mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
6.1 KiB
250 lines
6.1 KiB
/* |
|
* FFT/IFFT transforms |
|
* Copyright (c) 2002 Fabrice Bellard. |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file fft.c |
|
* FFT/IFFT transforms. |
|
*/ |
|
|
|
#include "dsputil.h" |
|
|
|
/** |
|
* The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is |
|
* done |
|
*/ |
|
int ff_fft_init(FFTContext *s, int nbits, int inverse) |
|
{ |
|
int i, j, m, n; |
|
float alpha, c1, s1, s2; |
|
|
|
s->nbits = nbits; |
|
n = 1 << nbits; |
|
|
|
s->exptab = av_malloc((n / 2) * sizeof(FFTComplex)); |
|
if (!s->exptab) |
|
goto fail; |
|
s->revtab = av_malloc(n * sizeof(uint16_t)); |
|
if (!s->revtab) |
|
goto fail; |
|
s->inverse = inverse; |
|
|
|
s2 = inverse ? 1.0 : -1.0; |
|
|
|
for(i=0;i<(n/2);i++) { |
|
alpha = 2 * M_PI * (float)i / (float)n; |
|
c1 = cos(alpha); |
|
s1 = sin(alpha) * s2; |
|
s->exptab[i].re = c1; |
|
s->exptab[i].im = s1; |
|
} |
|
s->fft_calc = ff_fft_calc_c; |
|
s->exptab1 = NULL; |
|
|
|
/* compute constant table for HAVE_SSE version */ |
|
#if (defined(HAVE_MMX) && defined(HAVE_BUILTIN_VECTOR)) || defined(HAVE_ALTIVEC) |
|
{ |
|
int has_vectors = 0; |
|
|
|
#if defined(HAVE_MMX) |
|
has_vectors = mm_support() & MM_SSE; |
|
#endif |
|
#if defined(HAVE_ALTIVEC) && !defined(ALTIVEC_USE_REFERENCE_C_CODE) |
|
has_vectors = mm_support() & MM_ALTIVEC; |
|
#endif |
|
if (has_vectors) { |
|
int np, nblocks, np2, l; |
|
FFTComplex *q; |
|
|
|
np = 1 << nbits; |
|
nblocks = np >> 3; |
|
np2 = np >> 1; |
|
s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex)); |
|
if (!s->exptab1) |
|
goto fail; |
|
q = s->exptab1; |
|
do { |
|
for(l = 0; l < np2; l += 2 * nblocks) { |
|
*q++ = s->exptab[l]; |
|
*q++ = s->exptab[l + nblocks]; |
|
|
|
q->re = -s->exptab[l].im; |
|
q->im = s->exptab[l].re; |
|
q++; |
|
q->re = -s->exptab[l + nblocks].im; |
|
q->im = s->exptab[l + nblocks].re; |
|
q++; |
|
} |
|
nblocks = nblocks >> 1; |
|
} while (nblocks != 0); |
|
av_freep(&s->exptab); |
|
#if defined(HAVE_MMX) |
|
s->fft_calc = ff_fft_calc_sse; |
|
#else |
|
s->fft_calc = ff_fft_calc_altivec; |
|
#endif |
|
} |
|
} |
|
#endif |
|
|
|
/* compute bit reverse table */ |
|
|
|
for(i=0;i<n;i++) { |
|
m=0; |
|
for(j=0;j<nbits;j++) { |
|
m |= ((i >> j) & 1) << (nbits-j-1); |
|
} |
|
s->revtab[i]=m; |
|
} |
|
return 0; |
|
fail: |
|
av_freep(&s->revtab); |
|
av_freep(&s->exptab); |
|
av_freep(&s->exptab1); |
|
return -1; |
|
} |
|
|
|
/* butter fly op */ |
|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ |
|
{\ |
|
FFTSample ax, ay, bx, by;\ |
|
bx=pre1;\ |
|
by=pim1;\ |
|
ax=qre1;\ |
|
ay=qim1;\ |
|
pre = (bx + ax);\ |
|
pim = (by + ay);\ |
|
qre = (bx - ax);\ |
|
qim = (by - ay);\ |
|
} |
|
|
|
#define MUL16(a,b) ((a) * (b)) |
|
|
|
#define CMUL(pre, pim, are, aim, bre, bim) \ |
|
{\ |
|
pre = (MUL16(are, bre) - MUL16(aim, bim));\ |
|
pim = (MUL16(are, bim) + MUL16(bre, aim));\ |
|
} |
|
|
|
/** |
|
* Do a complex FFT with the parameters defined in ff_fft_init(). The |
|
* input data must be permuted before with s->revtab table. No |
|
* 1.0/sqrt(n) normalization is done. |
|
*/ |
|
void ff_fft_calc_c(FFTContext *s, FFTComplex *z) |
|
{ |
|
int ln = s->nbits; |
|
int j, np, np2; |
|
int nblocks, nloops; |
|
register FFTComplex *p, *q; |
|
FFTComplex *exptab = s->exptab; |
|
int l; |
|
FFTSample tmp_re, tmp_im; |
|
|
|
np = 1 << ln; |
|
|
|
/* pass 0 */ |
|
|
|
p=&z[0]; |
|
j=(np >> 1); |
|
do { |
|
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
|
p[0].re, p[0].im, p[1].re, p[1].im); |
|
p+=2; |
|
} while (--j != 0); |
|
|
|
/* pass 1 */ |
|
|
|
|
|
p=&z[0]; |
|
j=np >> 2; |
|
if (s->inverse) { |
|
do { |
|
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
|
p[0].re, p[0].im, p[2].re, p[2].im); |
|
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
|
p[1].re, p[1].im, -p[3].im, p[3].re); |
|
p+=4; |
|
} while (--j != 0); |
|
} else { |
|
do { |
|
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
|
p[0].re, p[0].im, p[2].re, p[2].im); |
|
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
|
p[1].re, p[1].im, p[3].im, -p[3].re); |
|
p+=4; |
|
} while (--j != 0); |
|
} |
|
/* pass 2 .. ln-1 */ |
|
|
|
nblocks = np >> 3; |
|
nloops = 1 << 2; |
|
np2 = np >> 1; |
|
do { |
|
p = z; |
|
q = z + nloops; |
|
for (j = 0; j < nblocks; ++j) { |
|
BF(p->re, p->im, q->re, q->im, |
|
p->re, p->im, q->re, q->im); |
|
|
|
p++; |
|
q++; |
|
for(l = nblocks; l < np2; l += nblocks) { |
|
CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im); |
|
BF(p->re, p->im, q->re, q->im, |
|
p->re, p->im, tmp_re, tmp_im); |
|
p++; |
|
q++; |
|
} |
|
|
|
p += nloops; |
|
q += nloops; |
|
} |
|
nblocks = nblocks >> 1; |
|
nloops = nloops << 1; |
|
} while (nblocks != 0); |
|
} |
|
|
|
/** |
|
* Do the permutation needed BEFORE calling ff_fft_calc() |
|
*/ |
|
void ff_fft_permute(FFTContext *s, FFTComplex *z) |
|
{ |
|
int j, k, np; |
|
FFTComplex tmp; |
|
const uint16_t *revtab = s->revtab; |
|
|
|
/* reverse */ |
|
np = 1 << s->nbits; |
|
for(j=0;j<np;j++) { |
|
k = revtab[j]; |
|
if (k < j) { |
|
tmp = z[k]; |
|
z[k] = z[j]; |
|
z[j] = tmp; |
|
} |
|
} |
|
} |
|
|
|
void ff_fft_end(FFTContext *s) |
|
{ |
|
av_freep(&s->revtab); |
|
av_freep(&s->exptab); |
|
av_freep(&s->exptab1); |
|
} |
|
|
|
|