12) -> (5.10) |
|
|
|
if (gain_term > 0x400) { // 1.0 in (5.10) |
|
temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15) |
|
for (i = 0; i < subframe_size; i++) |
|
speech[i] = (speech[i] * temp + 0x4000) >> 15; |
|
} |
|
|
|
return -(rh1 << 15) / rh0; |
|
} |
|
|
|
/** |
|
* \brief Apply tilt compensation filter (4.2.3). |
|
* \param res_pst [in/out] residual signal (partially filtered) |
|
* \param k1 (3.12) reflection coefficient |
|
* \param subframe_size size of subframe |
|
* \param ht_prev_data previous data for 4.2.3, equation 86 |
|
* |
|
* \return new value for ht_prev_data |
|
*/ |
|
static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff, |
|
int subframe_size, int16_t ht_prev_data) |
|
{ |
|
int tmp, tmp2; |
|
int i; |
|
int gt, ga; |
|
int fact, sh_fact; |
|
|
|
if (refl_coeff > 0) { |
|
gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15; |
|
fact = 0x4000; // 0.5 in (0.15) |
|
sh_fact = 15; |
|
} else { |
|
gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15; |
|
fact = 0x800; // 0.5 in (3.12) |
|
sh_fact = 12; |
|
} |
|
ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt)); |
|
gt >>= 1; |
|
|
|
/* Apply tilt compensation filter to signal. */ |
|
tmp = res_pst[subframe_size - 1]; |
|
|
|
for (i = subframe_size - 1; i >= 1; i--) { |
|
tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000; |
|
tmp2 = res_pst[i] + (tmp2 >> 15); |
|
|
|
tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact; |
|
out[i] = tmp2; |
|
} |
|
tmp2 = (gt * ht_prev_data) * 2 + 0x4000; |
|
tmp2 = res_pst[0] + (tmp2 >> 15); |
|
tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact; |
|
out[0] = tmp2; |
|
|
|
return tmp; |
|
} |
|
|
|
void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing, |
|
const int16_t *lp_filter_coeffs, int pitch_delay_int, |
|
int16_t* residual, int16_t* res_filter_data, |
|
int16_t* pos_filter_data, int16_t *speech, int subframe_size) |
|
{ |
|
int16_t residual_filt_buf[SUBFRAME_SIZE+11]; |
|
int16_t lp_gn[33]; // (3.12) |
|
int16_t lp_gd[11]; // (3.12) |
|
int tilt_comp_coeff; |
|
int i; |
|
|
|
/* Zero-filling is necessary for tilt-compensation filter. */ |
|
memset(lp_gn, 0, 33 * sizeof(int16_t)); |
|
|
|
/* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */ |
|
for (i = 0; i < 10; i++) |
|
lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15; |
|
|
|
/* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */ |
|
for (i = 0; i < 10; i++) |
|
lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15; |
|
|
|
/* residual signal calculation (one-half of short-term postfilter) */ |
|
memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t)); |
|
residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size); |
|
/* Save data to use it in the next subframe. */ |
|
memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t)); |
|
|
|
/* long-term filter. If long-term prediction gain is larger than 3dB (returned value is |
|
nonzero) then declare current subframe as periodic. */ |
|
i = long_term_filter(adsp, pitch_delay_int, |
|
residual, residual_filt_buf + 10, |
|
subframe_size); |
|
*voicing = FFMAX(*voicing, i); |
|
|
|
/* shift residual for using in next subframe */ |
|
memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t)); |
|
|
|
/* short-term filter tilt compensation */ |
|
tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size); |
|
|
|
/* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */ |
|
ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1, |
|
residual_filt_buf + 10, |
|
subframe_size, 10, 0, 0, 0x800); |
|
memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t)); |
|
|
|
*ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff, |
|
subframe_size, *ht_prev_data); |
|
} |
|
|
|
/** |
|
* \brief Adaptive gain control (4.2.4) |
|
* \param gain_before gain of speech before applying postfilters |
|
* \param gain_after gain of speech after applying postfilters |
|
* \param speech [in/out] signal buffer |
|
* \param subframe_size length of subframe |
|
* \param gain_prev (3.12) previous value of gain coefficient |
|
* |
|
* \return (3.12) last value of gain coefficient |
|
*/ |
|
int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech, |
|
int subframe_size, int16_t gain_prev) |
|
{ |
|
int gain; // (3.12) |
|
int n; |
|
int exp_before, exp_after; |
|
|
|
if(!gain_after && gain_before) |
|
return 0; |
|
|
|
if (gain_before) { |
|
|
|
exp_before = 14 - av_log2(gain_before); |
|
gain_before = bidir_sal(gain_before, exp_before); |
|
|
|
exp_after = 14 - av_log2(gain_after); |
|
gain_after = bidir_sal(gain_after, exp_after); |
|
|
|
if (gain_before < gain_after) { |
|
gain = (gain_before << 15) / gain_after; |
|
gain = bidir_sal(gain, exp_after - exp_before - 1); |
|
} else { |
|
gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000; |
|
gain = bidir_sal(gain, exp_after - exp_before); |
|
} |
|
gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875) |
|
} else |
|
gain = 0; |
|
|
|
for (n = 0; n < subframe_size; n++) { |
|
// gain_prev = gain + 0.9875 * gain_prev |
|
gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15; |
|
gain_prev = av_clip_int16(gain + gain_prev); |
|
speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14); |
|
} |
|
return gain_prev; |
|
}
|
|
|