mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
459 lines
15 KiB
459 lines
15 KiB
/* |
|
* audio resampling |
|
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* audio resampling |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#include "libavutil/log.h" |
|
#include "libavutil/avassert.h" |
|
#include "swresample_internal.h" |
|
|
|
|
|
typedef struct ResampleContext { |
|
const AVClass *av_class; |
|
uint8_t *filter_bank; |
|
int filter_length; |
|
int filter_alloc; |
|
int ideal_dst_incr; |
|
int dst_incr; |
|
int index; |
|
int frac; |
|
int src_incr; |
|
int compensation_distance; |
|
int phase_shift; |
|
int phase_mask; |
|
int linear; |
|
enum SwrFilterType filter_type; |
|
int kaiser_beta; |
|
double factor; |
|
enum AVSampleFormat format; |
|
int felem_size; |
|
int filter_shift; |
|
} ResampleContext; |
|
|
|
/** |
|
* 0th order modified bessel function of the first kind. |
|
*/ |
|
static double bessel(double x){ |
|
double v=1; |
|
double lastv=0; |
|
double t=1; |
|
int i; |
|
static const double inv[100]={ |
|
1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10), |
|
1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20), |
|
1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30), |
|
1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40), |
|
1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50), |
|
1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60), |
|
1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70), |
|
1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80), |
|
1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90), |
|
1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000) |
|
}; |
|
|
|
x= x*x/4; |
|
for(i=0; v != lastv; i++){ |
|
lastv=v; |
|
t *= x*inv[i]; |
|
v += t; |
|
av_assert2(i<99); |
|
} |
|
return v; |
|
} |
|
|
|
/** |
|
* builds a polyphase filterbank. |
|
* @param factor resampling factor |
|
* @param scale wanted sum of coefficients for each filter |
|
* @param filter_type filter type |
|
* @param kaiser_beta kaiser window beta |
|
* @return 0 on success, negative on error |
|
*/ |
|
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale, |
|
int filter_type, int kaiser_beta){ |
|
int ph, i; |
|
double x, y, w; |
|
double *tab = av_malloc(tap_count * sizeof(*tab)); |
|
const int center= (tap_count-1)/2; |
|
|
|
if (!tab) |
|
return AVERROR(ENOMEM); |
|
|
|
/* if upsampling, only need to interpolate, no filter */ |
|
if (factor > 1.0) |
|
factor = 1.0; |
|
|
|
for(ph=0;ph<phase_count;ph++) { |
|
double norm = 0; |
|
for(i=0;i<tap_count;i++) { |
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; |
|
if (x == 0) y = 1.0; |
|
else y = sin(x) / x; |
|
switch(filter_type){ |
|
case SWR_FILTER_TYPE_CUBIC:{ |
|
const float d= -0.5; //first order derivative = -0.5 |
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); |
|
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); |
|
else y= d*(-4 + 8*x - 5*x*x + x*x*x); |
|
break;} |
|
case SWR_FILTER_TYPE_BLACKMAN_NUTTALL: |
|
w = 2.0*x / (factor*tap_count) + M_PI; |
|
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); |
|
break; |
|
case SWR_FILTER_TYPE_KAISER: |
|
w = 2.0*x / (factor*tap_count*M_PI); |
|
y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0))); |
|
break; |
|
default: |
|
av_assert0(0); |
|
} |
|
|
|
tab[i] = y; |
|
norm += y; |
|
} |
|
|
|
/* normalize so that an uniform color remains the same */ |
|
switch(c->format){ |
|
case AV_SAMPLE_FMT_S16P: |
|
for(i=0;i<tap_count;i++) |
|
((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX); |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
for(i=0;i<tap_count;i++) |
|
((int32_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT32_MIN, INT32_MAX); |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
for(i=0;i<tap_count;i++) |
|
((float*)filter)[ph * alloc + i] = tab[i] * scale / norm; |
|
break; |
|
case AV_SAMPLE_FMT_DBLP: |
|
for(i=0;i<tap_count;i++) |
|
((double*)filter)[ph * alloc + i] = tab[i] * scale / norm; |
|
break; |
|
} |
|
} |
|
#if 0 |
|
{ |
|
#define LEN 1024 |
|
int j,k; |
|
double sine[LEN + tap_count]; |
|
double filtered[LEN]; |
|
double maxff=-2, minff=2, maxsf=-2, minsf=2; |
|
for(i=0; i<LEN; i++){ |
|
double ss=0, sf=0, ff=0; |
|
for(j=0; j<LEN+tap_count; j++) |
|
sine[j]= cos(i*j*M_PI/LEN); |
|
for(j=0; j<LEN; j++){ |
|
double sum=0; |
|
ph=0; |
|
for(k=0; k<tap_count; k++) |
|
sum += filter[ph * tap_count + k] * sine[k+j]; |
|
filtered[j]= sum / (1<<FILTER_SHIFT); |
|
ss+= sine[j + center] * sine[j + center]; |
|
ff+= filtered[j] * filtered[j]; |
|
sf+= sine[j + center] * filtered[j]; |
|
} |
|
ss= sqrt(2*ss/LEN); |
|
ff= sqrt(2*ff/LEN); |
|
sf= 2*sf/LEN; |
|
maxff= FFMAX(maxff, ff); |
|
minff= FFMIN(minff, ff); |
|
maxsf= FFMAX(maxsf, sf); |
|
minsf= FFMIN(minsf, sf); |
|
if(i%11==0){ |
|
av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf); |
|
minff=minsf= 2; |
|
maxff=maxsf= -2; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
av_free(tab); |
|
return 0; |
|
} |
|
|
|
ResampleContext *swri_resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear, |
|
double cutoff, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta){ |
|
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0); |
|
int phase_count= 1<<phase_shift; |
|
|
|
if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor |
|
|| c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format |
|
|| c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) { |
|
c = av_mallocz(sizeof(*c)); |
|
if (!c) |
|
return NULL; |
|
|
|
c->format= format; |
|
|
|
c->felem_size= av_get_bytes_per_sample(c->format); |
|
|
|
switch(c->format){ |
|
case AV_SAMPLE_FMT_S16P: |
|
c->filter_shift = 15; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
c->filter_shift = 30; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
case AV_SAMPLE_FMT_DBLP: |
|
c->filter_shift = 0; |
|
break; |
|
default: |
|
av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n"); |
|
return NULL; |
|
} |
|
|
|
c->phase_shift = phase_shift; |
|
c->phase_mask = phase_count - 1; |
|
c->linear = linear; |
|
c->factor = factor; |
|
c->filter_length = FFMAX((int)ceil(filter_size/factor), 1); |
|
c->filter_alloc = FFALIGN(c->filter_length, 8); |
|
c->filter_bank = av_mallocz(c->filter_alloc*(phase_count+1)*c->felem_size); |
|
c->filter_type = filter_type; |
|
c->kaiser_beta = kaiser_beta; |
|
if (!c->filter_bank) |
|
goto error; |
|
if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta)) |
|
goto error; |
|
memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size); |
|
memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size); |
|
} |
|
|
|
c->compensation_distance= 0; |
|
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2)) |
|
goto error; |
|
c->ideal_dst_incr= c->dst_incr; |
|
|
|
c->index= -phase_count*((c->filter_length-1)/2); |
|
c->frac= 0; |
|
|
|
return c; |
|
error: |
|
av_free(c->filter_bank); |
|
av_free(c); |
|
return NULL; |
|
} |
|
|
|
void swri_resample_free(ResampleContext **c){ |
|
if(!*c) |
|
return; |
|
av_freep(&(*c)->filter_bank); |
|
av_freep(c); |
|
} |
|
|
|
int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){ |
|
ResampleContext *c; |
|
int ret; |
|
|
|
if (!s || compensation_distance < 0) |
|
return AVERROR(EINVAL); |
|
if (!compensation_distance && sample_delta) |
|
return AVERROR(EINVAL); |
|
if (!s->resample) { |
|
s->flags |= SWR_FLAG_RESAMPLE; |
|
ret = swr_init(s); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
c= s->resample; |
|
c->compensation_distance= compensation_distance; |
|
if (compensation_distance) |
|
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance; |
|
else |
|
c->dst_incr = c->ideal_dst_incr; |
|
return 0; |
|
} |
|
|
|
#define RENAME(N) N ## _int16 |
|
#define FILTER_SHIFT 15 |
|
#define DELEM int16_t |
|
#define FELEM int16_t |
|
#define FELEM2 int32_t |
|
#define FELEML int64_t |
|
#define FELEM_MAX INT16_MAX |
|
#define FELEM_MIN INT16_MIN |
|
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v |
|
#include "resample_template.c" |
|
|
|
#undef RENAME |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef DELEM |
|
#undef FELEML |
|
#undef OUT |
|
#undef FELEM_MIN |
|
#undef FELEM_MAX |
|
#undef FILTER_SHIFT |
|
|
|
|
|
#define RENAME(N) N ## _int32 |
|
#define FILTER_SHIFT 30 |
|
#define DELEM int32_t |
|
#define FELEM int32_t |
|
#define FELEM2 int64_t |
|
#define FELEML int64_t |
|
#define FELEM_MAX INT32_MAX |
|
#define FELEM_MIN INT32_MIN |
|
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v |
|
#include "resample_template.c" |
|
|
|
#undef RENAME |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef DELEM |
|
#undef FELEML |
|
#undef OUT |
|
#undef FELEM_MIN |
|
#undef FELEM_MAX |
|
#undef FILTER_SHIFT |
|
|
|
|
|
#define RENAME(N) N ## _float |
|
#define FILTER_SHIFT 0 |
|
#define DELEM float |
|
#define FELEM float |
|
#define FELEM2 float |
|
#define FELEML float |
|
#define OUT(d, v) d = v |
|
#include "resample_template.c" |
|
|
|
#undef RENAME |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef DELEM |
|
#undef FELEML |
|
#undef OUT |
|
#undef FELEM_MIN |
|
#undef FELEM_MAX |
|
#undef FILTER_SHIFT |
|
|
|
|
|
#define RENAME(N) N ## _double |
|
#define FILTER_SHIFT 0 |
|
#define DELEM double |
|
#define FELEM double |
|
#define FELEM2 double |
|
#define FELEML double |
|
#define OUT(d, v) d = v |
|
#include "resample_template.c" |
|
|
|
#undef RENAME |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef DELEM |
|
#undef FELEML |
|
#undef OUT |
|
#undef FELEM_MIN |
|
#undef FELEM_MAX |
|
#undef FILTER_SHIFT |
|
|
|
// XXX FIXME the whole C loop should be written in asm so this x86 specific code here isnt needed |
|
#if HAVE_MMXEXT_INLINE |
|
#include "x86/resample_mmx.h" |
|
#define COMMON_CORE COMMON_CORE_INT16_MMX2 |
|
#define RENAME(N) N ## _int16_mmx2 |
|
#define FILTER_SHIFT 15 |
|
#define DELEM int16_t |
|
#define FELEM int16_t |
|
#define FELEM2 int32_t |
|
#define FELEML int64_t |
|
#define FELEM_MAX INT16_MAX |
|
#define FELEM_MIN INT16_MIN |
|
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v |
|
#include "resample_template.c" |
|
|
|
#undef COMMON_CORE |
|
#undef RENAME |
|
#undef FELEM |
|
#undef FELEM2 |
|
#undef DELEM |
|
#undef FELEML |
|
#undef OUT |
|
#undef FELEM_MIN |
|
#undef FELEM_MAX |
|
#undef FILTER_SHIFT |
|
|
|
#if HAVE_SSSE3_INLINE |
|
#define COMMON_CORE COMMON_CORE_INT16_SSSE3 |
|
#define RENAME(N) N ## _int16_ssse3 |
|
#define FILTER_SHIFT 15 |
|
#define DELEM int16_t |
|
#define FELEM int16_t |
|
#define FELEM2 int32_t |
|
#define FELEML int64_t |
|
#define FELEM_MAX INT16_MAX |
|
#define FELEM_MIN INT16_MIN |
|
#define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\ |
|
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v |
|
#include "resample_template.c" |
|
#endif |
|
#endif // HAVE_MMXEXT_INLINE |
|
|
|
int swri_multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){ |
|
int i, ret= -1; |
|
int mm_flags = av_get_cpu_flags(); |
|
int need_emms= 0; |
|
|
|
for(i=0; i<dst->ch_count; i++){ |
|
#if HAVE_MMXEXT_INLINE |
|
#if HAVE_SSSE3_INLINE |
|
if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_SSSE3)) ret= swri_resample_int16_ssse3(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
else |
|
#endif |
|
if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_MMX2 )){ |
|
ret= swri_resample_int16_mmx2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
need_emms= 1; |
|
} else |
|
#endif |
|
if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
else if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
else if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float *)dst->ch[i], (const float *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
else if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); |
|
} |
|
if(need_emms) |
|
emms_c(); |
|
return ret; |
|
} |
|
|
|
int64_t swr_get_delay(struct SwrContext *s, int64_t base){ |
|
ResampleContext *c = s->resample; |
|
if(c){ |
|
int64_t num = s->in_buffer_count - (c->filter_length-1)/2; |
|
num <<= c->phase_shift; |
|
num -= c->index; |
|
num *= c->src_incr; |
|
num -= c->frac; |
|
|
|
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift); |
|
}else{ |
|
return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate; |
|
} |
|
}
|
|
|