mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1076 lines
34 KiB
1076 lines
34 KiB
/* |
|
* Atrac 3 compatible decoder |
|
* Copyright (c) 2006-2008 Maxim Poliakovski |
|
* Copyright (c) 2006-2008 Benjamin Larsson |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Atrac 3 compatible decoder. |
|
* This decoder handles Sony's ATRAC3 data. |
|
* |
|
* Container formats used to store atrac 3 data: |
|
* RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3). |
|
* |
|
* To use this decoder, a calling application must supply the extradata |
|
* bytes provided in the containers above. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
#include "bytestream.h" |
|
#include "fft.h" |
|
#include "fmtconvert.h" |
|
|
|
#include "atrac.h" |
|
#include "atrac3data.h" |
|
|
|
#define JOINT_STEREO 0x12 |
|
#define STEREO 0x2 |
|
|
|
#define SAMPLES_PER_FRAME 1024 |
|
#define MDCT_SIZE 512 |
|
|
|
/* These structures are needed to store the parsed gain control data. */ |
|
typedef struct { |
|
int num_gain_data; |
|
int levcode[8]; |
|
int loccode[8]; |
|
} gain_info; |
|
|
|
typedef struct { |
|
gain_info gBlock[4]; |
|
} gain_block; |
|
|
|
typedef struct { |
|
int pos; |
|
int numCoefs; |
|
float coef[8]; |
|
} tonal_component; |
|
|
|
typedef struct { |
|
int bandsCoded; |
|
int numComponents; |
|
tonal_component components[64]; |
|
float prevFrame[SAMPLES_PER_FRAME]; |
|
int gcBlkSwitch; |
|
gain_block gainBlock[2]; |
|
|
|
DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME]; |
|
DECLARE_ALIGNED(32, float, IMDCT_buf)[SAMPLES_PER_FRAME]; |
|
|
|
float delayBuf1[46]; ///<qmf delay buffers |
|
float delayBuf2[46]; |
|
float delayBuf3[46]; |
|
} channel_unit; |
|
|
|
typedef struct { |
|
AVFrame frame; |
|
GetBitContext gb; |
|
//@{ |
|
/** stream data */ |
|
int channels; |
|
int codingMode; |
|
int bit_rate; |
|
int sample_rate; |
|
int samples_per_channel; |
|
int samples_per_frame; |
|
|
|
int bits_per_frame; |
|
int bytes_per_frame; |
|
int pBs; |
|
channel_unit* pUnits; |
|
//@} |
|
//@{ |
|
/** joint-stereo related variables */ |
|
int matrix_coeff_index_prev[4]; |
|
int matrix_coeff_index_now[4]; |
|
int matrix_coeff_index_next[4]; |
|
int weighting_delay[6]; |
|
//@} |
|
//@{ |
|
/** data buffers */ |
|
float *outSamples[2]; |
|
uint8_t* decoded_bytes_buffer; |
|
float tempBuf[1070]; |
|
//@} |
|
//@{ |
|
/** extradata */ |
|
int atrac3version; |
|
int delay; |
|
int scrambled_stream; |
|
int frame_factor; |
|
//@} |
|
|
|
FFTContext mdct_ctx; |
|
FmtConvertContext fmt_conv; |
|
} ATRAC3Context; |
|
|
|
static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE]; |
|
static VLC spectral_coeff_tab[7]; |
|
static float gain_tab1[16]; |
|
static float gain_tab2[31]; |
|
static DSPContext dsp; |
|
|
|
|
|
/** |
|
* Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands |
|
* caused by the reverse spectra of the QMF. |
|
* |
|
* @param pInput float input |
|
* @param pOutput float output |
|
* @param odd_band 1 if the band is an odd band |
|
*/ |
|
|
|
static void IMLT(ATRAC3Context *q, float *pInput, float *pOutput, int odd_band) |
|
{ |
|
int i; |
|
|
|
if (odd_band) { |
|
/** |
|
* Reverse the odd bands before IMDCT, this is an effect of the QMF transform |
|
* or it gives better compression to do it this way. |
|
* FIXME: It should be possible to handle this in imdct_calc |
|
* for that to happen a modification of the prerotation step of |
|
* all SIMD code and C code is needed. |
|
* Or fix the functions before so they generate a pre reversed spectrum. |
|
*/ |
|
|
|
for (i=0; i<128; i++) |
|
FFSWAP(float, pInput[i], pInput[255-i]); |
|
} |
|
|
|
q->mdct_ctx.imdct_calc(&q->mdct_ctx,pOutput,pInput); |
|
|
|
/* Perform windowing on the output. */ |
|
dsp.vector_fmul(pOutput, pOutput, mdct_window, MDCT_SIZE); |
|
|
|
} |
|
|
|
|
|
/** |
|
* Atrac 3 indata descrambling, only used for data coming from the rm container |
|
* |
|
* @param inbuffer pointer to 8 bit array of indata |
|
* @param out pointer to 8 bit array of outdata |
|
* @param bytes amount of bytes |
|
*/ |
|
|
|
static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ |
|
int i, off; |
|
uint32_t c; |
|
const uint32_t* buf; |
|
uint32_t* obuf = (uint32_t*) out; |
|
|
|
off = (intptr_t)inbuffer & 3; |
|
buf = (const uint32_t*) (inbuffer - off); |
|
c = av_be2ne32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8)))); |
|
bytes += 3 + off; |
|
for (i = 0; i < bytes/4; i++) |
|
obuf[i] = c ^ buf[i]; |
|
|
|
if (off) |
|
av_log_ask_for_sample(NULL, "Offset of %d not handled.\n", off); |
|
|
|
return off; |
|
} |
|
|
|
|
|
static av_cold int init_atrac3_transforms(ATRAC3Context *q, int is_float) { |
|
float enc_window[256]; |
|
int i; |
|
|
|
/* Generate the mdct window, for details see |
|
* http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */ |
|
for (i=0 ; i<256; i++) |
|
enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5; |
|
|
|
if (!mdct_window[0]) |
|
for (i=0 ; i<256; i++) { |
|
mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]); |
|
mdct_window[511-i] = mdct_window[i]; |
|
} |
|
|
|
/* Initialize the MDCT transform. */ |
|
return ff_mdct_init(&q->mdct_ctx, 9, 1, is_float ? 1.0 / 32768 : 1.0); |
|
} |
|
|
|
/** |
|
* Atrac3 uninit, free all allocated memory |
|
*/ |
|
|
|
static av_cold int atrac3_decode_close(AVCodecContext *avctx) |
|
{ |
|
ATRAC3Context *q = avctx->priv_data; |
|
|
|
av_free(q->pUnits); |
|
av_free(q->decoded_bytes_buffer); |
|
av_freep(&q->outSamples[0]); |
|
|
|
ff_mdct_end(&q->mdct_ctx); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
/ * Mantissa decoding |
|
* |
|
* @param gb the GetBit context |
|
* @param selector what table is the output values coded with |
|
* @param codingFlag constant length coding or variable length coding |
|
* @param mantissas mantissa output table |
|
* @param numCodes amount of values to get |
|
*/ |
|
|
|
static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes) |
|
{ |
|
int numBits, cnt, code, huffSymb; |
|
|
|
if (selector == 1) |
|
numCodes /= 2; |
|
|
|
if (codingFlag != 0) { |
|
/* constant length coding (CLC) */ |
|
numBits = CLCLengthTab[selector]; |
|
|
|
if (selector > 1) { |
|
for (cnt = 0; cnt < numCodes; cnt++) { |
|
if (numBits) |
|
code = get_sbits(gb, numBits); |
|
else |
|
code = 0; |
|
mantissas[cnt] = code; |
|
} |
|
} else { |
|
for (cnt = 0; cnt < numCodes; cnt++) { |
|
if (numBits) |
|
code = get_bits(gb, numBits); //numBits is always 4 in this case |
|
else |
|
code = 0; |
|
mantissas[cnt*2] = seTab_0[code >> 2]; |
|
mantissas[cnt*2+1] = seTab_0[code & 3]; |
|
} |
|
} |
|
} else { |
|
/* variable length coding (VLC) */ |
|
if (selector != 1) { |
|
for (cnt = 0; cnt < numCodes; cnt++) { |
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); |
|
huffSymb += 1; |
|
code = huffSymb >> 1; |
|
if (huffSymb & 1) |
|
code = -code; |
|
mantissas[cnt] = code; |
|
} |
|
} else { |
|
for (cnt = 0; cnt < numCodes; cnt++) { |
|
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); |
|
mantissas[cnt*2] = decTable1[huffSymb*2]; |
|
mantissas[cnt*2+1] = decTable1[huffSymb*2+1]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Restore the quantized band spectrum coefficients |
|
* |
|
* @param gb the GetBit context |
|
* @param pOut decoded band spectrum |
|
* @return outSubbands subband counter, fix for broken specification/files |
|
*/ |
|
|
|
static int decodeSpectrum (GetBitContext *gb, float *pOut) |
|
{ |
|
int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn; |
|
int subband_vlc_index[32], SF_idxs[32]; |
|
int mantissas[128]; |
|
float SF; |
|
|
|
numSubbands = get_bits(gb, 5); // number of coded subbands |
|
codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC |
|
|
|
/* Get the VLC selector table for the subbands, 0 means not coded. */ |
|
for (cnt = 0; cnt <= numSubbands; cnt++) |
|
subband_vlc_index[cnt] = get_bits(gb, 3); |
|
|
|
/* Read the scale factor indexes from the stream. */ |
|
for (cnt = 0; cnt <= numSubbands; cnt++) { |
|
if (subband_vlc_index[cnt] != 0) |
|
SF_idxs[cnt] = get_bits(gb, 6); |
|
} |
|
|
|
for (cnt = 0; cnt <= numSubbands; cnt++) { |
|
first = subbandTab[cnt]; |
|
last = subbandTab[cnt+1]; |
|
|
|
subbWidth = last - first; |
|
|
|
if (subband_vlc_index[cnt] != 0) { |
|
/* Decode spectral coefficients for this subband. */ |
|
/* TODO: This can be done faster is several blocks share the |
|
* same VLC selector (subband_vlc_index) */ |
|
readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth); |
|
|
|
/* Decode the scale factor for this subband. */ |
|
SF = ff_atrac_sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]]; |
|
|
|
/* Inverse quantize the coefficients. */ |
|
for (pIn=mantissas ; first<last; first++, pIn++) |
|
pOut[first] = *pIn * SF; |
|
} else { |
|
/* This subband was not coded, so zero the entire subband. */ |
|
memset(pOut+first, 0, subbWidth*sizeof(float)); |
|
} |
|
} |
|
|
|
/* Clear the subbands that were not coded. */ |
|
first = subbandTab[cnt]; |
|
memset(pOut+first, 0, (SAMPLES_PER_FRAME - first) * sizeof(float)); |
|
return numSubbands; |
|
} |
|
|
|
/** |
|
* Restore the quantized tonal components |
|
* |
|
* @param gb the GetBit context |
|
* @param pComponent tone component |
|
* @param numBands amount of coded bands |
|
*/ |
|
|
|
static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands) |
|
{ |
|
int i,j,k,cnt; |
|
int components, coding_mode_selector, coding_mode, coded_values_per_component; |
|
int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components; |
|
int band_flags[4], mantissa[8]; |
|
float *pCoef; |
|
float scalefactor; |
|
int component_count = 0; |
|
|
|
components = get_bits(gb,5); |
|
|
|
/* no tonal components */ |
|
if (components == 0) |
|
return 0; |
|
|
|
coding_mode_selector = get_bits(gb,2); |
|
if (coding_mode_selector == 2) |
|
return AVERROR_INVALIDDATA; |
|
|
|
coding_mode = coding_mode_selector & 1; |
|
|
|
for (i = 0; i < components; i++) { |
|
for (cnt = 0; cnt <= numBands; cnt++) |
|
band_flags[cnt] = get_bits1(gb); |
|
|
|
coded_values_per_component = get_bits(gb,3); |
|
|
|
quant_step_index = get_bits(gb,3); |
|
if (quant_step_index <= 1) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (coding_mode_selector == 3) |
|
coding_mode = get_bits1(gb); |
|
|
|
for (j = 0; j < (numBands + 1) * 4; j++) { |
|
if (band_flags[j >> 2] == 0) |
|
continue; |
|
|
|
coded_components = get_bits(gb,3); |
|
|
|
for (k=0; k<coded_components; k++) { |
|
sfIndx = get_bits(gb,6); |
|
pComponent[component_count].pos = j * 64 + (get_bits(gb,6)); |
|
max_coded_values = SAMPLES_PER_FRAME - pComponent[component_count].pos; |
|
coded_values = coded_values_per_component + 1; |
|
coded_values = FFMIN(max_coded_values,coded_values); |
|
|
|
scalefactor = ff_atrac_sf_table[sfIndx] * iMaxQuant[quant_step_index]; |
|
|
|
readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values); |
|
|
|
pComponent[component_count].numCoefs = coded_values; |
|
|
|
/* inverse quant */ |
|
pCoef = pComponent[component_count].coef; |
|
for (cnt = 0; cnt < coded_values; cnt++) |
|
pCoef[cnt] = mantissa[cnt] * scalefactor; |
|
|
|
component_count++; |
|
} |
|
} |
|
} |
|
|
|
return component_count; |
|
} |
|
|
|
/** |
|
* Decode gain parameters for the coded bands |
|
* |
|
* @param gb the GetBit context |
|
* @param pGb the gainblock for the current band |
|
* @param numBands amount of coded bands |
|
*/ |
|
|
|
static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands) |
|
{ |
|
int i, cf, numData; |
|
int *pLevel, *pLoc; |
|
|
|
gain_info *pGain = pGb->gBlock; |
|
|
|
for (i=0 ; i<=numBands; i++) |
|
{ |
|
numData = get_bits(gb,3); |
|
pGain[i].num_gain_data = numData; |
|
pLevel = pGain[i].levcode; |
|
pLoc = pGain[i].loccode; |
|
|
|
for (cf = 0; cf < numData; cf++){ |
|
pLevel[cf]= get_bits(gb,4); |
|
pLoc [cf]= get_bits(gb,5); |
|
if(cf && pLoc[cf] <= pLoc[cf-1]) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* Clear the unused blocks. */ |
|
for (; i<4 ; i++) |
|
pGain[i].num_gain_data = 0; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Apply gain parameters and perform the MDCT overlapping part |
|
* |
|
* @param pIn input float buffer |
|
* @param pPrev previous float buffer to perform overlap against |
|
* @param pOut output float buffer |
|
* @param pGain1 current band gain info |
|
* @param pGain2 next band gain info |
|
*/ |
|
|
|
static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2) |
|
{ |
|
/* gain compensation function */ |
|
float gain1, gain2, gain_inc; |
|
int cnt, numdata, nsample, startLoc, endLoc; |
|
|
|
|
|
if (pGain2->num_gain_data == 0) |
|
gain1 = 1.0; |
|
else |
|
gain1 = gain_tab1[pGain2->levcode[0]]; |
|
|
|
if (pGain1->num_gain_data == 0) { |
|
for (cnt = 0; cnt < 256; cnt++) |
|
pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt]; |
|
} else { |
|
numdata = pGain1->num_gain_data; |
|
pGain1->loccode[numdata] = 32; |
|
pGain1->levcode[numdata] = 4; |
|
|
|
nsample = 0; // current sample = 0 |
|
|
|
for (cnt = 0; cnt < numdata; cnt++) { |
|
startLoc = pGain1->loccode[cnt] * 8; |
|
endLoc = startLoc + 8; |
|
|
|
gain2 = gain_tab1[pGain1->levcode[cnt]]; |
|
gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15]; |
|
|
|
/* interpolate */ |
|
for (; nsample < startLoc; nsample++) |
|
pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2; |
|
|
|
/* interpolation is done over eight samples */ |
|
for (; nsample < endLoc; nsample++) { |
|
pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2; |
|
gain2 *= gain_inc; |
|
} |
|
} |
|
|
|
for (; nsample < 256; nsample++) |
|
pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample]; |
|
} |
|
|
|
/* Delay for the overlapping part. */ |
|
memcpy(pPrev, &pIn[256], 256*sizeof(float)); |
|
} |
|
|
|
/** |
|
* Combine the tonal band spectrum and regular band spectrum |
|
* Return position of the last tonal coefficient |
|
* |
|
* @param pSpectrum output spectrum buffer |
|
* @param numComponents amount of tonal components |
|
* @param pComponent tonal components for this band |
|
*/ |
|
|
|
static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent) |
|
{ |
|
int cnt, i, lastPos = -1; |
|
float *pIn, *pOut; |
|
|
|
for (cnt = 0; cnt < numComponents; cnt++){ |
|
lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos); |
|
pIn = pComponent[cnt].coef; |
|
pOut = &(pSpectrum[pComponent[cnt].pos]); |
|
|
|
for (i=0 ; i<pComponent[cnt].numCoefs ; i++) |
|
pOut[i] += pIn[i]; |
|
} |
|
|
|
return lastPos; |
|
} |
|
|
|
|
|
#define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old))) |
|
|
|
static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode) |
|
{ |
|
int i, band, nsample, s1, s2; |
|
float c1, c2; |
|
float mc1_l, mc1_r, mc2_l, mc2_r; |
|
|
|
for (i=0,band = 0; band < 4*256; band+=256,i++) { |
|
s1 = pPrevCode[i]; |
|
s2 = pCurrCode[i]; |
|
nsample = 0; |
|
|
|
if (s1 != s2) { |
|
/* Selector value changed, interpolation needed. */ |
|
mc1_l = matrixCoeffs[s1*2]; |
|
mc1_r = matrixCoeffs[s1*2+1]; |
|
mc2_l = matrixCoeffs[s2*2]; |
|
mc2_r = matrixCoeffs[s2*2+1]; |
|
|
|
/* Interpolation is done over the first eight samples. */ |
|
for(; nsample < 8; nsample++) { |
|
c1 = su1[band+nsample]; |
|
c2 = su2[band+nsample]; |
|
c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample); |
|
su1[band+nsample] = c2; |
|
su2[band+nsample] = c1 * 2.0 - c2; |
|
} |
|
} |
|
|
|
/* Apply the matrix without interpolation. */ |
|
switch (s2) { |
|
case 0: /* M/S decoding */ |
|
for (; nsample < 256; nsample++) { |
|
c1 = su1[band+nsample]; |
|
c2 = su2[band+nsample]; |
|
su1[band+nsample] = c2 * 2.0; |
|
su2[band+nsample] = (c1 - c2) * 2.0; |
|
} |
|
break; |
|
|
|
case 1: |
|
for (; nsample < 256; nsample++) { |
|
c1 = su1[band+nsample]; |
|
c2 = su2[band+nsample]; |
|
su1[band+nsample] = (c1 + c2) * 2.0; |
|
su2[band+nsample] = c2 * -2.0; |
|
} |
|
break; |
|
case 2: |
|
case 3: |
|
for (; nsample < 256; nsample++) { |
|
c1 = su1[band+nsample]; |
|
c2 = su2[band+nsample]; |
|
su1[band+nsample] = c1 + c2; |
|
su2[band+nsample] = c1 - c2; |
|
} |
|
break; |
|
default: |
|
assert(0); |
|
} |
|
} |
|
} |
|
|
|
static void getChannelWeights (int indx, int flag, float ch[2]){ |
|
|
|
if (indx == 7) { |
|
ch[0] = 1.0; |
|
ch[1] = 1.0; |
|
} else { |
|
ch[0] = (float)(indx & 7) / 7.0; |
|
ch[1] = sqrt(2 - ch[0]*ch[0]); |
|
if(flag) |
|
FFSWAP(float, ch[0], ch[1]); |
|
} |
|
} |
|
|
|
static void channelWeighting (float *su1, float *su2, int *p3) |
|
{ |
|
int band, nsample; |
|
/* w[x][y] y=0 is left y=1 is right */ |
|
float w[2][2]; |
|
|
|
if (p3[1] != 7 || p3[3] != 7){ |
|
getChannelWeights(p3[1], p3[0], w[0]); |
|
getChannelWeights(p3[3], p3[2], w[1]); |
|
|
|
for(band = 1; band < 4; band++) { |
|
/* scale the channels by the weights */ |
|
for(nsample = 0; nsample < 8; nsample++) { |
|
su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample); |
|
su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample); |
|
} |
|
|
|
for(; nsample < 256; nsample++) { |
|
su1[band*256+nsample] *= w[1][0]; |
|
su2[band*256+nsample] *= w[1][1]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Decode a Sound Unit |
|
* |
|
* @param gb the GetBit context |
|
* @param pSnd the channel unit to be used |
|
* @param pOut the decoded samples before IQMF in float representation |
|
* @param channelNum channel number |
|
* @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono) |
|
*/ |
|
|
|
|
|
static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode) |
|
{ |
|
int band, result=0, numSubbands, lastTonal, numBands; |
|
|
|
if (codingMode == JOINT_STEREO && channelNum == 1) { |
|
if (get_bits(gb,2) != 3) { |
|
av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
if (get_bits(gb,6) != 0x28) { |
|
av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* number of coded QMF bands */ |
|
pSnd->bandsCoded = get_bits(gb,2); |
|
|
|
result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded); |
|
if (result) return result; |
|
|
|
pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded); |
|
if (pSnd->numComponents == -1) return -1; |
|
|
|
numSubbands = decodeSpectrum (gb, pSnd->spectrum); |
|
|
|
/* Merge the decoded spectrum and tonal components. */ |
|
lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components); |
|
|
|
|
|
/* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */ |
|
numBands = (subbandTab[numSubbands] - 1) >> 8; |
|
if (lastTonal >= 0) |
|
numBands = FFMAX((lastTonal + 256) >> 8, numBands); |
|
|
|
|
|
/* Reconstruct time domain samples. */ |
|
for (band=0; band<4; band++) { |
|
/* Perform the IMDCT step without overlapping. */ |
|
if (band <= numBands) { |
|
IMLT(q, &(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1); |
|
} else |
|
memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float)); |
|
|
|
/* gain compensation and overlapping */ |
|
gainCompensateAndOverlap(pSnd->IMDCT_buf, &pSnd->prevFrame[band * 256], |
|
&pOut[band * 256], |
|
&pSnd->gainBlock[1 - pSnd->gcBlkSwitch].gBlock[band], |
|
&pSnd->gainBlock[ pSnd->gcBlkSwitch].gBlock[band]); |
|
} |
|
|
|
/* Swap the gain control buffers for the next frame. */ |
|
pSnd->gcBlkSwitch ^= 1; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Frame handling |
|
* |
|
* @param q Atrac3 private context |
|
* @param databuf the input data |
|
*/ |
|
|
|
static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, |
|
float **out_samples) |
|
{ |
|
int result, i; |
|
float *p1, *p2, *p3, *p4; |
|
uint8_t *ptr1; |
|
|
|
if (q->codingMode == JOINT_STEREO) { |
|
|
|
/* channel coupling mode */ |
|
/* decode Sound Unit 1 */ |
|
init_get_bits(&q->gb,databuf,q->bits_per_frame); |
|
|
|
result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, out_samples[0], 0, JOINT_STEREO); |
|
if (result != 0) |
|
return result; |
|
|
|
/* Framedata of the su2 in the joint-stereo mode is encoded in |
|
* reverse byte order so we need to swap it first. */ |
|
if (databuf == q->decoded_bytes_buffer) { |
|
uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1; |
|
ptr1 = q->decoded_bytes_buffer; |
|
for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) { |
|
FFSWAP(uint8_t,*ptr1,*ptr2); |
|
} |
|
} else { |
|
const uint8_t *ptr2 = databuf+q->bytes_per_frame-1; |
|
for (i = 0; i < q->bytes_per_frame; i++) |
|
q->decoded_bytes_buffer[i] = *ptr2--; |
|
} |
|
|
|
/* Skip the sync codes (0xF8). */ |
|
ptr1 = q->decoded_bytes_buffer; |
|
for (i = 4; *ptr1 == 0xF8; i++, ptr1++) { |
|
if (i >= q->bytes_per_frame) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
|
|
/* set the bitstream reader at the start of the second Sound Unit*/ |
|
init_get_bits(&q->gb,ptr1,q->bits_per_frame); |
|
|
|
/* Fill the Weighting coeffs delay buffer */ |
|
memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int)); |
|
q->weighting_delay[4] = get_bits1(&q->gb); |
|
q->weighting_delay[5] = get_bits(&q->gb,3); |
|
|
|
for (i = 0; i < 4; i++) { |
|
q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i]; |
|
q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i]; |
|
q->matrix_coeff_index_next[i] = get_bits(&q->gb,2); |
|
} |
|
|
|
/* Decode Sound Unit 2. */ |
|
result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], out_samples[1], 1, JOINT_STEREO); |
|
if (result != 0) |
|
return result; |
|
|
|
/* Reconstruct the channel coefficients. */ |
|
reverseMatrixing(out_samples[0], out_samples[1], q->matrix_coeff_index_prev, q->matrix_coeff_index_now); |
|
|
|
channelWeighting(out_samples[0], out_samples[1], q->weighting_delay); |
|
|
|
} else { |
|
/* normal stereo mode or mono */ |
|
/* Decode the channel sound units. */ |
|
for (i=0 ; i<q->channels ; i++) { |
|
|
|
/* Set the bitstream reader at the start of a channel sound unit. */ |
|
init_get_bits(&q->gb, |
|
databuf + i * q->bytes_per_frame / q->channels, |
|
q->bits_per_frame / q->channels); |
|
|
|
result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], out_samples[i], i, q->codingMode); |
|
if (result != 0) |
|
return result; |
|
} |
|
} |
|
|
|
/* Apply the iQMF synthesis filter. */ |
|
for (i=0 ; i<q->channels ; i++) { |
|
p1 = out_samples[i]; |
|
p2= p1+256; |
|
p3= p2+256; |
|
p4= p3+256; |
|
atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf); |
|
atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf); |
|
atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Atrac frame decoding |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static int atrac3_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
ATRAC3Context *q = avctx->priv_data; |
|
int result; |
|
const uint8_t* databuf; |
|
float *samples_flt; |
|
int16_t *samples_s16; |
|
|
|
if (buf_size < avctx->block_align) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Frame too small (%d bytes). Truncated file?\n", buf_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* get output buffer */ |
|
q->frame.nb_samples = SAMPLES_PER_FRAME; |
|
if ((result = avctx->get_buffer(avctx, &q->frame)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return result; |
|
} |
|
samples_flt = (float *)q->frame.data[0]; |
|
samples_s16 = (int16_t *)q->frame.data[0]; |
|
|
|
/* Check if we need to descramble and what buffer to pass on. */ |
|
if (q->scrambled_stream) { |
|
decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align); |
|
databuf = q->decoded_bytes_buffer; |
|
} else { |
|
databuf = buf; |
|
} |
|
|
|
if (q->channels == 1 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT) |
|
result = decodeFrame(q, databuf, &samples_flt); |
|
else |
|
result = decodeFrame(q, databuf, q->outSamples); |
|
|
|
if (result != 0) { |
|
av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n"); |
|
return result; |
|
} |
|
|
|
/* interleave */ |
|
if (q->channels == 2 && avctx->sample_fmt == AV_SAMPLE_FMT_FLT) { |
|
q->fmt_conv.float_interleave(samples_flt, |
|
(const float **)q->outSamples, |
|
SAMPLES_PER_FRAME, 2); |
|
} else if (avctx->sample_fmt == AV_SAMPLE_FMT_S16) { |
|
q->fmt_conv.float_to_int16_interleave(samples_s16, |
|
(const float **)q->outSamples, |
|
SAMPLES_PER_FRAME, q->channels); |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
*(AVFrame *)data = q->frame; |
|
|
|
return avctx->block_align; |
|
} |
|
|
|
|
|
/** |
|
* Atrac3 initialization |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static av_cold int atrac3_decode_init(AVCodecContext *avctx) |
|
{ |
|
int i, ret; |
|
const uint8_t *edata_ptr = avctx->extradata; |
|
ATRAC3Context *q = avctx->priv_data; |
|
static VLC_TYPE atrac3_vlc_table[4096][2]; |
|
static int vlcs_initialized = 0; |
|
|
|
/* Take data from the AVCodecContext (RM container). */ |
|
q->sample_rate = avctx->sample_rate; |
|
q->channels = avctx->channels; |
|
q->bit_rate = avctx->bit_rate; |
|
q->bits_per_frame = avctx->block_align * 8; |
|
q->bytes_per_frame = avctx->block_align; |
|
|
|
/* Take care of the codec-specific extradata. */ |
|
if (avctx->extradata_size == 14) { |
|
/* Parse the extradata, WAV format */ |
|
av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1 |
|
q->samples_per_channel = bytestream_get_le32(&edata_ptr); |
|
q->codingMode = bytestream_get_le16(&edata_ptr); |
|
av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode |
|
q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1 |
|
av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0 |
|
|
|
/* setup */ |
|
q->samples_per_frame = SAMPLES_PER_FRAME * q->channels; |
|
q->atrac3version = 4; |
|
q->delay = 0x88E; |
|
if (q->codingMode) |
|
q->codingMode = JOINT_STEREO; |
|
else |
|
q->codingMode = STEREO; |
|
|
|
q->scrambled_stream = 0; |
|
|
|
if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) { |
|
} else { |
|
av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
} else if (avctx->extradata_size == 10) { |
|
/* Parse the extradata, RM format. */ |
|
q->atrac3version = bytestream_get_be32(&edata_ptr); |
|
q->samples_per_frame = bytestream_get_be16(&edata_ptr); |
|
q->delay = bytestream_get_be16(&edata_ptr); |
|
q->codingMode = bytestream_get_be16(&edata_ptr); |
|
|
|
q->samples_per_channel = q->samples_per_frame / q->channels; |
|
q->scrambled_stream = 1; |
|
|
|
} else { |
|
av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size); |
|
} |
|
/* Check the extradata. */ |
|
|
|
if (q->atrac3version != 4) { |
|
av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (q->samples_per_frame != SAMPLES_PER_FRAME && q->samples_per_frame != SAMPLES_PER_FRAME*2) { |
|
av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (q->delay != 0x88E) { |
|
av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (q->codingMode == STEREO) { |
|
av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n"); |
|
} else if (q->codingMode == JOINT_STEREO) { |
|
av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n"); |
|
} else { |
|
av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) { |
|
av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
|
|
if(avctx->block_align >= UINT_MAX/2) |
|
return AVERROR(EINVAL); |
|
|
|
/* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE, |
|
* this is for the bitstream reader. */ |
|
if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL) |
|
return AVERROR(ENOMEM); |
|
|
|
|
|
/* Initialize the VLC tables. */ |
|
if (!vlcs_initialized) { |
|
for (i=0 ; i<7 ; i++) { |
|
spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]]; |
|
spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i]; |
|
init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i], |
|
huff_bits[i], 1, 1, |
|
huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); |
|
} |
|
vlcs_initialized = 1; |
|
} |
|
|
|
if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) |
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
|
else |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
|
|
if ((ret = init_atrac3_transforms(q, avctx->sample_fmt == AV_SAMPLE_FMT_FLT))) { |
|
av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); |
|
av_freep(&q->decoded_bytes_buffer); |
|
return ret; |
|
} |
|
|
|
atrac_generate_tables(); |
|
|
|
/* Generate gain tables. */ |
|
for (i=0 ; i<16 ; i++) |
|
gain_tab1[i] = powf (2.0, (4 - i)); |
|
|
|
for (i=-15 ; i<16 ; i++) |
|
gain_tab2[i+15] = powf (2.0, i * -0.125); |
|
|
|
/* init the joint-stereo decoding data */ |
|
q->weighting_delay[0] = 0; |
|
q->weighting_delay[1] = 7; |
|
q->weighting_delay[2] = 0; |
|
q->weighting_delay[3] = 7; |
|
q->weighting_delay[4] = 0; |
|
q->weighting_delay[5] = 7; |
|
|
|
for (i=0; i<4; i++) { |
|
q->matrix_coeff_index_prev[i] = 3; |
|
q->matrix_coeff_index_now[i] = 3; |
|
q->matrix_coeff_index_next[i] = 3; |
|
} |
|
|
|
dsputil_init(&dsp, avctx); |
|
ff_fmt_convert_init(&q->fmt_conv, avctx); |
|
|
|
q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels); |
|
if (!q->pUnits) { |
|
atrac3_decode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (avctx->channels > 1 || avctx->sample_fmt == AV_SAMPLE_FMT_S16) { |
|
q->outSamples[0] = av_mallocz(SAMPLES_PER_FRAME * avctx->channels * sizeof(*q->outSamples[0])); |
|
q->outSamples[1] = q->outSamples[0] + SAMPLES_PER_FRAME; |
|
if (!q->outSamples[0]) { |
|
atrac3_decode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
avcodec_get_frame_defaults(&q->frame); |
|
avctx->coded_frame = &q->frame; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
AVCodec ff_atrac3_decoder = |
|
{ |
|
.name = "atrac3", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = CODEC_ID_ATRAC3, |
|
.priv_data_size = sizeof(ATRAC3Context), |
|
.init = atrac3_decode_init, |
|
.close = atrac3_decode_close, |
|
.decode = atrac3_decode_frame, |
|
.capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1, |
|
.long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"), |
|
};
|
|
|