You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

4113 lines
158 KiB

/*
* HEVC video Decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2012 - 2013 Mickael Raulet
* Copyright (C) 2012 - 2013 Gildas Cocherel
* Copyright (C) 2012 - 2013 Wassim Hamidouche
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config_components.h"
#include "libavutil/attributes.h"
#include "libavutil/avstring.h"
#include "libavutil/common.h"
#include "libavutil/film_grain_params.h"
#include "libavutil/internal.h"
#include "libavutil/md5.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/stereo3d.h"
#include "libavutil/timecode.h"
#include "aom_film_grain.h"
#include "bswapdsp.h"
#include "cabac_functions.h"
#include "codec_internal.h"
#include "container_fifo.h"
#include "decode.h"
#include "golomb.h"
#include "hevc.h"
#include "parse.h"
#include "hevcdec.h"
#include "hwaccel_internal.h"
#include "hwconfig.h"
#include "internal.h"
#include "profiles.h"
#include "progressframe.h"
#include "refstruct.h"
#include "thread.h"
static const uint8_t hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
/**
* NOTE: Each function hls_foo correspond to the function foo in the
* specification (HLS stands for High Level Syntax).
*/
/**
* Section 5.7
*/
/* free everything allocated by pic_arrays_init() */
static void pic_arrays_free(HEVCLayerContext *l)
{
av_freep(&l->sao);
av_freep(&l->deblock);
av_freep(&l->skip_flag);
av_freep(&l->tab_ct_depth);
av_freep(&l->tab_ipm);
av_freep(&l->cbf_luma);
av_freep(&l->is_pcm);
av_freep(&l->qp_y_tab);
av_freep(&l->tab_slice_address);
av_freep(&l->filter_slice_edges);
av_freep(&l->horizontal_bs);
av_freep(&l->vertical_bs);
for (int i = 0; i < 3; i++) {
av_freep(&l->sao_pixel_buffer_h[i]);
av_freep(&l->sao_pixel_buffer_v[i]);
}
ff_refstruct_pool_uninit(&l->tab_mvf_pool);
ff_refstruct_pool_uninit(&l->rpl_tab_pool);
}
/* allocate arrays that depend on frame dimensions */
static int pic_arrays_init(HEVCLayerContext *l, const HEVCSPS *sps)
{
int log2_min_cb_size = sps->log2_min_cb_size;
int width = sps->width;
int height = sps->height;
int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
((height >> log2_min_cb_size) + 1);
int ctb_count = sps->ctb_width * sps->ctb_height;
int min_pu_size = sps->min_pu_width * sps->min_pu_height;
l->bs_width = (width >> 2) + 1;
l->bs_height = (height >> 2) + 1;
l->sao = av_calloc(ctb_count, sizeof(*l->sao));
l->deblock = av_calloc(ctb_count, sizeof(*l->deblock));
if (!l->sao || !l->deblock)
goto fail;
l->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
l->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
if (!l->skip_flag || !l->tab_ct_depth)
goto fail;
l->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
l->tab_ipm = av_mallocz(min_pu_size);
l->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
if (!l->tab_ipm || !l->cbf_luma || !l->is_pcm)
goto fail;
l->filter_slice_edges = av_mallocz(ctb_count);
l->tab_slice_address = av_malloc_array(pic_size_in_ctb,
sizeof(*l->tab_slice_address));
l->qp_y_tab = av_malloc_array(pic_size_in_ctb,
sizeof(*l->qp_y_tab));
if (!l->qp_y_tab || !l->filter_slice_edges || !l->tab_slice_address)
goto fail;
l->horizontal_bs = av_calloc(l->bs_width, l->bs_height);
l->vertical_bs = av_calloc(l->bs_width, l->bs_height);
if (!l->horizontal_bs || !l->vertical_bs)
goto fail;
l->tab_mvf_pool = ff_refstruct_pool_alloc(min_pu_size * sizeof(MvField), 0);
l->rpl_tab_pool = ff_refstruct_pool_alloc(ctb_count * sizeof(RefPicListTab), 0);
if (!l->tab_mvf_pool || !l->rpl_tab_pool)
goto fail;
if (sps->sao_enabled) {
int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
for (int c_idx = 0; c_idx < c_count; c_idx++) {
int w = sps->width >> sps->hshift[c_idx];
int h = sps->height >> sps->vshift[c_idx];
l->sao_pixel_buffer_h[c_idx] =
av_malloc((w * 2 * sps->ctb_height) <<
sps->pixel_shift);
l->sao_pixel_buffer_v[c_idx] =
av_malloc((h * 2 * sps->ctb_width) <<
sps->pixel_shift);
if (!l->sao_pixel_buffer_h[c_idx] ||
!l->sao_pixel_buffer_v[c_idx])
goto fail;
}
}
return 0;
fail:
pic_arrays_free(l);
return AVERROR(ENOMEM);
}
static int pred_weight_table(SliceHeader *sh, void *logctx,
const HEVCSPS *sps, GetBitContext *gb)
{
int i = 0;
int j = 0;
uint8_t luma_weight_l0_flag[16];
uint8_t chroma_weight_l0_flag[16];
uint8_t luma_weight_l1_flag[16];
uint8_t chroma_weight_l1_flag[16];
int luma_log2_weight_denom;
luma_log2_weight_denom = get_ue_golomb_long(gb);
if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
av_log(logctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
return AVERROR_INVALIDDATA;
}
sh->luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
if (sps->chroma_format_idc != 0) {
int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
av_log(logctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
return AVERROR_INVALIDDATA;
}
sh->chroma_log2_weight_denom = chroma_log2_weight_denom;
}
for (i = 0; i < sh->nb_refs[L0]; i++) {
luma_weight_l0_flag[i] = get_bits1(gb);
if (!luma_weight_l0_flag[i]) {
sh->luma_weight_l0[i] = 1 << sh->luma_log2_weight_denom;
sh->luma_offset_l0[i] = 0;
}
}
if (sps->chroma_format_idc != 0) {
for (i = 0; i < sh->nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < sh->nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = 0;
}
for (i = 0; i < sh->nb_refs[L0]; i++) {
if (luma_weight_l0_flag[i]) {
int delta_luma_weight_l0 = get_se_golomb(gb);
if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
return AVERROR_INVALIDDATA;
sh->luma_weight_l0[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l0;
sh->luma_offset_l0[i] = get_se_golomb(gb);
}
if (chroma_weight_l0_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l0 = get_se_golomb(gb);
int delta_chroma_offset_l0 = get_se_golomb(gb);
if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
|| delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
return AVERROR_INVALIDDATA;
}
sh->chroma_weight_l0[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l0;
sh->chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * sh->chroma_weight_l0[i][j])
>> sh->chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
sh->chroma_weight_l0[i][0] = 1 << sh->chroma_log2_weight_denom;
sh->chroma_offset_l0[i][0] = 0;
sh->chroma_weight_l0[i][1] = 1 << sh->chroma_log2_weight_denom;
sh->chroma_offset_l0[i][1] = 0;
}
}
if (sh->slice_type == HEVC_SLICE_B) {
for (i = 0; i < sh->nb_refs[L1]; i++) {
luma_weight_l1_flag[i] = get_bits1(gb);
if (!luma_weight_l1_flag[i]) {
sh->luma_weight_l1[i] = 1 << sh->luma_log2_weight_denom;
sh->luma_offset_l1[i] = 0;
}
}
if (sps->chroma_format_idc != 0) {
for (i = 0; i < sh->nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < sh->nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = 0;
}
for (i = 0; i < sh->nb_refs[L1]; i++) {
if (luma_weight_l1_flag[i]) {
int delta_luma_weight_l1 = get_se_golomb(gb);
if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
return AVERROR_INVALIDDATA;
sh->luma_weight_l1[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l1;
sh->luma_offset_l1[i] = get_se_golomb(gb);
}
if (chroma_weight_l1_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l1 = get_se_golomb(gb);
int delta_chroma_offset_l1 = get_se_golomb(gb);
if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
|| delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
return AVERROR_INVALIDDATA;
}
sh->chroma_weight_l1[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l1;
sh->chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * sh->chroma_weight_l1[i][j])
>> sh->chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
sh->chroma_weight_l1[i][0] = 1 << sh->chroma_log2_weight_denom;
sh->chroma_offset_l1[i][0] = 0;
sh->chroma_weight_l1[i][1] = 1 << sh->chroma_log2_weight_denom;
sh->chroma_offset_l1[i][1] = 0;
}
}
}
return 0;
}
static int decode_lt_rps(const HEVCSPS *sps, LongTermRPS *rps,
GetBitContext *gb, int cur_poc, int poc_lsb)
{
int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
int prev_delta_msb = 0;
unsigned int nb_sps = 0, nb_sh;
int i;
rps->nb_refs = 0;
if (!sps->long_term_ref_pics_present)
return 0;
if (sps->num_long_term_ref_pics_sps > 0)
nb_sps = get_ue_golomb_long(gb);
nb_sh = get_ue_golomb_long(gb);
if (nb_sps > sps->num_long_term_ref_pics_sps)
return AVERROR_INVALIDDATA;
if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
return AVERROR_INVALIDDATA;
rps->nb_refs = nb_sh + nb_sps;
for (i = 0; i < rps->nb_refs; i++) {
if (i < nb_sps) {
uint8_t lt_idx_sps = 0;
if (sps->num_long_term_ref_pics_sps > 1)
lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
rps->used[i] = !!(sps->used_by_curr_pic_lt & (1U << lt_idx_sps));
} else {
rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
rps->used[i] = get_bits1(gb);
}
rps->poc_msb_present[i] = get_bits1(gb);
if (rps->poc_msb_present[i]) {
int64_t delta = get_ue_golomb_long(gb);
int64_t poc;
if (i && i != nb_sps)
delta += prev_delta_msb;
poc = rps->poc[i] + cur_poc - delta * max_poc_lsb - poc_lsb;
if (poc != (int32_t)poc)
return AVERROR_INVALIDDATA;
rps->poc[i] = poc;
prev_delta_msb = delta;
}
}
return 0;
}
static void export_stream_params(HEVCContext *s, const HEVCSPS *sps)
{
AVCodecContext *avctx = s->avctx;
const HEVCVPS *vps = sps->vps;
const HEVCWindow *ow = &sps->output_window;
unsigned int num = 0, den = 0;
avctx->pix_fmt = sps->pix_fmt;
avctx->coded_width = sps->width;
avctx->coded_height = sps->height;
avctx->width = sps->width - ow->left_offset - ow->right_offset;
avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
avctx->profile = sps->ptl.general_ptl.profile_idc;
avctx->level = sps->ptl.general_ptl.level_idc;
ff_set_sar(avctx, sps->vui.common.sar);
if (sps->vui.common.video_signal_type_present_flag)
avctx->color_range = sps->vui.common.video_full_range_flag ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
else
avctx->color_range = AVCOL_RANGE_MPEG;
if (sps->vui.common.colour_description_present_flag) {
avctx->color_primaries = sps->vui.common.colour_primaries;
avctx->color_trc = sps->vui.common.transfer_characteristics;
avctx->colorspace = sps->vui.common.matrix_coeffs;
} else {
avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
}
avctx->chroma_sample_location = AVCHROMA_LOC_UNSPECIFIED;
if (sps->chroma_format_idc == 1) {
if (sps->vui.common.chroma_loc_info_present_flag) {
if (sps->vui.common.chroma_sample_loc_type_top_field <= 5)
avctx->chroma_sample_location = sps->vui.common.chroma_sample_loc_type_top_field + 1;
} else
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
}
if (vps->vps_timing_info_present_flag) {
num = vps->vps_num_units_in_tick;
den = vps->vps_time_scale;
} else if (sps->vui.vui_timing_info_present_flag) {
num = sps->vui.vui_num_units_in_tick;
den = sps->vui.vui_time_scale;
}
if (num > 0 && den > 0)
av_reduce(&avctx->framerate.den, &avctx->framerate.num,
num, den, 1 << 30);
}
static int export_stream_params_from_sei(HEVCContext *s)
{
AVCodecContext *avctx = s->avctx;
if (s->sei.common.a53_caption.buf_ref)
s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
if (s->sei.common.alternative_transfer.present &&
av_color_transfer_name(s->sei.common.alternative_transfer.preferred_transfer_characteristics) &&
s->sei.common.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
avctx->color_trc = s->sei.common.alternative_transfer.preferred_transfer_characteristics;
}
if (s->sei.common.film_grain_characteristics.present ||
s->sei.common.aom_film_grain.enable)
avctx->properties |= FF_CODEC_PROPERTY_FILM_GRAIN;
return 0;
}
static int export_multilayer(HEVCContext *s, const HEVCVPS *vps)
{
const HEVCSEITDRDI *tdrdi = &s->sei.tdrdi;
av_freep(&s->view_ids_available);
s->nb_view_ids_available = 0;
av_freep(&s->view_pos_available);
s->nb_view_pos_available = 0;
// don't export anything in the trivial case (1 layer, view id=0)
if (vps->nb_layers < 2 && !vps->view_id[0])
return 0;
s->view_ids_available = av_calloc(vps->nb_layers, sizeof(*s->view_ids_available));
if (!s->view_ids_available)
return AVERROR(ENOMEM);
if (tdrdi->num_ref_displays) {
s->view_pos_available = av_calloc(vps->nb_layers, sizeof(*s->view_pos_available));
if (!s->view_pos_available)
return AVERROR(ENOMEM);
}
for (int i = 0; i < vps->nb_layers; i++) {
s->view_ids_available[i] = vps->view_id[i];
if (s->view_pos_available) {
s->view_pos_available[i] = vps->view_id[i] == tdrdi->left_view_id[0] ?
AV_STEREO3D_VIEW_LEFT :
vps->view_id[i] == tdrdi->right_view_id[0] ?
AV_STEREO3D_VIEW_RIGHT : AV_STEREO3D_VIEW_UNSPEC;
}
}
s->nb_view_ids_available = vps->nb_layers;
s->nb_view_pos_available = s->view_pos_available ? vps->nb_layers : 0;
return 0;
}
static int setup_multilayer(HEVCContext *s, const HEVCVPS *vps)
{
unsigned layers_active_output = 0, highest_layer;
s->layers_active_output = 1;
s->layers_active_decode = 1;
// nothing requested - decode base layer only
if (!s->nb_view_ids)
return 0;
if (s->nb_view_ids == 1 && s->view_ids[0] == -1) {
layers_active_output = (1 << vps->nb_layers) - 1;
} else {
for (int i = 0; i < s->nb_view_ids; i++) {
int view_id = s->view_ids[i];
int layer_idx = -1;
if (view_id < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid view ID requested: %d\n", view_id);
return AVERROR(EINVAL);
}
for (int j = 0; j < vps->nb_layers; j++) {
if (vps->view_id[j] == view_id) {
layer_idx = j;
break;
}
}
if (layer_idx < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"View ID %d not present in VPS\n", view_id);
return AVERROR(EINVAL);
}
layers_active_output |= 1 << layer_idx;
}
}
if (!layers_active_output) {
av_log(s->avctx, AV_LOG_ERROR, "No layers selected\n");
return AVERROR_BUG;
}
highest_layer = ff_log2(layers_active_output);
if (highest_layer >= FF_ARRAY_ELEMS(s->layers)) {
av_log(s->avctx, AV_LOG_ERROR,
"Too many layers requested: %u\n", layers_active_output);
return AVERROR(EINVAL);
}
/* Assume a higher layer depends on all the lower ones.
* This is enforced in VPS parsing currently, this logic will need
* to be changed if we want to support more complex dependency structures.
*/
s->layers_active_decode = (1 << (highest_layer + 1)) - 1;
s->layers_active_output = layers_active_output;
av_log(s->avctx, AV_LOG_DEBUG, "decode/output layers: %x/%x\n",
s->layers_active_decode, s->layers_active_output);
return 0;
}
static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
{
#define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
CONFIG_HEVC_D3D12VA_HWACCEL + \
CONFIG_HEVC_NVDEC_HWACCEL + \
CONFIG_HEVC_VAAPI_HWACCEL + \
CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
CONFIG_HEVC_VDPAU_HWACCEL + \
CONFIG_HEVC_VULKAN_HWACCEL)
enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
int ret;
switch (sps->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUVJ420P:
#if CONFIG_HEVC_DXVA2_HWACCEL
*fmt++ = AV_PIX_FMT_DXVA2_VLD;
#endif
#if CONFIG_HEVC_D3D11VA_HWACCEL
*fmt++ = AV_PIX_FMT_D3D11VA_VLD;
*fmt++ = AV_PIX_FMT_D3D11;
#endif
#if CONFIG_HEVC_D3D12VA_HWACCEL
*fmt++ = AV_PIX_FMT_D3D12;
#endif
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VDPAU_HWACCEL
*fmt++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_HEVC_NVDEC_HWACCEL
*fmt++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
break;
case AV_PIX_FMT_YUV420P10:
#if CONFIG_HEVC_DXVA2_HWACCEL
*fmt++ = AV_PIX_FMT_DXVA2_VLD;
#endif
#if CONFIG_HEVC_D3D11VA_HWACCEL
*fmt++ = AV_PIX_FMT_D3D11VA_VLD;
*fmt++ = AV_PIX_FMT_D3D11;
#endif
#if CONFIG_HEVC_D3D12VA_HWACCEL
*fmt++ = AV_PIX_FMT_D3D12;
#endif
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
#if CONFIG_HEVC_VDPAU_HWACCEL
*fmt++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_HEVC_NVDEC_HWACCEL
*fmt++ = AV_PIX_FMT_CUDA;
#endif
break;
case AV_PIX_FMT_YUV444P:
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VDPAU_HWACCEL
*fmt++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_HEVC_NVDEC_HWACCEL
*fmt++ = AV_PIX_FMT_CUDA;
#endif
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
break;
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV422P10LE:
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
break;
case AV_PIX_FMT_YUV444P10:
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
*fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
#endif
/* NOTE: fallthrough */
case AV_PIX_FMT_YUV420P12:
case AV_PIX_FMT_YUV444P12:
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VDPAU_HWACCEL
*fmt++ = AV_PIX_FMT_VDPAU;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
#if CONFIG_HEVC_NVDEC_HWACCEL
*fmt++ = AV_PIX_FMT_CUDA;
#endif
break;
case AV_PIX_FMT_YUV422P12:
#if CONFIG_HEVC_VAAPI_HWACCEL
*fmt++ = AV_PIX_FMT_VAAPI;
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
*fmt++ = AV_PIX_FMT_VULKAN;
#endif
break;
}
*fmt++ = sps->pix_fmt;
*fmt = AV_PIX_FMT_NONE;
// export multilayer information from active VPS to the caller,
// so it is available in get_format()
ret = export_multilayer(s, sps->vps);
if (ret < 0)
return ret;
ret = ff_get_format(s->avctx, pix_fmts);
if (ret < 0)
return ret;
s->avctx->pix_fmt = ret;
// set up multilayer decoding, if requested by caller
ret = setup_multilayer(s, sps->vps);
if (ret < 0)
return ret;
return 0;
}
static int set_sps(HEVCContext *s, HEVCLayerContext *l, const HEVCSPS *sps)
{
int ret;
pic_arrays_free(l);
ff_refstruct_unref(&l->sps);
ff_refstruct_unref(&s->vps);
if (!sps)
return 0;
ret = pic_arrays_init(l, sps);
if (ret < 0)
goto fail;
ff_hevc_pred_init(&s->hpc, sps->bit_depth);
ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
ff_videodsp_init (&s->vdsp, sps->bit_depth);
l->sps = ff_refstruct_ref_c(sps);
s->vps = ff_refstruct_ref_c(sps->vps);
return 0;
fail:
pic_arrays_free(l);
ff_refstruct_unref(&l->sps);
return ret;
}
static int hls_slice_header(SliceHeader *sh, const HEVCContext *s, GetBitContext *gb)
{
const HEVCPPS *pps;
const HEVCSPS *sps;
const HEVCVPS *vps;
unsigned pps_id, layer_idx;
int i, ret;
// Coded parameters
sh->first_slice_in_pic_flag = get_bits1(gb);
sh->no_output_of_prior_pics_flag = 0;
if (IS_IRAP(s))
sh->no_output_of_prior_pics_flag = get_bits1(gb);
pps_id = get_ue_golomb_long(gb);
if (pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[pps_id]) {
av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", pps_id);
return AVERROR_INVALIDDATA;
}
if (!sh->first_slice_in_pic_flag && s->ps.pps_list[pps_id] != s->pps) {
av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
return AVERROR_INVALIDDATA;
}
sh->pps_id = pps_id;
pps = s->ps.pps_list[pps_id];
sps = pps->sps;
vps = sps->vps;
layer_idx = vps->layer_idx[s->nuh_layer_id];
if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
sh->no_output_of_prior_pics_flag = 1;
sh->dependent_slice_segment_flag = 0;
if (!sh->first_slice_in_pic_flag) {
int slice_address_length;
if (pps->dependent_slice_segments_enabled_flag)
sh->dependent_slice_segment_flag = get_bits1(gb);
if (sh->dependent_slice_segment_flag && !s->slice_initialized) {
av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
return AVERROR_INVALIDDATA;
}
slice_address_length = av_ceil_log2(sps->ctb_width *
sps->ctb_height);
sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
if (sh->slice_segment_addr >= sps->ctb_width * sps->ctb_height) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid slice segment address: %u.\n",
sh->slice_segment_addr);
return AVERROR_INVALIDDATA;
}
if (!sh->dependent_slice_segment_flag) {
sh->slice_addr = sh->slice_segment_addr;
}
} else {
sh->slice_segment_addr = sh->slice_addr = 0;
}
if (!sh->dependent_slice_segment_flag) {
for (i = 0; i < pps->num_extra_slice_header_bits; i++)
skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
sh->slice_type = get_ue_golomb_long(gb);
if (!(sh->slice_type == HEVC_SLICE_I ||
sh->slice_type == HEVC_SLICE_P ||
sh->slice_type == HEVC_SLICE_B)) {
av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
sh->slice_type);
return AVERROR_INVALIDDATA;
}
if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I &&
!pps->pps_curr_pic_ref_enabled_flag &&
s->nuh_layer_id == 0) {
av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
return AVERROR_INVALIDDATA;
}
// when flag is not present, picture is inferred to be output
sh->pic_output_flag = 1;
if (pps->output_flag_present_flag)
sh->pic_output_flag = get_bits1(gb);
if (sps->separate_colour_plane)
sh->colour_plane_id = get_bits(gb, 2);
if (!IS_IDR(s) ||
(s->nuh_layer_id > 0 &&
!(vps->poc_lsb_not_present & (1 << layer_idx)))) {
int poc;
sh->pic_order_cnt_lsb = get_bits(gb, sps->log2_max_poc_lsb);
poc = ff_hevc_compute_poc(sps, s->poc_tid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
if (!sh->first_slice_in_pic_flag && poc != sh->poc) {
av_log(s->avctx, AV_LOG_WARNING,
"Ignoring POC change between slices: %d -> %d\n", poc, sh->poc);
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
poc = sh->poc;
}
sh->poc = poc;
}
if (!IS_IDR(s)) {
int pos;
sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
pos = get_bits_left(gb);
if (!sh->short_term_ref_pic_set_sps_flag) {
ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, sps, 1);
if (ret < 0)
return ret;
sh->short_term_rps = &sh->slice_rps;
} else {
int numbits, rps_idx;
if (!sps->nb_st_rps) {
av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
return AVERROR_INVALIDDATA;
}
numbits = av_ceil_log2(sps->nb_st_rps);
rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
sh->short_term_rps = &sps->st_rps[rps_idx];
}
sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
pos = get_bits_left(gb);
ret = decode_lt_rps(sps, &sh->long_term_rps, gb, sh->poc, sh->pic_order_cnt_lsb);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
if (sps->temporal_mvp_enabled)
sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
else
sh->slice_temporal_mvp_enabled_flag = 0;
} else {
sh->poc = 0;
sh->pic_order_cnt_lsb = 0;
sh->short_term_ref_pic_set_sps_flag = 0;
sh->short_term_ref_pic_set_size = 0;
sh->short_term_rps = NULL;
sh->long_term_ref_pic_set_size = 0;
sh->slice_temporal_mvp_enabled_flag = 0;
}
sh->inter_layer_pred = 0;
if (s->nuh_layer_id > 0) {
int num_direct_ref_layers = vps->num_direct_ref_layers[layer_idx];
if (vps->default_ref_layers_active)
sh->inter_layer_pred = !!num_direct_ref_layers;
else if (num_direct_ref_layers) {
sh->inter_layer_pred = get_bits1(gb);
if (sh->inter_layer_pred && num_direct_ref_layers > 1) {
av_log(s->avctx, AV_LOG_ERROR,
"NumDirectRefLayers>1 not supported\n");
return AVERROR_PATCHWELCOME;
}
}
}
if (sps->sao_enabled) {
sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
if (sps->chroma_format_idc) {
sh->slice_sample_adaptive_offset_flag[1] =
sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
}
} else {
sh->slice_sample_adaptive_offset_flag[0] = 0;
sh->slice_sample_adaptive_offset_flag[1] = 0;
sh->slice_sample_adaptive_offset_flag[2] = 0;
}
sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
int nb_refs;
sh->nb_refs[L0] = pps->num_ref_idx_l0_default_active;
if (sh->slice_type == HEVC_SLICE_B)
sh->nb_refs[L1] = pps->num_ref_idx_l1_default_active;
if (get_bits1(gb)) { // num_ref_idx_active_override_flag
sh->nb_refs[L0] = get_ue_golomb_31(gb) + 1;
if (sh->slice_type == HEVC_SLICE_B)
sh->nb_refs[L1] = get_ue_golomb_31(gb) + 1;
}
if (sh->nb_refs[L0] >= HEVC_MAX_REFS || sh->nb_refs[L1] >= HEVC_MAX_REFS) {
av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
sh->nb_refs[L0], sh->nb_refs[L1]);
return AVERROR_INVALIDDATA;
}
sh->rpl_modification_flag[0] = 0;
sh->rpl_modification_flag[1] = 0;
nb_refs = ff_hevc_frame_nb_refs(sh, pps, layer_idx);
if (!nb_refs) {
av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
return AVERROR_INVALIDDATA;
}
if (pps->lists_modification_present_flag && nb_refs > 1) {
sh->rpl_modification_flag[0] = get_bits1(gb);
if (sh->rpl_modification_flag[0]) {
for (i = 0; i < sh->nb_refs[L0]; i++)
sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
if (sh->slice_type == HEVC_SLICE_B) {
sh->rpl_modification_flag[1] = get_bits1(gb);
if (sh->rpl_modification_flag[1] == 1)
for (i = 0; i < sh->nb_refs[L1]; i++)
sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
}
if (sh->slice_type == HEVC_SLICE_B)
sh->mvd_l1_zero_flag = get_bits1(gb);
if (pps->cabac_init_present_flag)
sh->cabac_init_flag = get_bits1(gb);
else
sh->cabac_init_flag = 0;
sh->collocated_ref_idx = 0;
if (sh->slice_temporal_mvp_enabled_flag) {
sh->collocated_list = L0;
if (sh->slice_type == HEVC_SLICE_B)
sh->collocated_list = !get_bits1(gb);
if (sh->nb_refs[sh->collocated_list] > 1) {
sh->collocated_ref_idx = get_ue_golomb_long(gb);
if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid collocated_ref_idx: %d.\n",
sh->collocated_ref_idx);
return AVERROR_INVALIDDATA;
}
}
}
if ((pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
(pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
int ret = pred_weight_table(sh, s->avctx, sps, gb);
if (ret < 0)
return ret;
}
sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid number of merging MVP candidates: %d.\n",
sh->max_num_merge_cand);
return AVERROR_INVALIDDATA;
}
// Syntax in 7.3.6.1
if (sps->motion_vector_resolution_control_idc == 2)
sh->use_integer_mv_flag = get_bits1(gb);
else
// Inferred to be equal to motion_vector_resolution_control_idc if not present
sh->use_integer_mv_flag = sps->motion_vector_resolution_control_idc;
}
sh->slice_qp_delta = get_se_golomb(gb);
if (pps->pic_slice_level_chroma_qp_offsets_present_flag) {
sh->slice_cb_qp_offset = get_se_golomb(gb);
sh->slice_cr_qp_offset = get_se_golomb(gb);
if (sh->slice_cb_qp_offset < -12 || sh->slice_cb_qp_offset > 12 ||
sh->slice_cr_qp_offset < -12 || sh->slice_cr_qp_offset > 12) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid slice cx qp offset.\n");
return AVERROR_INVALIDDATA;
}
} else {
sh->slice_cb_qp_offset = 0;
sh->slice_cr_qp_offset = 0;
}
if (pps->pps_slice_act_qp_offsets_present_flag) {
sh->slice_act_y_qp_offset = get_se_golomb(gb);
sh->slice_act_cb_qp_offset = get_se_golomb(gb);
sh->slice_act_cr_qp_offset = get_se_golomb(gb);
}
if (pps->chroma_qp_offset_list_enabled_flag)
sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
else
sh->cu_chroma_qp_offset_enabled_flag = 0;
if (pps->deblocking_filter_control_present_flag) {
int deblocking_filter_override_flag = 0;
if (pps->deblocking_filter_override_enabled_flag)
deblocking_filter_override_flag = get_bits1(gb);
if (deblocking_filter_override_flag) {
sh->disable_deblocking_filter_flag = get_bits1(gb);
if (!sh->disable_deblocking_filter_flag) {
int beta_offset_div2 = get_se_golomb(gb);
int tc_offset_div2 = get_se_golomb(gb) ;
if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
tc_offset_div2 < -6 || tc_offset_div2 > 6) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid deblock filter offsets: %d, %d\n",
beta_offset_div2, tc_offset_div2);
return AVERROR_INVALIDDATA;
}
sh->beta_offset = beta_offset_div2 * 2;
sh->tc_offset = tc_offset_div2 * 2;
}
} else {
sh->disable_deblocking_filter_flag = pps->disable_dbf;
sh->beta_offset = pps->beta_offset;
sh->tc_offset = pps->tc_offset;
}
} else {
sh->disable_deblocking_filter_flag = 0;
sh->beta_offset = 0;
sh->tc_offset = 0;
}
if (pps->seq_loop_filter_across_slices_enabled_flag &&
(sh->slice_sample_adaptive_offset_flag[0] ||
sh->slice_sample_adaptive_offset_flag[1] ||
!sh->disable_deblocking_filter_flag)) {
sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
} else {
sh->slice_loop_filter_across_slices_enabled_flag = pps->seq_loop_filter_across_slices_enabled_flag;
}
}
sh->num_entry_point_offsets = 0;
if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) {
unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
// It would be possible to bound this tighter but this here is simpler
if (num_entry_point_offsets > get_bits_left(gb)) {
av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
return AVERROR_INVALIDDATA;
}
sh->num_entry_point_offsets = num_entry_point_offsets;
if (sh->num_entry_point_offsets > 0) {
int offset_len = get_ue_golomb_long(gb) + 1;
if (offset_len < 1 || offset_len > 32) {
sh->num_entry_point_offsets = 0;
av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
return AVERROR_INVALIDDATA;
}
av_freep(&sh->entry_point_offset);
av_freep(&sh->offset);
av_freep(&sh->size);
sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
sh->offset = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int));
sh->size = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int));
if (!sh->entry_point_offset || !sh->offset || !sh->size) {
sh->num_entry_point_offsets = 0;
av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
return AVERROR(ENOMEM);
}
for (i = 0; i < sh->num_entry_point_offsets; i++) {
unsigned val = get_bits_long(gb, offset_len);
sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
}
}
}
if (pps->slice_header_extension_present_flag) {
unsigned int length = get_ue_golomb_long(gb);
if (length*8LL > get_bits_left(gb)) {
av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
return AVERROR_INVALIDDATA;
}
for (i = 0; i < length; i++)
skip_bits(gb, 8); // slice_header_extension_data_byte
}
ret = get_bits1(gb);
if (!ret) {
av_log(s->avctx, AV_LOG_ERROR, "alignment_bit_equal_to_one=0\n");
return AVERROR_INVALIDDATA;
}
sh->data_offset = align_get_bits(gb) - gb->buffer;
// Inferred parameters
sh->slice_qp = 26U + pps->pic_init_qp_minus26 + sh->slice_qp_delta;
if (sh->slice_qp > 51 ||
sh->slice_qp < -sps->qp_bd_offset) {
av_log(s->avctx, AV_LOG_ERROR,
"The slice_qp %d is outside the valid range "
"[%d, 51].\n",
sh->slice_qp,
-sps->qp_bd_offset);
return AVERROR_INVALIDDATA;
}
sh->slice_ctb_addr_rs = sh->slice_segment_addr;
if (sh->dependent_slice_segment_flag &&
(!sh->slice_ctb_addr_rs || !pps->ctb_addr_rs_to_ts[sh->slice_ctb_addr_rs])) {
av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
return AVERROR_INVALIDDATA;
}
if (get_bits_left(gb) < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"Overread slice header by %d bits\n", -get_bits_left(gb));
return AVERROR_INVALIDDATA;
}
return 0;
}
#define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)])
#define SET_SAO(elem, value) \
do { \
if (!sao_merge_up_flag && !sao_merge_left_flag) \
sao->elem = value; \
else if (sao_merge_left_flag) \
sao->elem = CTB(l->sao, rx-1, ry).elem; \
else if (sao_merge_up_flag) \
sao->elem = CTB(l->sao, rx, ry-1).elem; \
else \
sao->elem = 0; \
} while (0)
static void hls_sao_param(HEVCLocalContext *lc, const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int rx, int ry)
{
const HEVCContext *const s = lc->parent;
int sao_merge_left_flag = 0;
int sao_merge_up_flag = 0;
SAOParams *sao = &CTB(l->sao, rx, ry);
int c_idx, i;
if (s->sh.slice_sample_adaptive_offset_flag[0] ||
s->sh.slice_sample_adaptive_offset_flag[1]) {
if (rx > 0) {
if (lc->ctb_left_flag)
sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(lc);
}
if (ry > 0 && !sao_merge_left_flag) {
if (lc->ctb_up_flag)
sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(lc);
}
}
for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) {
int log2_sao_offset_scale = c_idx == 0 ? pps->log2_sao_offset_scale_luma :
pps->log2_sao_offset_scale_chroma;
if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
sao->type_idx[c_idx] = SAO_NOT_APPLIED;
continue;
}
if (c_idx == 2) {
sao->type_idx[2] = sao->type_idx[1];
sao->eo_class[2] = sao->eo_class[1];
} else {
SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(lc));
}
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
continue;
for (i = 0; i < 4; i++)
SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(lc, sps->bit_depth));
if (sao->type_idx[c_idx] == SAO_BAND) {
for (i = 0; i < 4; i++) {
if (sao->offset_abs[c_idx][i]) {
SET_SAO(offset_sign[c_idx][i],
ff_hevc_sao_offset_sign_decode(lc));
} else {
sao->offset_sign[c_idx][i] = 0;
}
}
SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(lc));
} else if (c_idx != 2) {
SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(lc));
}
// Inferred parameters
sao->offset_val[c_idx][0] = 0;
for (i = 0; i < 4; i++) {
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
if (sao->type_idx[c_idx] == SAO_EDGE) {
if (i > 1)
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
} else if (sao->offset_sign[c_idx][i]) {
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
}
sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
}
}
}
#undef SET_SAO
#undef CTB
static int hls_cross_component_pred(HEVCLocalContext *lc, int idx)
{
int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(lc, idx);
if (log2_res_scale_abs_plus1 != 0) {
int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(lc, idx);
lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
(1 - 2 * res_scale_sign_flag);
} else {
lc->tu.res_scale_val = 0;
}
return 0;
}
static int hls_transform_unit(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
{
const HEVCContext *const s = lc->parent;
const int log2_trafo_size_c = log2_trafo_size - sps->hshift[1];
int i;
if (lc->cu.pred_mode == MODE_INTRA) {
int trafo_size = 1 << log2_trafo_size;
ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size, trafo_size, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, x0, y0, 0);
}
if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
(sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
int scan_idx = SCAN_DIAG;
int scan_idx_c = SCAN_DIAG;
int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
(sps->chroma_format_idc == 2 &&
(cbf_cb[1] || cbf_cr[1]));
if (pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(lc);
if (lc->tu.cu_qp_delta != 0)
if (ff_hevc_cu_qp_delta_sign_flag(lc) == 1)
lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
lc->tu.is_cu_qp_delta_coded = 1;
if (lc->tu.cu_qp_delta < -(26 + sps->qp_bd_offset / 2) ||
lc->tu.cu_qp_delta > (25 + sps->qp_bd_offset / 2)) {
av_log(s->avctx, AV_LOG_ERROR,
"The cu_qp_delta %d is outside the valid range "
"[%d, %d].\n",
lc->tu.cu_qp_delta,
-(26 + sps->qp_bd_offset / 2),
(25 + sps->qp_bd_offset / 2));
return AVERROR_INVALIDDATA;
}
ff_hevc_set_qPy(lc, l, pps, cb_xBase, cb_yBase, log2_cb_size);
}
if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
!lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(lc);
if (cu_chroma_qp_offset_flag) {
int cu_chroma_qp_offset_idx = 0;
if (pps->chroma_qp_offset_list_len_minus1 > 0) {
cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(lc, pps->chroma_qp_offset_list_len_minus1);
av_log(s->avctx, AV_LOG_ERROR,
"cu_chroma_qp_offset_idx not yet tested.\n");
}
lc->tu.cu_qp_offset_cb = pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
lc->tu.cu_qp_offset_cr = pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
} else {
lc->tu.cu_qp_offset_cb = 0;
lc->tu.cu_qp_offset_cr = 0;
}
lc->tu.is_cu_chroma_qp_offset_coded = 1;
}
if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
if (lc->tu.intra_pred_mode >= 6 &&
lc->tu.intra_pred_mode <= 14) {
scan_idx = SCAN_VERT;
} else if (lc->tu.intra_pred_mode >= 22 &&
lc->tu.intra_pred_mode <= 30) {
scan_idx = SCAN_HORIZ;
}
if (lc->tu.intra_pred_mode_c >= 6 &&
lc->tu.intra_pred_mode_c <= 14) {
scan_idx_c = SCAN_VERT;
} else if (lc->tu.intra_pred_mode_c >= 22 &&
lc->tu.intra_pred_mode_c <= 30) {
scan_idx_c = SCAN_HORIZ;
}
}
lc->tu.cross_pf = 0;
if (cbf_luma)
ff_hevc_hls_residual_coding(lc, pps, x0, y0, log2_trafo_size, scan_idx, 0);
if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) {
int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]);
int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]);
lc->tu.cross_pf = (pps->cross_component_prediction_enabled_flag && cbf_luma &&
(lc->cu.pred_mode == MODE_INTER ||
(lc->tu.chroma_mode_c == 4)));
if (lc->tu.cross_pf) {
hls_cross_component_pred(lc, 0);
}
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
if (lc->cu.pred_mode == MODE_INTRA) {
ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 1);
}
if (cbf_cb[i])
ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c),
log2_trafo_size_c, scan_idx_c, 1);
else
if (lc->tu.cross_pf) {
ptrdiff_t stride = s->cur_frame->f->linesize[1];
int hshift = sps->hshift[1];
int vshift = sps->vshift[1];
const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
int size = 1 << log2_trafo_size_c;
uint8_t *dst = &s->cur_frame->f->data[1][(y0 >> vshift) * stride +
((x0 >> hshift) << sps->pixel_shift)];
for (i = 0; i < (size * size); i++) {
coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
}
s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
}
}
if (lc->tu.cross_pf) {
hls_cross_component_pred(lc, 1);
}
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
if (lc->cu.pred_mode == MODE_INTRA) {
ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 2);
}
if (cbf_cr[i])
ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c),
log2_trafo_size_c, scan_idx_c, 2);
else
if (lc->tu.cross_pf) {
ptrdiff_t stride = s->cur_frame->f->linesize[2];
int hshift = sps->hshift[2];
int vshift = sps->vshift[2];
const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
int size = 1 << log2_trafo_size_c;
uint8_t *dst = &s->cur_frame->f->data[2][(y0 >> vshift) * stride +
((x0 >> hshift) << sps->pixel_shift)];
for (i = 0; i < (size * size); i++) {
coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
}
s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
}
}
} else if (sps->chroma_format_idc && blk_idx == 3) {
int trafo_size_h = 1 << (log2_trafo_size + 1);
int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]);
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
if (lc->cu.pred_mode == MODE_INTRA) {
ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 1);
}
if (cbf_cb[i])
ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size),
log2_trafo_size, scan_idx_c, 1);
}
for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) {
if (lc->cu.pred_mode == MODE_INTRA) {
ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 2);
}
if (cbf_cr[i])
ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size),
log2_trafo_size, scan_idx_c, 2);
}
}
} else if (sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
if (log2_trafo_size > 2 || sps->chroma_format_idc == 3) {
int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]);
int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]);
ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size_h, trafo_size_v,
sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 1);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 2);
if (sps->chroma_format_idc == 2) {
ff_hevc_set_neighbour_available(lc, x0, y0 + (1 << log2_trafo_size_c),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 1);
s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 2);
}
} else if (blk_idx == 3) {
int trafo_size_h = 1 << (log2_trafo_size + 1);
int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]);
ff_hevc_set_neighbour_available(lc, xBase, yBase,
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 1);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 2);
if (sps->chroma_format_idc == 2) {
ff_hevc_set_neighbour_available(lc, xBase, yBase + (1 << log2_trafo_size),
trafo_size_h, trafo_size_v, sps->log2_ctb_size);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 1);
s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 2);
}
}
}
return 0;
}
static void set_deblocking_bypass(uint8_t *is_pcm, const HEVCSPS *sps,
int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
int log2_min_pu_size = sps->log2_min_pu_size;
int min_pu_width = sps->min_pu_width;
int x_end = FFMIN(x0 + cb_size, sps->width);
int y_end = FFMIN(y0 + cb_size, sps->height);
int i, j;
for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
is_pcm[i + j * min_pu_width] = 2;
}
static int hls_transform_tree(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int trafo_depth, int blk_idx,
const int *base_cbf_cb, const int *base_cbf_cr)
{
const HEVCContext *const s = lc->parent;
uint8_t split_transform_flag;
int cbf_cb[2];
int cbf_cr[2];
int ret;
cbf_cb[0] = base_cbf_cb[0];
cbf_cb[1] = base_cbf_cb[1];
cbf_cr[0] = base_cbf_cr[0];
cbf_cr[1] = base_cbf_cr[1];
if (lc->cu.intra_split_flag) {
if (trafo_depth == 1) {
lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
if (sps->chroma_format_idc == 3) {
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
} else {
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
}
}
} else {
lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
}
if (log2_trafo_size <= sps->log2_max_trafo_size &&
log2_trafo_size > sps->log2_min_tb_size &&
trafo_depth < lc->cu.max_trafo_depth &&
!(lc->cu.intra_split_flag && trafo_depth == 0)) {
split_transform_flag = ff_hevc_split_transform_flag_decode(lc, log2_trafo_size);
} else {
int inter_split = sps->max_transform_hierarchy_depth_inter == 0 &&
lc->cu.pred_mode == MODE_INTER &&
lc->cu.part_mode != PART_2Nx2N &&
trafo_depth == 0;
split_transform_flag = log2_trafo_size > sps->log2_max_trafo_size ||
(lc->cu.intra_split_flag && trafo_depth == 0) ||
inter_split;
}
if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) {
if (trafo_depth == 0 || cbf_cb[0]) {
cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
}
}
if (trafo_depth == 0 || cbf_cr[0]) {
cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth);
}
}
}
if (split_transform_flag) {
const int trafo_size_split = 1 << (log2_trafo_size - 1);
const int x1 = x0 + trafo_size_split;
const int y1 = y0 + trafo_size_split;
#define SUBDIVIDE(x, y, idx) \
do { \
ret = hls_transform_tree(lc, l, pps, sps, \
x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
log2_trafo_size - 1, trafo_depth + 1, idx, \
cbf_cb, cbf_cr); \
if (ret < 0) \
return ret; \
} while (0)
SUBDIVIDE(x0, y0, 0);
SUBDIVIDE(x1, y0, 1);
SUBDIVIDE(x0, y1, 2);
SUBDIVIDE(x1, y1, 3);
#undef SUBDIVIDE
} else {
int min_tu_size = 1 << sps->log2_min_tb_size;
int log2_min_tu_size = sps->log2_min_tb_size;
int min_tu_width = sps->min_tb_width;
int cbf_luma = 1;
if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
cbf_cb[0] || cbf_cr[0] ||
(sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
cbf_luma = ff_hevc_cbf_luma_decode(lc, trafo_depth);
}
ret = hls_transform_unit(lc, l, pps, sps,
x0, y0, xBase, yBase, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size,
blk_idx, cbf_luma, cbf_cb, cbf_cr);
if (ret < 0)
return ret;
// TODO: store cbf_luma somewhere else
if (cbf_luma) {
int i, j;
for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
int x_tu = (x0 + j) >> log2_min_tu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
l->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
}
}
if (!s->sh.disable_deblocking_filter_flag) {
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_trafo_size);
if (pps->transquant_bypass_enable_flag &&
lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_trafo_size);
}
}
return 0;
}
static int hls_pcm_sample(HEVCLocalContext *lc, const HEVCLayerContext *l,
const HEVCPPS *pps, int x0, int y0, int log2_cb_size)
{
const HEVCContext *const s = lc->parent;
const HEVCSPS *const sps = pps->sps;
GetBitContext gb;
int cb_size = 1 << log2_cb_size;
ptrdiff_t stride0 = s->cur_frame->f->linesize[0];
ptrdiff_t stride1 = s->cur_frame->f->linesize[1];
ptrdiff_t stride2 = s->cur_frame->f->linesize[2];
uint8_t *dst0 = &s->cur_frame->f->data[0][y0 * stride0 + (x0 << sps->pixel_shift)];
uint8_t *dst1 = &s->cur_frame->f->data[1][(y0 >> sps->vshift[1]) * stride1 + ((x0 >> sps->hshift[1]) << sps->pixel_shift)];
uint8_t *dst2 = &s->cur_frame->f->data[2][(y0 >> sps->vshift[2]) * stride2 + ((x0 >> sps->hshift[2]) << sps->pixel_shift)];
int length = cb_size * cb_size * sps->pcm.bit_depth +
(((cb_size >> sps->hshift[1]) * (cb_size >> sps->vshift[1])) +
((cb_size >> sps->hshift[2]) * (cb_size >> sps->vshift[2]))) *
sps->pcm.bit_depth_chroma;
const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
int ret;
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
ret = init_get_bits(&gb, pcm, length);
if (ret < 0)
return ret;
s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, sps->pcm.bit_depth);
if (sps->chroma_format_idc) {
s->hevcdsp.put_pcm(dst1, stride1,
cb_size >> sps->hshift[1],
cb_size >> sps->vshift[1],
&gb, sps->pcm.bit_depth_chroma);
s->hevcdsp.put_pcm(dst2, stride2,
cb_size >> sps->hshift[2],
cb_size >> sps->vshift[2],
&gb, sps->pcm.bit_depth_chroma);
}
return 0;
}
/**
* 8.5.3.2.2.1 Luma sample unidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param luma_weight weighting factor applied to the luma prediction
* @param luma_offset additive offset applied to the luma prediction value
*/
static void luma_mc_uni(HEVCLocalContext *lc,
const HEVCPPS *pps, const HEVCSPS *sps,
uint8_t *dst, ptrdiff_t dststride,
const AVFrame *ref, const Mv *mv, int x_off, int y_off,
int block_w, int block_h, int luma_weight, int luma_offset)
{
const HEVCContext *const s = lc->parent;
const uint8_t *src = ref->data[0];
ptrdiff_t srcstride = ref->linesize[0];
int pic_width = sps->width;
int pic_height = sps->height;
int mx = mv->x & 3;
int my = mv->y & 3;
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
int idx = hevc_pel_weight[block_w];
x_off += mv->x >> 2;
y_off += mv->y >> 2;
src += y_off * srcstride + (x_off * (1 << sps->pixel_shift));
if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off >= pic_height - block_h - QPEL_EXTRA_AFTER ||
ref == s->cur_frame->f) {
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
edge_emu_stride, srcstride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src = lc->edge_emu_buffer + buf_offset;
srcstride = edge_emu_stride;
}
if (!weight_flag)
s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
block_h, mx, my, block_w);
else
s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
block_h, s->sh.luma_log2_weight_denom,
luma_weight, luma_offset, mx, my, block_w);
}
/**
* 8.5.3.2.2.1 Luma sample bidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref0 reference picture0 buffer at origin (0, 0)
* @param mv0 motion vector0 (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param ref1 reference picture1 buffer at origin (0, 0)
* @param mv1 motion vector1 (relative to block position) to get pixel data from
* @param current_mv current motion vector structure
*/
static void luma_mc_bi(HEVCLocalContext *lc,
const HEVCPPS *pps, const HEVCSPS *sps,
uint8_t *dst, ptrdiff_t dststride,
const AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
int block_w, int block_h, const AVFrame *ref1,
const Mv *mv1, struct MvField *current_mv)
{
const HEVCContext *const s = lc->parent;
ptrdiff_t src0stride = ref0->linesize[0];
ptrdiff_t src1stride = ref1->linesize[0];
int pic_width = sps->width;
int pic_height = sps->height;
int mx0 = mv0->x & 3;
int my0 = mv0->y & 3;
int mx1 = mv1->x & 3;
int my1 = mv1->y & 3;
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
int x_off0 = x_off + (mv0->x >> 2);
int y_off0 = y_off + (mv0->y >> 2);
int x_off1 = x_off + (mv1->x >> 2);
int y_off1 = y_off + (mv1->y >> 2);
int idx = hevc_pel_weight[block_w];
const uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << sps->pixel_shift);
const uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << sps->pixel_shift);
if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
edge_emu_stride, src0stride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src0 = lc->edge_emu_buffer + buf_offset;
src0stride = edge_emu_stride;
}
if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
edge_emu_stride, src1stride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src1 = lc->edge_emu_buffer2 + buf_offset;
src1stride = edge_emu_stride;
}
s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
block_h, mx0, my0, block_w);
if (!weight_flag)
s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
block_h, mx1, my1, block_w);
else
s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
block_h, s->sh.luma_log2_weight_denom,
s->sh.luma_weight_l0[current_mv->ref_idx[0]],
s->sh.luma_weight_l1[current_mv->ref_idx[1]],
s->sh.luma_offset_l0[current_mv->ref_idx[0]],
s->sh.luma_offset_l1[current_mv->ref_idx[1]],
mx1, my1, block_w);
}
/**
* 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
*
* @param s HEVC decoding context
* @param dst1 target buffer for block data at block position (U plane)
* @param dst2 target buffer for block data at block position (V plane)
* @param dststride stride of the dst1 and dst2 buffers
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param chroma_weight weighting factor applied to the chroma prediction
* @param chroma_offset additive offset applied to the chroma prediction value
*/
static void chroma_mc_uni(HEVCLocalContext *lc,
const HEVCPPS *pps, const HEVCSPS *sps,
uint8_t *dst0,
ptrdiff_t dststride, const uint8_t *src0, ptrdiff_t srcstride, int reflist,
int x_off, int y_off, int block_w, int block_h,
const struct MvField *current_mv, int chroma_weight, int chroma_offset)
{
const HEVCContext *const s = lc->parent;
int pic_width = sps->width >> sps->hshift[1];
int pic_height = sps->height >> sps->vshift[1];
const Mv *mv = &current_mv->mv[reflist];
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
int idx = hevc_pel_weight[block_w];
int hshift = sps->hshift[1];
int vshift = sps->vshift[1];
intptr_t mx = av_zero_extend(mv->x, 2 + hshift);
intptr_t my = av_zero_extend(mv->y, 2 + vshift);
intptr_t _mx = mx << (1 - hshift);
intptr_t _my = my << (1 - vshift);
int emu = src0 == s->cur_frame->f->data[1] || src0 == s->cur_frame->f->data[2];
x_off += mv->x >> (2 + hshift);
y_off += mv->y >> (2 + vshift);
src0 += y_off * srcstride + (x_off * (1 << sps->pixel_shift));
if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off >= pic_height - block_h - EPEL_EXTRA_AFTER ||
emu) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << sps->pixel_shift));
int buf_offset0 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
edge_emu_stride, srcstride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off - EPEL_EXTRA_BEFORE,
y_off - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src0 = lc->edge_emu_buffer + buf_offset0;
srcstride = edge_emu_stride;
}
if (!weight_flag)
s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
block_h, _mx, _my, block_w);
else
s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
block_h, s->sh.chroma_log2_weight_denom,
chroma_weight, chroma_offset, _mx, _my, block_w);
}
/**
* 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref0 reference picture0 buffer at origin (0, 0)
* @param mv0 motion vector0 (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param ref1 reference picture1 buffer at origin (0, 0)
* @param mv1 motion vector1 (relative to block position) to get pixel data from
* @param current_mv current motion vector structure
* @param cidx chroma component(cb, cr)
*/
static void chroma_mc_bi(HEVCLocalContext *lc,
const HEVCPPS *pps, const HEVCSPS *sps,
uint8_t *dst0, ptrdiff_t dststride,
const AVFrame *ref0, const AVFrame *ref1,
int x_off, int y_off, int block_w, int block_h, const MvField *current_mv, int cidx)
{
const HEVCContext *const s = lc->parent;
const uint8_t *src1 = ref0->data[cidx+1];
const uint8_t *src2 = ref1->data[cidx+1];
ptrdiff_t src1stride = ref0->linesize[cidx+1];
ptrdiff_t src2stride = ref1->linesize[cidx+1];
int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) ||
(s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag);
int pic_width = sps->width >> sps->hshift[1];
int pic_height = sps->height >> sps->vshift[1];
const Mv *const mv0 = &current_mv->mv[0];
const Mv *const mv1 = &current_mv->mv[1];
int hshift = sps->hshift[1];
int vshift = sps->vshift[1];
intptr_t mx0 = av_zero_extend(mv0->x, 2 + hshift);
intptr_t my0 = av_zero_extend(mv0->y, 2 + vshift);
intptr_t mx1 = av_zero_extend(mv1->x, 2 + hshift);
intptr_t my1 = av_zero_extend(mv1->y, 2 + vshift);
intptr_t _mx0 = mx0 << (1 - hshift);
intptr_t _my0 = my0 << (1 - vshift);
intptr_t _mx1 = mx1 << (1 - hshift);
intptr_t _my1 = my1 << (1 - vshift);
int x_off0 = x_off + (mv0->x >> (2 + hshift));
int y_off0 = y_off + (mv0->y >> (2 + vshift));
int x_off1 = x_off + (mv1->x >> (2 + hshift));
int y_off1 = y_off + (mv1->y >> (2 + vshift));
int idx = hevc_pel_weight[block_w];
src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << sps->pixel_shift);
src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << sps->pixel_shift);
if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << sps->pixel_shift));
int buf_offset1 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
edge_emu_stride, src1stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off0 - EPEL_EXTRA_BEFORE,
y_off0 - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src1 = lc->edge_emu_buffer + buf_offset1;
src1stride = edge_emu_stride;
}
if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift;
int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << sps->pixel_shift));
int buf_offset1 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
edge_emu_stride, src2stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off1 - EPEL_EXTRA_BEFORE,
y_off1 - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src2 = lc->edge_emu_buffer2 + buf_offset1;
src2stride = edge_emu_stride;
}
s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
block_h, _mx0, _my0, block_w);
if (!weight_flag)
s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1],
src2, src2stride, lc->tmp,
block_h, _mx1, _my1, block_w);
else
s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1],
src2, src2stride, lc->tmp,
block_h,
s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
_mx1, _my1, block_w);
}
static void hevc_await_progress(const HEVCContext *s, const HEVCFrame *ref,
const Mv *mv, int y0, int height)
{
if (s->avctx->active_thread_type == FF_THREAD_FRAME ) {
int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
ff_progress_frame_await(&ref->tf, y);
}
}
static void hevc_luma_mv_mvp_mode(HEVCLocalContext *lc,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0, int nPbW,
int nPbH, int log2_cb_size, int part_idx,
int merge_idx, MvField *mv)
{
const HEVCContext *const s = lc->parent;
enum InterPredIdc inter_pred_idc = PRED_L0;
int mvp_flag;
ff_hevc_set_neighbour_available(lc, x0, y0, nPbW, nPbH, sps->log2_ctb_size);
mv->pred_flag = 0;
if (s->sh.slice_type == HEVC_SLICE_B)
inter_pred_idc = ff_hevc_inter_pred_idc_decode(lc, nPbW, nPbH);
if (inter_pred_idc != PRED_L1) {
if (s->sh.nb_refs[L0])
mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L0]);
mv->pred_flag = PF_L0;
ff_hevc_hls_mvd_coding(lc, x0, y0, 0);
mvp_flag = ff_hevc_mvp_lx_flag_decode(lc);
ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
part_idx, merge_idx, mv, mvp_flag, 0);
mv->mv[0].x += lc->pu.mvd.x;
mv->mv[0].y += lc->pu.mvd.y;
}
if (inter_pred_idc != PRED_L0) {
if (s->sh.nb_refs[L1])
mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L1]);
if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
AV_ZERO32(&lc->pu.mvd);
} else {
ff_hevc_hls_mvd_coding(lc, x0, y0, 1);
}
mv->pred_flag += PF_L1;
mvp_flag = ff_hevc_mvp_lx_flag_decode(lc);
ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
part_idx, merge_idx, mv, mvp_flag, 1);
mv->mv[1].x += lc->pu.mvd.x;
mv->mv[1].y += lc->pu.mvd.y;
}
}
static void hls_prediction_unit(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0, int nPbW, int nPbH,
int log2_cb_size, int partIdx, int idx)
{
#define POS(c_idx, x, y) \
&s->cur_frame->f->data[c_idx][((y) >> sps->vshift[c_idx]) * linesize[c_idx] + \
(((x) >> sps->hshift[c_idx]) << sps->pixel_shift)]
const HEVCContext *const s = lc->parent;
int merge_idx = 0;
struct MvField current_mv = {{{ 0 }}};
int min_pu_width = sps->min_pu_width;
MvField *tab_mvf = s->cur_frame->tab_mvf;
const RefPicList *refPicList = s->cur_frame->refPicList;
const HEVCFrame *ref0 = NULL, *ref1 = NULL;
const int *linesize = s->cur_frame->f->linesize;
uint8_t *dst0 = POS(0, x0, y0);
uint8_t *dst1 = POS(1, x0, y0);
uint8_t *dst2 = POS(2, x0, y0);
int log2_min_cb_size = sps->log2_min_cb_size;
int min_cb_width = sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int x_pu, y_pu;
int i, j;
int skip_flag = SAMPLE_CTB(l->skip_flag, x_cb, y_cb);
if (!skip_flag)
lc->pu.merge_flag = ff_hevc_merge_flag_decode(lc);
if (skip_flag || lc->pu.merge_flag) {
if (s->sh.max_num_merge_cand > 1)
merge_idx = ff_hevc_merge_idx_decode(lc);
else
merge_idx = 0;
ff_hevc_luma_mv_merge_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv);
} else {
hevc_luma_mv_mvp_mode(lc, pps, sps, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv);
}
x_pu = x0 >> sps->log2_min_pu_size;
y_pu = y0 >> sps->log2_min_pu_size;
for (j = 0; j < nPbH >> sps->log2_min_pu_size; j++)
for (i = 0; i < nPbW >> sps->log2_min_pu_size; i++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
if (current_mv.pred_flag & PF_L0) {
ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
if (!ref0 || !ref0->f)
return;
hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
}
if (current_mv.pred_flag & PF_L1) {
ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
if (!ref1 || !ref1->f)
return;
hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
}
if (current_mv.pred_flag == PF_L0) {
int x0_c = x0 >> sps->hshift[1];
int y0_c = y0 >> sps->vshift[1];
int nPbW_c = nPbW >> sps->hshift[1];
int nPbH_c = nPbH >> sps->vshift[1];
luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref0->f,
&current_mv.mv[0], x0, y0, nPbW, nPbH,
s->sh.luma_weight_l0[current_mv.ref_idx[0]],
s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
if (sps->chroma_format_idc) {
chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref0->f->data[1], ref0->f->linesize[1],
0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref0->f->data[2], ref0->f->linesize[2],
0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
}
} else if (current_mv.pred_flag == PF_L1) {
int x0_c = x0 >> sps->hshift[1];
int y0_c = y0 >> sps->vshift[1];
int nPbW_c = nPbW >> sps->hshift[1];
int nPbH_c = nPbH >> sps->vshift[1];
luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref1->f,
&current_mv.mv[1], x0, y0, nPbW, nPbH,
s->sh.luma_weight_l1[current_mv.ref_idx[1]],
s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
if (sps->chroma_format_idc) {
chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref1->f->data[1], ref1->f->linesize[1],
1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref1->f->data[2], ref1->f->linesize[2],
1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
}
} else if (current_mv.pred_flag == PF_BI) {
int x0_c = x0 >> sps->hshift[1];
int y0_c = y0 >> sps->vshift[1];
int nPbW_c = nPbW >> sps->hshift[1];
int nPbH_c = nPbH >> sps->vshift[1];
luma_mc_bi(lc, pps, sps, dst0, linesize[0], ref0->f,
&current_mv.mv[0], x0, y0, nPbW, nPbH,
ref1->f, &current_mv.mv[1], &current_mv);
if (sps->chroma_format_idc) {
chroma_mc_bi(lc, pps, sps, dst1, linesize[1], ref0->f, ref1->f,
x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
chroma_mc_bi(lc, pps, sps, dst2, linesize[2], ref0->f, ref1->f,
x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
}
}
}
/**
* 8.4.1
*/
static int luma_intra_pred_mode(HEVCLocalContext *lc, const HEVCLayerContext *l,
const HEVCSPS *sps,
int x0, int y0, int pu_size,
int prev_intra_luma_pred_flag)
{
const HEVCContext *const s = lc->parent;
int x_pu = x0 >> sps->log2_min_pu_size;
int y_pu = y0 >> sps->log2_min_pu_size;
int min_pu_width = sps->min_pu_width;
int size_in_pus = pu_size >> sps->log2_min_pu_size;
int x0b = av_zero_extend(x0, sps->log2_ctb_size);
int y0b = av_zero_extend(y0, sps->log2_ctb_size);
int cand_up = (lc->ctb_up_flag || y0b) ?
l->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
int cand_left = (lc->ctb_left_flag || x0b) ?
l->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
int y_ctb = (y0 >> (sps->log2_ctb_size)) << (sps->log2_ctb_size);
MvField *tab_mvf = s->cur_frame->tab_mvf;
int intra_pred_mode;
int candidate[3];
int i, j;
// intra_pred_mode prediction does not cross vertical CTB boundaries
if ((y0 - 1) < y_ctb)
cand_up = INTRA_DC;
if (cand_left == cand_up) {
if (cand_left < 2) {
candidate[0] = INTRA_PLANAR;
candidate[1] = INTRA_DC;
candidate[2] = INTRA_ANGULAR_26;
} else {
candidate[0] = cand_left;
candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
}
} else {
candidate[0] = cand_left;
candidate[1] = cand_up;
if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
candidate[2] = INTRA_PLANAR;
} else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
candidate[2] = INTRA_DC;
} else {
candidate[2] = INTRA_ANGULAR_26;
}
}
if (prev_intra_luma_pred_flag) {
intra_pred_mode = candidate[lc->pu.mpm_idx];
} else {
if (candidate[0] > candidate[1])
FFSWAP(uint8_t, candidate[0], candidate[1]);
if (candidate[0] > candidate[2])
FFSWAP(uint8_t, candidate[0], candidate[2]);
if (candidate[1] > candidate[2])
FFSWAP(uint8_t, candidate[1], candidate[2]);
intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
for (i = 0; i < 3; i++)
if (intra_pred_mode >= candidate[i])
intra_pred_mode++;
}
/* write the intra prediction units into the mv array */
if (!size_in_pus)
size_in_pus = 1;
for (i = 0; i < size_in_pus; i++) {
memset(&l->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
intra_pred_mode, size_in_pus);
for (j = 0; j < size_in_pus; j++) {
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
}
}
return intra_pred_mode;
}
static av_always_inline void set_ct_depth(const HEVCSPS *sps, uint8_t *tab_ct_depth,
int x0, int y0,
int log2_cb_size, int ct_depth)
{
int length = (1 << log2_cb_size) >> sps->log2_min_cb_size;
int x_cb = x0 >> sps->log2_min_cb_size;
int y_cb = y0 >> sps->log2_min_cb_size;
int y;
for (y = 0; y < length; y++)
memset(&tab_ct_depth[(y_cb + y) * sps->min_cb_width + x_cb],
ct_depth, length);
}
static const uint8_t tab_mode_idx[] = {
0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
static void intra_prediction_unit(HEVCLocalContext *lc,
const HEVCLayerContext *l, const HEVCSPS *sps,
int x0, int y0,
int log2_cb_size)
{
static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
uint8_t prev_intra_luma_pred_flag[4];
int split = lc->cu.part_mode == PART_NxN;
int pb_size = (1 << log2_cb_size) >> split;
int side = split + 1;
int chroma_mode;
int i, j;
for (i = 0; i < side; i++)
for (j = 0; j < side; j++)
prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(lc);
for (i = 0; i < side; i++) {
for (j = 0; j < side; j++) {
if (prev_intra_luma_pred_flag[2 * i + j])
lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(lc);
else
lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(lc);
lc->pu.intra_pred_mode[2 * i + j] =
luma_intra_pred_mode(lc, l, sps,
x0 + pb_size * j, y0 + pb_size * i, pb_size,
prev_intra_luma_pred_flag[2 * i + j]);
}
}
if (sps->chroma_format_idc == 3) {
for (i = 0; i < side; i++) {
for (j = 0; j < side; j++) {
lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
if (chroma_mode != 4) {
if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
lc->pu.intra_pred_mode_c[2 * i + j] = 34;
else
lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
} else {
lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
}
}
}
} else if (sps->chroma_format_idc == 2) {
int mode_idx;
lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
if (chroma_mode != 4) {
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
mode_idx = 34;
else
mode_idx = intra_chroma_table[chroma_mode];
} else {
mode_idx = lc->pu.intra_pred_mode[0];
}
lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
} else if (sps->chroma_format_idc != 0) {
chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc);
if (chroma_mode != 4) {
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
lc->pu.intra_pred_mode_c[0] = 34;
else
lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
} else {
lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
}
}
}
static void intra_prediction_unit_default_value(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCSPS *sps,
int x0, int y0,
int log2_cb_size)
{
const HEVCContext *const s = lc->parent;
int pb_size = 1 << log2_cb_size;
int size_in_pus = pb_size >> sps->log2_min_pu_size;
int min_pu_width = sps->min_pu_width;
MvField *tab_mvf = s->cur_frame->tab_mvf;
int x_pu = x0 >> sps->log2_min_pu_size;
int y_pu = y0 >> sps->log2_min_pu_size;
int j, k;
if (size_in_pus == 0)
size_in_pus = 1;
for (j = 0; j < size_in_pus; j++)
memset(&l->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
if (lc->cu.pred_mode == MODE_INTRA)
for (j = 0; j < size_in_pus; j++)
for (k = 0; k < size_in_pus; k++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
}
static int hls_coding_unit(HEVCLocalContext *lc, const HEVCContext *s,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
int log2_min_cb_size = sps->log2_min_cb_size;
int length = cb_size >> log2_min_cb_size;
int min_cb_width = sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int idx = log2_cb_size - 2;
int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1;
int x, y, ret;
lc->cu.x = x0;
lc->cu.y = y0;
lc->cu.pred_mode = MODE_INTRA;
lc->cu.part_mode = PART_2Nx2N;
lc->cu.intra_split_flag = 0;
SAMPLE_CTB(l->skip_flag, x_cb, y_cb) = 0;
for (x = 0; x < 4; x++)
lc->pu.intra_pred_mode[x] = 1;
if (pps->transquant_bypass_enable_flag) {
lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(lc);
if (lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size);
} else
lc->cu.cu_transquant_bypass_flag = 0;
if (s->sh.slice_type != HEVC_SLICE_I) {
const int x0b = av_zero_extend(x0, sps->log2_ctb_size);
const int y0b = av_zero_extend(y0, sps->log2_ctb_size);
uint8_t skip_flag = ff_hevc_skip_flag_decode(lc, l->skip_flag,
x0b, y0b, x_cb, y_cb,
min_cb_width);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&l->skip_flag[x], skip_flag, length);
x += min_cb_width;
}
lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
} else {
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&l->skip_flag[x], 0, length);
x += min_cb_width;
}
}
if (SAMPLE_CTB(l->skip_flag, x_cb, y_cb)) {
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
} else {
int pcm_flag = 0;
if (s->sh.slice_type != HEVC_SLICE_I)
lc->cu.pred_mode = ff_hevc_pred_mode_decode(lc);
if (lc->cu.pred_mode != MODE_INTRA ||
log2_cb_size == sps->log2_min_cb_size) {
lc->cu.part_mode = ff_hevc_part_mode_decode(lc, sps, log2_cb_size);
lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
lc->cu.pred_mode == MODE_INTRA;
}
if (lc->cu.pred_mode == MODE_INTRA) {
if (lc->cu.part_mode == PART_2Nx2N && sps->pcm_enabled &&
log2_cb_size >= sps->pcm.log2_min_pcm_cb_size &&
log2_cb_size <= sps->pcm.log2_max_pcm_cb_size) {
pcm_flag = ff_hevc_pcm_flag_decode(lc);
}
if (pcm_flag) {
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
ret = hls_pcm_sample(lc, l, pps, x0, y0, log2_cb_size);
if (sps->pcm_loop_filter_disabled)
set_deblocking_bypass(l->is_pcm, sps, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
} else {
intra_prediction_unit(lc, l, sps, x0, y0, log2_cb_size);
}
} else {
intra_prediction_unit_default_value(lc, l, sps, x0, y0, log2_cb_size);
switch (lc->cu.part_mode) {
case PART_2Nx2N:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
break;
case PART_2NxN:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
hls_prediction_unit(lc, l, pps, sps,
x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
break;
case PART_Nx2N:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
hls_prediction_unit(lc, l, pps, sps,
x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
break;
case PART_2NxnU:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
hls_prediction_unit(lc, l, pps, sps,
x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
break;
case PART_2NxnD:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
hls_prediction_unit(lc, l, pps, sps,
x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
break;
case PART_nLx2N:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
hls_prediction_unit(lc, l, pps, sps,
x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
break;
case PART_nRx2N:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
hls_prediction_unit(lc, l, pps, sps,
x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
break;
case PART_NxN:
hls_prediction_unit(lc, l, pps, sps,
x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
hls_prediction_unit(lc, l, pps, sps,
x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
hls_prediction_unit(lc, l, pps, sps,
x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
hls_prediction_unit(lc, l, pps, sps,
x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
break;
}
}
if (!pcm_flag) {
int rqt_root_cbf = 1;
if (lc->cu.pred_mode != MODE_INTRA &&
!(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(lc);
}
if (rqt_root_cbf) {
const static int cbf[2] = { 0 };
lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
sps->max_transform_hierarchy_depth_inter;
ret = hls_transform_tree(lc, l, pps, sps, x0, y0, x0, y0, x0, y0,
log2_cb_size,
log2_cb_size, 0, 0, cbf, cbf);
if (ret < 0)
return ret;
} else {
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(lc, l, pps, x0, y0, log2_cb_size);
}
}
}
if (pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
ff_hevc_set_qPy(lc, l, pps, x0, y0, log2_cb_size);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&l->qp_y_tab[x], lc->qp_y, length);
x += min_cb_width;
}
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
lc->qPy_pred = lc->qp_y;
}
set_ct_depth(sps, l->tab_ct_depth, x0, y0, log2_cb_size, lc->ct_depth);
return 0;
}
static int hls_coding_quadtree(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x0, int y0,
int log2_cb_size, int cb_depth)
{
const HEVCContext *const s = lc->parent;
const int cb_size = 1 << log2_cb_size;
int ret;
int split_cu;
lc->ct_depth = cb_depth;
if (x0 + cb_size <= sps->width &&
y0 + cb_size <= sps->height &&
log2_cb_size > sps->log2_min_cb_size) {
split_cu = ff_hevc_split_coding_unit_flag_decode(lc, l->tab_ct_depth,
sps, cb_depth, x0, y0);
} else {
split_cu = (log2_cb_size > sps->log2_min_cb_size);
}
if (pps->cu_qp_delta_enabled_flag &&
log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_qp_delta_depth) {
lc->tu.is_cu_qp_delta_coded = 0;
lc->tu.cu_qp_delta = 0;
}
if (s->sh.cu_chroma_qp_offset_enabled_flag &&
log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_chroma_qp_offset_depth) {
lc->tu.is_cu_chroma_qp_offset_coded = 0;
}
if (split_cu) {
int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1;
const int cb_size_split = cb_size >> 1;
const int x1 = x0 + cb_size_split;
const int y1 = y0 + cb_size_split;
int more_data = 0;
more_data = hls_coding_quadtree(lc, l, pps, sps,
x0, y0, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
if (more_data && x1 < sps->width) {
more_data = hls_coding_quadtree(lc, l, pps, sps,
x1, y0, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if (more_data && y1 < sps->height) {
more_data = hls_coding_quadtree(lc, l, pps, sps,
x0, y1, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if (more_data && x1 < sps->width &&
y1 < sps->height) {
more_data = hls_coding_quadtree(lc, l, pps, sps,
x1, y1, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
lc->qPy_pred = lc->qp_y;
if (more_data)
return ((x1 + cb_size_split) < sps->width ||
(y1 + cb_size_split) < sps->height);
else
return 0;
} else {
ret = hls_coding_unit(lc, s, l, pps, sps, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
if ((!((x0 + cb_size) %
(1 << (sps->log2_ctb_size))) ||
(x0 + cb_size >= sps->width)) &&
(!((y0 + cb_size) %
(1 << (sps->log2_ctb_size))) ||
(y0 + cb_size >= sps->height))) {
int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(lc);
return !end_of_slice_flag;
} else {
return 1;
}
}
return 0;
}
static void hls_decode_neighbour(HEVCLocalContext *lc,
const HEVCLayerContext *l,
const HEVCPPS *pps, const HEVCSPS *sps,
int x_ctb, int y_ctb, int ctb_addr_ts)
{
const HEVCContext *const s = lc->parent;
int ctb_size = 1 << sps->log2_ctb_size;
int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
l->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
if (pps->entropy_coding_sync_enabled_flag) {
if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
lc->first_qp_group = 1;
lc->end_of_tiles_x = sps->width;
} else if (pps->tiles_enabled_flag) {
if (ctb_addr_ts && pps->tile_id[ctb_addr_ts] != pps->tile_id[ctb_addr_ts - 1]) {
int idxX = pps->col_idxX[x_ctb >> sps->log2_ctb_size];
lc->end_of_tiles_x = x_ctb + (pps->column_width[idxX] << sps->log2_ctb_size);
lc->first_qp_group = 1;
}
} else {
lc->end_of_tiles_x = sps->width;
}
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, sps->height);
lc->boundary_flags = 0;
if (pps->tiles_enabled_flag) {
if (x_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
lc->boundary_flags |= BOUNDARY_LEFT_TILE;
if (x_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - 1])
lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
if (y_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]])
lc->boundary_flags |= BOUNDARY_UPPER_TILE;
if (y_ctb > 0 && l->tab_slice_address[ctb_addr_rs] != l->tab_slice_address[ctb_addr_rs - sps->ctb_width])
lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
} else {
if (ctb_addr_in_slice <= 0)
lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
if (ctb_addr_in_slice < sps->ctb_width)
lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
}
lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - sps->ctb_width]]));
lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - sps->ctb_width]]));
}
static int hls_decode_entry(HEVCContext *s, GetBitContext *gb)
{
HEVCLocalContext *const lc = &s->local_ctx[0];
const HEVCLayerContext *const l = &s->layers[s->cur_layer];
const HEVCPPS *const pps = s->pps;
const HEVCSPS *const sps = pps->sps;
const uint8_t *slice_data = gb->buffer + s->sh.data_offset;
const size_t slice_size = gb->buffer_end - gb->buffer - s->sh.data_offset;
int ctb_size = 1 << sps->log2_ctb_size;
int more_data = 1;
int x_ctb = 0;
int y_ctb = 0;
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
int ret;
while (more_data && ctb_addr_ts < sps->ctb_size) {
int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
x_ctb = (ctb_addr_rs % ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size;
y_ctb = (ctb_addr_rs / ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size;
hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts);
ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, slice_data, slice_size, 0);
if (ret < 0) {
l->tab_slice_address[ctb_addr_rs] = -1;
return ret;
}
hls_sao_param(lc, l, pps, sps,
x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size);
l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0);
if (more_data < 0) {
l->tab_slice_address[ctb_addr_rs] = -1;
return more_data;
}
ctb_addr_ts++;
ff_hevc_save_states(lc, pps, ctb_addr_ts);
ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size);
}
if (x_ctb + ctb_size >= sps->width &&
y_ctb + ctb_size >= sps->height)
ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size);
return ctb_addr_ts;
}
static int hls_decode_entry_wpp(AVCodecContext *avctx, void *hevc_lclist,
int job, int thread)
{
HEVCLocalContext *lc = &((HEVCLocalContext*)hevc_lclist)[thread];
const HEVCContext *const s = lc->parent;
const HEVCLayerContext *const l = &s->layers[s->cur_layer];
const HEVCPPS *const pps = s->pps;
const HEVCSPS *const sps = pps->sps;
int ctb_size = 1 << sps->log2_ctb_size;
int more_data = 1;
int ctb_row = job;
int ctb_addr_rs = s->sh.slice_ctb_addr_rs + ctb_row * ((sps->width + ctb_size - 1) >> sps->log2_ctb_size);
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[ctb_addr_rs];
const uint8_t *data = s->data + s->sh.offset[ctb_row];
const size_t data_size = s->sh.size[ctb_row];
int ret;
if (ctb_row)
ff_init_cabac_decoder(&lc->cc, data, data_size);
while(more_data && ctb_addr_ts < sps->ctb_size) {
int x_ctb = (ctb_addr_rs % sps->ctb_width) << sps->log2_ctb_size;
int y_ctb = (ctb_addr_rs / sps->ctb_width) << sps->log2_ctb_size;
hls_decode_neighbour(lc, l, pps, sps, x_ctb, y_ctb, ctb_addr_ts);
ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
/* atomic_load's prototype requires a pointer to non-const atomic variable
* (due to implementations via mutexes, where reads involve writes).
* Of course, casting const away here is nevertheless safe. */
if (atomic_load((atomic_int*)&s->wpp_err)) {
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
return 0;
}
ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, data, data_size, 1);
if (ret < 0)
goto error;
hls_sao_param(lc, l, pps, sps,
x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size);
l->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
l->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
l->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
more_data = hls_coding_quadtree(lc, l, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0);
if (more_data < 0) {
ret = more_data;
goto error;
}
ctb_addr_ts++;
ff_hevc_save_states(lc, pps, ctb_addr_ts);
ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
ff_hevc_hls_filters(lc, l, pps, x_ctb, y_ctb, ctb_size);
if (!more_data && (x_ctb+ctb_size) < sps->width && ctb_row != s->sh.num_entry_point_offsets) {
/* Casting const away here is safe, because it is an atomic operation. */
atomic_store((atomic_int*)&s->wpp_err, 1);
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
return 0;
}
if ((x_ctb+ctb_size) >= sps->width && (y_ctb+ctb_size) >= sps->height ) {
ff_hevc_hls_filter(lc, l, pps, x_ctb, y_ctb, ctb_size);
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
return ctb_addr_ts;
}
ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts];
x_ctb+=ctb_size;
if(x_ctb >= sps->width) {
break;
}
}
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
return 0;
error:
l->tab_slice_address[ctb_addr_rs] = -1;
/* Casting const away here is safe, because it is an atomic operation. */
atomic_store((atomic_int*)&s->wpp_err, 1);
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
return ret;
}
static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
{
const HEVCPPS *const pps = s->pps;
const HEVCSPS *const sps = pps->sps;
const uint8_t *data = nal->data;
int length = nal->size;
int *ret;
int64_t offset;
int64_t startheader, cmpt = 0;
int i, j, res = 0;
if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * sps->ctb_width >= sps->ctb_width * sps->ctb_height) {
av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
sps->ctb_width, sps->ctb_height
);
return AVERROR_INVALIDDATA;
}
if (s->avctx->thread_count > s->nb_local_ctx) {
HEVCLocalContext *tmp = av_malloc_array(s->avctx->thread_count, sizeof(*s->local_ctx));
if (!tmp)
return AVERROR(ENOMEM);
memcpy(tmp, s->local_ctx, sizeof(*s->local_ctx) * s->nb_local_ctx);
av_free(s->local_ctx);
s->local_ctx = tmp;
for (unsigned i = s->nb_local_ctx; i < s->avctx->thread_count; i++) {
tmp = &s->local_ctx[i];
memset(tmp, 0, sizeof(*tmp));
tmp->logctx = s->avctx;
tmp->parent = s;
tmp->common_cabac_state = &s->cabac;
}
s->nb_local_ctx = s->avctx->thread_count;
}
offset = s->sh.data_offset;
for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
startheader--;
cmpt++;
}
}
for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
offset += (s->sh.entry_point_offset[i - 1] - cmpt);
for (j = 0, cmpt = 0, startheader = offset
+ s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
startheader--;
cmpt++;
}
}
s->sh.size[i] = s->sh.entry_point_offset[i] - cmpt;
s->sh.offset[i] = offset;
}
offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
if (length < offset) {
av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
return AVERROR_INVALIDDATA;
}
s->sh.size [s->sh.num_entry_point_offsets] = length - offset;
s->sh.offset[s->sh.num_entry_point_offsets] = offset;
s->sh.offset[0] = s->sh.data_offset;
s->sh.size[0] = s->sh.offset[1] - s->sh.offset[0];
s->data = data;
for (i = 1; i < s->nb_local_ctx; i++) {
s->local_ctx[i].first_qp_group = 1;
s->local_ctx[i].qp_y = s->local_ctx[0].qp_y;
}
atomic_store(&s->wpp_err, 0);
res = ff_slice_thread_allocz_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
if (res < 0)
return res;
ret = av_calloc(s->sh.num_entry_point_offsets + 1, sizeof(*ret));
if (!ret)
return AVERROR(ENOMEM);
if (pps->entropy_coding_sync_enabled_flag)
s->avctx->execute2(s->avctx, hls_decode_entry_wpp, s->local_ctx, ret, s->sh.num_entry_point_offsets + 1);
for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
res += ret[i];
av_free(ret);
return res;
}
static int decode_slice_data(HEVCContext *s, const HEVCLayerContext *l,
const H2645NAL *nal, GetBitContext *gb)
{
const HEVCPPS *pps = s->pps;
int ret;
if (!s->sh.first_slice_in_pic_flag)
s->slice_idx += !s->sh.dependent_slice_segment_flag;
if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != HEVC_SLICE_I) {
ret = ff_hevc_slice_rpl(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error constructing the reference lists for the current slice.\n");
return ret;
}
}
s->slice_initialized = 1;
if (s->avctx->hwaccel)
return FF_HW_CALL(s->avctx, decode_slice, nal->raw_data, nal->raw_size);
if (s->avctx->profile == AV_PROFILE_HEVC_SCC) {
av_log(s->avctx, AV_LOG_ERROR,
"SCC profile is not yet implemented in hevc native decoder.\n");
return AVERROR_PATCHWELCOME;
}
if (s->sh.dependent_slice_segment_flag) {
int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
int prev_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
if (l->tab_slice_address[prev_rs] != s->sh.slice_addr) {
av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
return AVERROR_INVALIDDATA;
}
}
s->local_ctx[0].first_qp_group = !s->sh.dependent_slice_segment_flag;
if (!pps->cu_qp_delta_enabled_flag)
s->local_ctx[0].qp_y = s->sh.slice_qp;
s->local_ctx[0].tu.cu_qp_offset_cb = 0;
s->local_ctx[0].tu.cu_qp_offset_cr = 0;
if (s->avctx->active_thread_type == FF_THREAD_SLICE &&
s->sh.num_entry_point_offsets > 0 &&
pps->num_tile_rows == 1 && pps->num_tile_columns == 1)
return hls_slice_data_wpp(s, nal);
return hls_decode_entry(s, gb);
}
static int set_side_data(HEVCContext *s)
{
const HEVCSPS *sps = s->cur_frame->pps->sps;
AVFrame *out = s->cur_frame->f;
int ret;
// Decrement the mastering display and content light level flag when IRAP
// frame has no_rasl_output_flag=1 so the side data persists for the entire
// coded video sequence.
if (IS_IRAP(s) && s->no_rasl_output_flag) {
if (s->sei.common.mastering_display.present > 0)
s->sei.common.mastering_display.present--;
if (s->sei.common.content_light.present > 0)
s->sei.common.content_light.present--;
}
ret = ff_h2645_sei_to_frame(out, &s->sei.common, AV_CODEC_ID_HEVC, s->avctx,
&sps->vui.common,
sps->bit_depth, sps->bit_depth_chroma,
s->cur_frame->poc /* no poc_offset in HEVC */);
if (ret < 0)
return ret;
if (s->sei.timecode.present) {
uint32_t *tc_sd;
char tcbuf[AV_TIMECODE_STR_SIZE];
AVFrameSideData *tcside;
ret = ff_frame_new_side_data(s->avctx, out, AV_FRAME_DATA_S12M_TIMECODE,
sizeof(uint32_t) * 4, &tcside);
if (ret < 0)
return ret;
if (tcside) {
tc_sd = (uint32_t*)tcside->data;
tc_sd[0] = s->sei.timecode.num_clock_ts;
for (int i = 0; i < tc_sd[0]; i++) {
int drop = s->sei.timecode.cnt_dropped_flag[i];
int hh = s->sei.timecode.hours_value[i];
int mm = s->sei.timecode.minutes_value[i];
int ss = s->sei.timecode.seconds_value[i];
int ff = s->sei.timecode.n_frames[i];
tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff);
av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0);
av_dict_set(&out->metadata, "timecode", tcbuf, 0);
}
}
s->sei.timecode.num_clock_ts = 0;
}
if (s->sei.common.dynamic_hdr_plus.info) {
AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_plus.info);
if (!info_ref)
return AVERROR(ENOMEM);
ret = ff_frame_new_side_data_from_buf(s->avctx, out, AV_FRAME_DATA_DYNAMIC_HDR_PLUS, &info_ref);
if (ret < 0)
return ret;
}
if (s->rpu_buf) {
AVFrameSideData *rpu = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DOVI_RPU_BUFFER, s->rpu_buf);
if (!rpu)
return AVERROR(ENOMEM);
s->rpu_buf = NULL;
}
if ((ret = ff_dovi_attach_side_data(&s->dovi_ctx, out)) < 0)
return ret;
if (s->sei.common.dynamic_hdr_vivid.info) {
AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_vivid.info);
if (!info_ref)
return AVERROR(ENOMEM);
if (!av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DYNAMIC_HDR_VIVID, info_ref)) {
av_buffer_unref(&info_ref);
return AVERROR(ENOMEM);
}
}
return 0;
}
static int find_finish_setup_nal(const HEVCContext *s)
{
int nal_idx = 0;
for (int i = nal_idx; i < s->pkt.nb_nals; i++) {
const H2645NAL *nal = &s->pkt.nals[i];
const int layer_id = nal->nuh_layer_id;
GetBitContext gb = nal->gb;
if (layer_id > HEVC_MAX_NUH_LAYER_ID || s->vps->layer_idx[layer_id] < 0 ||
!(s->layers_active_decode & (1 << s->vps->layer_idx[layer_id])))
continue;
switch (nal->type) {
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
if (!get_bits1(&gb)) // first_slice_segment_in_pic_flag
continue;
case HEVC_NAL_VPS:
case HEVC_NAL_SPS:
case HEVC_NAL_PPS:
nal_idx = i;
break;
}
}
return nal_idx;
}
static int hevc_frame_start(HEVCContext *s, HEVCLayerContext *l,
unsigned nal_idx)
{
const HEVCPPS *const pps = s->ps.pps_list[s->sh.pps_id];
const HEVCSPS *const sps = pps->sps;
int pic_size_in_ctb = ((sps->width >> sps->log2_min_cb_size) + 1) *
((sps->height >> sps->log2_min_cb_size) + 1);
int new_sequence = (l == &s->layers[0]) &&
(IS_IDR(s) || IS_BLA(s) || s->last_eos);
int prev_layers_active_decode = s->layers_active_decode;
int prev_layers_active_output = s->layers_active_output;
int ret;
if (sps->vps != s->vps && l != &s->layers[0]) {
av_log(s->avctx, AV_LOG_ERROR, "VPS changed in a non-base layer\n");
set_sps(s, l, NULL);
return AVERROR_INVALIDDATA;
}
ff_refstruct_replace(&s->pps, pps);
if (l->sps != sps) {
const HEVCSPS *sps_base = s->layers[0].sps;
enum AVPixelFormat pix_fmt = sps->pix_fmt;
if (l != &s->layers[0]) {
if (!sps_base) {
av_log(s->avctx, AV_LOG_ERROR,
"Access unit starts with a non-base layer frame\n");
return AVERROR_INVALIDDATA;
}
// Files produced by Vision Pro lack VPS extension VUI,
// so the secondary layer has no range information.
// This check avoids failing in such a case.
if (sps_base->pix_fmt == AV_PIX_FMT_YUVJ420P &&
sps->pix_fmt == AV_PIX_FMT_YUV420P &&
!sps->vui.common.video_signal_type_present_flag)
pix_fmt = sps_base->pix_fmt;
if (pix_fmt != sps_base->pix_fmt ||
sps->width != sps_base->width ||
sps->height != sps_base->height) {
av_log(s->avctx, AV_LOG_ERROR,
"Base/non-base layer SPS have unsupported parameter combination\n");
return AVERROR(ENOSYS);
}
}
ff_hevc_clear_refs(l);
ret = set_sps(s, l, sps);
if (ret < 0)
return ret;
if (l == &s->layers[0]) {
export_stream_params(s, sps);
ret = get_format(s, sps);
if (ret < 0) {
set_sps(s, l, NULL);
return ret;
}
new_sequence = 1;
}
}
memset(l->horizontal_bs, 0, l->bs_width * l->bs_height);
memset(l->vertical_bs, 0, l->bs_width * l->bs_height);
memset(l->cbf_luma, 0, sps->min_tb_width * sps->min_tb_height);
memset(l->is_pcm, 0, (sps->min_pu_width + 1) * (sps->min_pu_height + 1));
memset(l->tab_slice_address, -1, pic_size_in_ctb * sizeof(*l->tab_slice_address));
if (IS_IDR(s))
ff_hevc_clear_refs(l);
s->slice_idx = 0;
s->first_nal_type = s->nal_unit_type;
s->poc = s->sh.poc;
if (IS_IRAP(s))
s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) ||
(s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
/* 8.3.1 */
if (s->temporal_id == 0 &&
s->nal_unit_type != HEVC_NAL_TRAIL_N &&
s->nal_unit_type != HEVC_NAL_TSA_N &&
s->nal_unit_type != HEVC_NAL_STSA_N &&
s->nal_unit_type != HEVC_NAL_RADL_N &&
s->nal_unit_type != HEVC_NAL_RADL_R &&
s->nal_unit_type != HEVC_NAL_RASL_N &&
s->nal_unit_type != HEVC_NAL_RASL_R)
s->poc_tid0 = s->poc;
if (pps->tiles_enabled_flag)
s->local_ctx[0].end_of_tiles_x = pps->column_width[0] << sps->log2_ctb_size;
if (new_sequence) {
ret = ff_hevc_output_frames(s, prev_layers_active_decode, prev_layers_active_output,
0, 0, s->sh.no_output_of_prior_pics_flag);
if (ret < 0)
return ret;
}
ret = export_stream_params_from_sei(s);
if (ret < 0)
return ret;
ret = ff_hevc_set_new_ref(s, l, s->poc);
if (ret < 0)
goto fail;
ret = ff_hevc_frame_rps(s, l);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
goto fail;
}
if (IS_IRAP(s))
s->cur_frame->f->flags |= AV_FRAME_FLAG_KEY;
else
s->cur_frame->f->flags &= ~AV_FRAME_FLAG_KEY;
s->cur_frame->needs_fg = (s->sei.common.film_grain_characteristics.present ||
s->sei.common.aom_film_grain.enable) &&
!(s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN) &&
!s->avctx->hwaccel;
ret = set_side_data(s);
if (ret < 0)
goto fail;
if (s->cur_frame->needs_fg &&
(s->sei.common.film_grain_characteristics.present &&
!ff_h274_film_grain_params_supported(s->sei.common.film_grain_characteristics.model_id,
s->cur_frame->f->format) ||
!av_film_grain_params_select(s->cur_frame->f))) {
av_log_once(s->avctx, AV_LOG_WARNING, AV_LOG_DEBUG, &s->film_grain_warning_shown,
"Unsupported film grain parameters. Ignoring film grain.\n");
s->cur_frame->needs_fg = 0;
}
if (s->cur_frame->needs_fg) {
s->cur_frame->frame_grain->format = s->cur_frame->f->format;
s->cur_frame->frame_grain->width = s->cur_frame->f->width;
s->cur_frame->frame_grain->height = s->cur_frame->f->height;
if ((ret = ff_thread_get_buffer(s->avctx, s->cur_frame->frame_grain, 0)) < 0)
goto fail;
ret = av_frame_copy_props(s->cur_frame->frame_grain, s->cur_frame->f);
if (ret < 0)
goto fail;
}
s->cur_frame->f->pict_type = 3 - s->sh.slice_type;
ret = ff_hevc_output_frames(s, s->layers_active_decode, s->layers_active_output,
sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics,
sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering, 0);
if (ret < 0)
goto fail;
if (s->avctx->hwaccel) {
ret = FF_HW_CALL(s->avctx, start_frame, NULL, 0);
if (ret < 0)
goto fail;
}
// after starting the base-layer frame we know which layers will be decoded,
// so we can now figure out which NALUs to wait for before we can call
// ff_thread_finish_setup()
if (l == &s->layers[0])
s->finish_setup_nal_idx = find_finish_setup_nal(s);
if (nal_idx >= s->finish_setup_nal_idx)
ff_thread_finish_setup(s->avctx);
return 0;
fail:
if (l->cur_frame)
ff_hevc_unref_frame(l->cur_frame, ~0);
l->cur_frame = NULL;
s->cur_frame = s->collocated_ref = NULL;
s->slice_initialized = 0;
return ret;
}
static int verify_md5(HEVCContext *s, AVFrame *frame)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
char msg_buf[4 * (50 + 2 * 2 * 16 /* MD5-size */)];
int pixel_shift;
int err = 0;
int i, j;
if (!desc)
return AVERROR(EINVAL);
pixel_shift = desc->comp[0].depth > 8;
/* the checksums are LE, so we have to byteswap for >8bpp formats
* on BE arches */
#if HAVE_BIGENDIAN
if (pixel_shift && !s->checksum_buf) {
av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
FFMAX3(frame->linesize[0], frame->linesize[1],
frame->linesize[2]));
if (!s->checksum_buf)
return AVERROR(ENOMEM);
}
#endif
msg_buf[0] = '\0';
for (i = 0; frame->data[i]; i++) {
int width = s->avctx->coded_width;
int height = s->avctx->coded_height;
int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
uint8_t md5[16];
av_md5_init(s->md5_ctx);
for (j = 0; j < h; j++) {
const uint8_t *src = frame->data[i] + j * frame->linesize[i];
#if HAVE_BIGENDIAN
if (pixel_shift) {
s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
(const uint16_t *) src, w);
src = s->checksum_buf;
}
#endif
av_md5_update(s->md5_ctx, src, w << pixel_shift);
}
av_md5_final(s->md5_ctx, md5);
#define MD5_PRI "%016" PRIx64 "%016" PRIx64
#define MD5_PRI_ARG(buf) AV_RB64(buf), AV_RB64((const uint8_t*)(buf) + 8)
if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
av_strlcatf(msg_buf, sizeof(msg_buf),
"plane %d - correct " MD5_PRI "; ",
i, MD5_PRI_ARG(md5));
} else {
av_strlcatf(msg_buf, sizeof(msg_buf),
"mismatching checksum of plane %d - " MD5_PRI " != " MD5_PRI "; ",
i, MD5_PRI_ARG(md5), MD5_PRI_ARG(s->sei.picture_hash.md5[i]));
err = AVERROR_INVALIDDATA;
}
}
av_log(s->avctx, err < 0 ? AV_LOG_ERROR : AV_LOG_DEBUG,
"Verifying checksum for frame with POC %d: %s\n",
s->poc, msg_buf);
return err;
}
static int hevc_frame_end(HEVCContext *s, HEVCLayerContext *l)
{
HEVCFrame *out = l->cur_frame;
const AVFilmGrainParams *fgp;
av_unused int ret;
if (out->needs_fg) {
av_assert0(out->frame_grain->buf[0]);
fgp = av_film_grain_params_select(out->f);
switch (fgp->type) {
case AV_FILM_GRAIN_PARAMS_NONE:
av_assert0(0);
return AVERROR_BUG;
case AV_FILM_GRAIN_PARAMS_H274:
ret = ff_h274_apply_film_grain(out->frame_grain, out->f,
&s->h274db, fgp);
break;
case AV_FILM_GRAIN_PARAMS_AV1:
ret = ff_aom_apply_film_grain(out->frame_grain, out->f, fgp);
break;
}
av_assert1(ret >= 0);
}
if (s->avctx->hwaccel) {
ret = FF_HW_SIMPLE_CALL(s->avctx, end_frame);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"hardware accelerator failed to decode picture\n");
return ret;
}
} else {
if (s->avctx->err_recognition & AV_EF_CRCCHECK &&
s->sei.picture_hash.is_md5) {
ret = verify_md5(s, out->f);
if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
}
}
s->sei.picture_hash.is_md5 = 0;
av_log(s->avctx, AV_LOG_DEBUG, "Decoded frame with POC %zu/%d.\n",
l - s->layers, s->poc);
return 0;
}
static int decode_slice(HEVCContext *s, unsigned nal_idx, GetBitContext *gb)
{
const int layer_idx = s->vps ? s->vps->layer_idx[s->nuh_layer_id] : 0;
HEVCLayerContext *l;
int ret;
// skip layers not requested to be decoded
// layers_active_decode can only change while decoding a base-layer frame,
// so we can check it for non-base layers
if (layer_idx < 0 ||
(s->nuh_layer_id > 0 && !(s->layers_active_decode & (1 << layer_idx))))
return 0;
ret = hls_slice_header(&s->sh, s, gb);
if (ret < 0) {
// hls_slice_header() does not cleanup on failure thus the state now is inconsistant so we cannot use it on depandant slices
s->slice_initialized = 0;
return ret;
}
if ((s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
(s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
(s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s)) ||
((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
s->no_rasl_output_flag)) {
return 0;
}
// switching to a new layer, mark previous layer's frame (if any) as done
if (s->cur_layer != layer_idx &&
s->layers[s->cur_layer].cur_frame &&
s->avctx->active_thread_type == FF_THREAD_FRAME)
ff_progress_frame_report(&s->layers[s->cur_layer].cur_frame->tf, INT_MAX);
s->cur_layer = layer_idx;
l = &s->layers[s->cur_layer];
if (s->sh.first_slice_in_pic_flag) {
if (l->cur_frame) {
av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
return AVERROR_INVALIDDATA;
}
ret = hevc_frame_start(s, l, nal_idx);
if (ret < 0)
return ret;
} else if (!l->cur_frame) {
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
return AVERROR_INVALIDDATA;
}
if (s->nal_unit_type != s->first_nal_type) {
av_log(s->avctx, AV_LOG_ERROR,
"Non-matching NAL types of the VCL NALUs: %d %d\n",
s->first_nal_type, s->nal_unit_type);
return AVERROR_INVALIDDATA;
}
ret = decode_slice_data(s, l, &s->pkt.nals[nal_idx], gb);
if (ret < 0)
return ret;
return 0;
}
static int decode_nal_unit(HEVCContext *s, unsigned nal_idx)
{
H2645NAL *nal = &s->pkt.nals[nal_idx];
GetBitContext gb = nal->gb;
int ret;
s->nal_unit_type = nal->type;
s->nuh_layer_id = nal->nuh_layer_id;
s->temporal_id = nal->temporal_id;
if (FF_HW_HAS_CB(s->avctx, decode_params) &&
(s->nal_unit_type == HEVC_NAL_VPS ||
s->nal_unit_type == HEVC_NAL_SPS ||
s->nal_unit_type == HEVC_NAL_PPS ||
s->nal_unit_type == HEVC_NAL_SEI_PREFIX ||
s->nal_unit_type == HEVC_NAL_SEI_SUFFIX)) {
ret = FF_HW_CALL(s->avctx, decode_params,
nal->type, nal->raw_data, nal->raw_size);
if (ret < 0)
goto fail;
}
switch (s->nal_unit_type) {
case HEVC_NAL_VPS:
ret = ff_hevc_decode_nal_vps(&gb, s->avctx, &s->ps);
if (ret < 0)
goto fail;
break;
case HEVC_NAL_SPS:
ret = ff_hevc_decode_nal_sps(&gb, s->avctx, &s->ps,
nal->nuh_layer_id, s->apply_defdispwin);
if (ret < 0)
goto fail;
break;
case HEVC_NAL_PPS:
ret = ff_hevc_decode_nal_pps(&gb, s->avctx, &s->ps);
if (ret < 0)
goto fail;
break;
case HEVC_NAL_SEI_PREFIX:
case HEVC_NAL_SEI_SUFFIX:
ret = ff_hevc_decode_nal_sei(&gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
if (ret < 0)
goto fail;
break;
case HEVC_NAL_TRAIL_R:
case HEVC_NAL_TRAIL_N:
case HEVC_NAL_TSA_N:
case HEVC_NAL_TSA_R:
case HEVC_NAL_STSA_N:
case HEVC_NAL_STSA_R:
case HEVC_NAL_BLA_W_LP:
case HEVC_NAL_BLA_W_RADL:
case HEVC_NAL_BLA_N_LP:
case HEVC_NAL_IDR_W_RADL:
case HEVC_NAL_IDR_N_LP:
case HEVC_NAL_CRA_NUT:
case HEVC_NAL_RADL_N:
case HEVC_NAL_RADL_R:
case HEVC_NAL_RASL_N:
case HEVC_NAL_RASL_R:
ret = decode_slice(s, nal_idx, &gb);
if (ret < 0)
goto fail;
break;
case HEVC_NAL_EOS_NUT:
case HEVC_NAL_EOB_NUT:
case HEVC_NAL_AUD:
case HEVC_NAL_FD_NUT:
case HEVC_NAL_UNSPEC62:
break;
default:
av_log(s->avctx, AV_LOG_INFO,
"Skipping NAL unit %d\n", s->nal_unit_type);
}
return 0;
fail:
if (ret == AVERROR_INVALIDDATA &&
!(s->avctx->err_recognition & AV_EF_EXPLODE)) {
av_log(s->avctx, AV_LOG_WARNING,
"Skipping invalid undecodable NALU: %d\n", s->nal_unit_type);
return 0;
}
return ret;
}
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
{
int i, ret = 0;
int eos_at_start = 1;
int flags = (H2645_FLAG_IS_NALFF * !!s->is_nalff) | H2645_FLAG_SMALL_PADDING;
s->cur_frame = s->collocated_ref = NULL;
s->last_eos = s->eos;
s->eos = 0;
s->slice_initialized = 0;
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
HEVCLayerContext *l = &s->layers[i];
l->cur_frame = NULL;
}
/* split the input packet into NAL units, so we know the upper bound on the
* number of slices in the frame */
ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx,
s->nal_length_size, s->avctx->codec_id, flags);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"Error splitting the input into NAL units.\n");
return ret;
}
for (i = 0; i < s->pkt.nb_nals; i++) {
if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
if (eos_at_start) {
s->last_eos = 1;
} else {
s->eos = 1;
}
} else {
eos_at_start = 0;
}
}
/*
* Check for RPU delimiter.
*
* Dolby Vision RPUs masquerade as unregistered NALs of type 62.
*
* We have to do this check here an create the rpu buffer, since RPUs are appended
* to the end of an AU; they are the last non-EOB/EOS NAL in the AU.
*/
if (s->pkt.nb_nals > 1 && s->pkt.nals[s->pkt.nb_nals - 1].type == HEVC_NAL_UNSPEC62 &&
s->pkt.nals[s->pkt.nb_nals - 1].size > 2 && !s->pkt.nals[s->pkt.nb_nals - 1].nuh_layer_id
&& !s->pkt.nals[s->pkt.nb_nals - 1].temporal_id) {
H2645NAL *nal = &s->pkt.nals[s->pkt.nb_nals - 1];
if (s->rpu_buf) {
av_buffer_unref(&s->rpu_buf);
av_log(s->avctx, AV_LOG_WARNING, "Multiple Dolby Vision RPUs found in one AU. Skipping previous.\n");
}
s->rpu_buf = av_buffer_alloc(nal->raw_size - 2);
if (!s->rpu_buf)
return AVERROR(ENOMEM);
memcpy(s->rpu_buf->data, nal->raw_data + 2, nal->raw_size - 2);
ret = ff_dovi_rpu_parse(&s->dovi_ctx, nal->data + 2, nal->size - 2,
s->avctx->err_recognition);
if (ret < 0) {
av_buffer_unref(&s->rpu_buf);
av_log(s->avctx, AV_LOG_WARNING, "Error parsing DOVI NAL unit.\n");
/* ignore */
}
}
/* decode the NAL units */
for (i = 0; i < s->pkt.nb_nals; i++) {
H2645NAL *nal = &s->pkt.nals[i];
if (s->avctx->skip_frame >= AVDISCARD_ALL ||
(s->avctx->skip_frame >= AVDISCARD_NONREF && ff_hevc_nal_is_nonref(nal->type)))
continue;
ret = decode_nal_unit(s, i);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error parsing NAL unit #%d.\n", i);
goto fail;
}
}
fail:
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
HEVCLayerContext *l = &s->layers[i];
if (!l->cur_frame)
continue;
if (ret >= 0)
ret = hevc_frame_end(s, l);
if (s->avctx->active_thread_type == FF_THREAD_FRAME)
ff_progress_frame_report(&l->cur_frame->tf, INT_MAX);
}
return ret;
}
static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
{
int ret, i;
ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
&s->nal_length_size, s->avctx->err_recognition,
s->apply_defdispwin, s->avctx);
if (ret < 0)
return ret;
/* export stream parameters from the first SPS */
for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
if (first && s->ps.sps_list[i]) {
const HEVCSPS *sps = s->ps.sps_list[i];
export_stream_params(s, sps);
ret = export_multilayer(s, sps->vps);
if (ret < 0)
return ret;
break;
}
}
/* export stream parameters from SEI */
ret = export_stream_params_from_sei(s);
if (ret < 0)
return ret;
return 0;
}
static int hevc_receive_frame(AVCodecContext *avctx, AVFrame *frame)
{
HEVCContext *s = avctx->priv_data;
AVCodecInternal *avci = avctx->internal;
AVPacket *avpkt = avci->in_pkt;
int ret;
uint8_t *sd;
size_t sd_size;
s->pkt_dts = AV_NOPTS_VALUE;
if (ff_container_fifo_can_read(s->output_fifo))
goto do_output;
av_packet_unref(avpkt);
ret = ff_decode_get_packet(avctx, avpkt);
if (ret == AVERROR_EOF) {
ret = ff_hevc_output_frames(s, s->layers_active_decode,
s->layers_active_output, 0, 0, 0);
if (ret < 0)
return ret;
goto do_output;
} else if (ret < 0)
return ret;
s->pkt_dts = avpkt->dts;
sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &sd_size);
if (sd && sd_size > 0) {
ret = hevc_decode_extradata(s, sd, sd_size, 0);
if (ret < 0)
return ret;
}
sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_DOVI_CONF, &sd_size);
if (sd && sd_size >= sizeof(s->dovi_ctx.cfg)) {
int old = s->dovi_ctx.cfg.dv_profile;
s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd;
if (old)
av_log(avctx, AV_LOG_DEBUG,
"New DOVI configuration record from input packet (profile %d -> %u).\n",
old, s->dovi_ctx.cfg.dv_profile);
}
ret = decode_nal_units(s, avpkt->data, avpkt->size);
if (ret < 0)
return ret;
do_output:
if (ff_container_fifo_read(s->output_fifo, frame) >= 0) {
if (!(avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN))
av_frame_remove_side_data(frame, AV_FRAME_DATA_FILM_GRAIN_PARAMS);
return 0;
}
return avci->draining ? AVERROR_EOF : AVERROR(EAGAIN);
}
static int hevc_ref_frame(HEVCFrame *dst, const HEVCFrame *src)
{
int ret;
ff_progress_frame_ref(&dst->tf, &src->tf);
if (src->needs_fg) {
ret = av_frame_ref(dst->frame_grain, src->frame_grain);
if (ret < 0) {
ff_hevc_unref_frame(dst, ~0);
return ret;
}
dst->needs_fg = 1;
}
dst->pps = ff_refstruct_ref_c(src->pps);
dst->tab_mvf = ff_refstruct_ref(src->tab_mvf);
dst->rpl_tab = ff_refstruct_ref(src->rpl_tab);
dst->rpl = ff_refstruct_ref(src->rpl);
dst->nb_rpl_elems = src->nb_rpl_elems;
dst->poc = src->poc;
dst->ctb_count = src->ctb_count;
dst->flags = src->flags;
dst->base_layer_frame = src->base_layer_frame;
ff_refstruct_replace(&dst->hwaccel_picture_private,
src->hwaccel_picture_private);
return 0;
}
static av_cold int hevc_decode_free(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
for (int i = 0; i < FF_ARRAY_ELEMS(s->layers); i++) {
pic_arrays_free(&s->layers[i]);
ff_refstruct_unref(&s->layers[i].sps);
}
ff_refstruct_unref(&s->vps);
ff_refstruct_unref(&s->pps);
ff_dovi_ctx_unref(&s->dovi_ctx);
av_buffer_unref(&s->rpu_buf);
av_freep(&s->md5_ctx);
ff_container_fifo_free(&s->output_fifo);
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
HEVCLayerContext *l = &s->layers[layer];
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
ff_hevc_unref_frame(&l->DPB[i], ~0);
av_frame_free(&l->DPB[i].frame_grain);
}
}
ff_hevc_ps_uninit(&s->ps);
av_freep(&s->sh.entry_point_offset);
av_freep(&s->sh.offset);
av_freep(&s->sh.size);
av_freep(&s->local_ctx);
ff_h2645_packet_uninit(&s->pkt);
ff_hevc_reset_sei(&s->sei);
return 0;
}
static av_cold int hevc_init_context(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
s->avctx = avctx;
s->local_ctx = av_mallocz(sizeof(*s->local_ctx));
if (!s->local_ctx)
return AVERROR(ENOMEM);
s->nb_local_ctx = 1;
s->local_ctx[0].parent = s;
s->local_ctx[0].logctx = avctx;
s->local_ctx[0].common_cabac_state = &s->cabac;
s->output_fifo = ff_container_fifo_alloc_avframe(0);
if (!s->output_fifo)
return AVERROR(ENOMEM);
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
HEVCLayerContext *l = &s->layers[layer];
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
l->DPB[i].frame_grain = av_frame_alloc();
if (!l->DPB[i].frame_grain)
return AVERROR(ENOMEM);
}
}
s->md5_ctx = av_md5_alloc();
if (!s->md5_ctx)
return AVERROR(ENOMEM);
ff_bswapdsp_init(&s->bdsp);
s->dovi_ctx.logctx = avctx;
s->eos = 0;
ff_hevc_reset_sei(&s->sei);
return 0;
}
#if HAVE_THREADS
static int hevc_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
HEVCContext *s = dst->priv_data;
HEVCContext *s0 = src->priv_data;
int ret;
for (int layer = 0; layer < FF_ARRAY_ELEMS(s->layers); layer++) {
HEVCLayerContext *l = &s->layers[layer];
const HEVCLayerContext *l0 = &s0->layers[layer];
for (int i = 0; i < FF_ARRAY_ELEMS(l->DPB); i++) {
ff_hevc_unref_frame(&l->DPB[i], ~0);
if (l0->DPB[i].f) {
ret = hevc_ref_frame(&l->DPB[i], &l0->DPB[i]);
if (ret < 0)
return ret;
}
}
if (l->sps != l0->sps) {
ret = set_sps(s, l, l0->sps);
if (ret < 0)
return ret;
}
}
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
ff_refstruct_replace(&s->ps.vps_list[i], s0->ps.vps_list[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
ff_refstruct_replace(&s->ps.sps_list[i], s0->ps.sps_list[i]);
for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
ff_refstruct_replace(&s->ps.pps_list[i], s0->ps.pps_list[i]);
// PPS do not persist between frames
ff_refstruct_unref(&s->pps);
s->poc_tid0 = s0->poc_tid0;
s->eos = s0->eos;
s->no_rasl_output_flag = s0->no_rasl_output_flag;
s->is_nalff = s0->is_nalff;
s->nal_length_size = s0->nal_length_size;
s->layers_active_decode = s0->layers_active_decode;
s->layers_active_output = s0->layers_active_output;
s->film_grain_warning_shown = s0->film_grain_warning_shown;
if (s->nb_view_ids != s0->nb_view_ids ||
memcmp(s->view_ids, s0->view_ids, sizeof(*s->view_ids) * s->nb_view_ids)) {
av_freep(&s->view_ids);
s->nb_view_ids = 0;
if (s0->nb_view_ids) {
s->view_ids = av_memdup(s0->view_ids, s0->nb_view_ids * sizeof(*s0->view_ids));
if (!s->view_ids)
return AVERROR(ENOMEM);
s->nb_view_ids = s0->nb_view_ids;
}
}
ret = ff_h2645_sei_ctx_replace(&s->sei.common, &s0->sei.common);
if (ret < 0)
return ret;
ret = av_buffer_replace(&s->sei.common.dynamic_hdr_plus.info,
s0->sei.common.dynamic_hdr_plus.info);
if (ret < 0)
return ret;
ret = av_buffer_replace(&s->rpu_buf, s0->rpu_buf);
if (ret < 0)
return ret;
ff_dovi_ctx_replace(&s->dovi_ctx, &s0->dovi_ctx);
ret = av_buffer_replace(&s->sei.common.dynamic_hdr_vivid.info,
s0->sei.common.dynamic_hdr_vivid.info);
if (ret < 0)
return ret;
s->sei.common.frame_packing = s0->sei.common.frame_packing;
s->sei.common.display_orientation = s0->sei.common.display_orientation;
s->sei.common.alternative_transfer = s0->sei.common.alternative_transfer;
s->sei.common.mastering_display = s0->sei.common.mastering_display;
s->sei.common.content_light = s0->sei.common.content_light;
s->sei.common.aom_film_grain = s0->sei.common.aom_film_grain;
s->sei.tdrdi = s0->sei.tdrdi;
return 0;
}
#endif
static av_cold int hevc_decode_init(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int ret;
if (avctx->active_thread_type & FF_THREAD_SLICE) {
ret = ff_slice_thread_init_progress(avctx);
if (ret < 0)
return ret;
}
ret = hevc_init_context(avctx);
if (ret < 0)
return ret;
s->sei.picture_timing.picture_struct = 0;
s->eos = 1;
atomic_init(&s->wpp_err, 0);
if (!avctx->internal->is_copy) {
const AVPacketSideData *sd;
if (avctx->extradata_size > 0 && avctx->extradata) {
ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
if (ret < 0) {
return ret;
}
ret = ff_h2645_sei_to_context(avctx, &s->sei.common);
if (ret < 0)
return ret;
}
sd = ff_get_coded_side_data(avctx, AV_PKT_DATA_DOVI_CONF);
if (sd && sd->size >= sizeof(s->dovi_ctx.cfg))
s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd->data;
}
return 0;
}
static void hevc_decode_flush(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
ff_hevc_flush_dpb(s);
ff_hevc_reset_sei(&s->sei);
ff_dovi_ctx_flush(&s->dovi_ctx);
av_buffer_unref(&s->rpu_buf);
s->eos = 1;
if (FF_HW_HAS_CB(avctx, flush))
FF_HW_SIMPLE_CALL(avctx, flush);
}
#define OFFSET(x) offsetof(HEVCContext, x)
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption options[] = {
{ "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
{ "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
{ "view_ids", "Array of view IDs that should be decoded and output; a single -1 to decode all views",
.offset = OFFSET(view_ids), .type = AV_OPT_TYPE_INT | AV_OPT_TYPE_FLAG_ARRAY,
.min = -1, .max = INT_MAX, .flags = PAR },
{ "view_ids_available", "Array of available view IDs is exported here",
.offset = OFFSET(view_ids_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY,
.flags = PAR | AV_OPT_FLAG_EXPORT | AV_OPT_FLAG_READONLY },
{ "view_pos_available", "Array of view positions for view_ids_available is exported here, as AVStereo3DView",
.offset = OFFSET(view_pos_available), .type = AV_OPT_TYPE_UINT | AV_OPT_TYPE_FLAG_ARRAY,
.flags = PAR | AV_OPT_FLAG_EXPORT | AV_OPT_FLAG_READONLY, .unit = "view_pos" },
{ "unspecified", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_UNSPEC }, .unit = "view_pos" },
{ "left", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_LEFT }, .unit = "view_pos" },
{ "right", .type = AV_OPT_TYPE_CONST, .default_val = { .i64 = AV_STEREO3D_VIEW_RIGHT }, .unit = "view_pos" },
{ NULL },
};
static const AVClass hevc_decoder_class = {
.class_name = "HEVC decoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_hevc_decoder = {
.p.name = "hevc",
CODEC_LONG_NAME("HEVC (High Efficiency Video Coding)"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_HEVC,
.priv_data_size = sizeof(HEVCContext),
.p.priv_class = &hevc_decoder_class,
.init = hevc_decode_init,
.close = hevc_decode_free,
FF_CODEC_RECEIVE_FRAME_CB(hevc_receive_frame),
.flush = hevc_decode_flush,
UPDATE_THREAD_CONTEXT(hevc_update_thread_context),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING |
FF_CODEC_CAP_USES_PROGRESSFRAMES |
FF_CODEC_CAP_INIT_CLEANUP,
.p.profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
.hw_configs = (const AVCodecHWConfigInternal *const []) {
#if CONFIG_HEVC_DXVA2_HWACCEL
HWACCEL_DXVA2(hevc),
#endif
#if CONFIG_HEVC_D3D11VA_HWACCEL
HWACCEL_D3D11VA(hevc),
#endif
#if CONFIG_HEVC_D3D11VA2_HWACCEL
HWACCEL_D3D11VA2(hevc),
#endif
#if CONFIG_HEVC_D3D12VA_HWACCEL
HWACCEL_D3D12VA(hevc),
#endif
#if CONFIG_HEVC_NVDEC_HWACCEL
HWACCEL_NVDEC(hevc),
#endif
#if CONFIG_HEVC_VAAPI_HWACCEL
HWACCEL_VAAPI(hevc),
#endif
#if CONFIG_HEVC_VDPAU_HWACCEL
HWACCEL_VDPAU(hevc),
#endif
#if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
HWACCEL_VIDEOTOOLBOX(hevc),
#endif
#if CONFIG_HEVC_VULKAN_HWACCEL
HWACCEL_VULKAN(hevc),
#endif
NULL
},
};