452 lines
17 KiB

/*
* Copyright (c) 2022 Ben Avison
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "checkasm.h"
#include "libavcodec/vc1dsp.h"
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
#define VC1DSP_TEST(func) { #func, offsetof(VC1DSPContext, func) },
#define VC1DSP_SIZED_TEST(func, width, height) { #func, offsetof(VC1DSPContext, func), width, height },
typedef struct {
const char *name;
size_t offset;
int width;
int height;
} test;
typedef struct matrix {
size_t width;
size_t height;
float d[];
} matrix;
static const matrix T8 = { 8, 8, {
12, 12, 12, 12, 12, 12, 12, 12,
16, 15, 9, 4, -4, -9, -15, -16,
16, 6, -6, -16, -16, -6, 6, 16,
15, -4, -16, -9, 9, 16, 4, -15,
12, -12, -12, 12, 12, -12, -12, 12,
9, -16, 4, 15, -15, -4, 16, -9,
6, -16, 16, -6, -6, 16, -16, 6,
4, -9, 15, -16, 16, -15, 9, -4
} };
static const matrix T4 = { 4, 4, {
17, 17, 17, 17,
22, 10, -10, -22,
17, -17, -17, 17,
10, -22, 22, -10
} };
static const matrix T8t = { 8, 8, {
12, 16, 16, 15, 12, 9, 6, 4,
12, 15, 6, -4, -12, -16, -16, -9,
12, 9, -6, -16, -12, 4, 16, 15,
12, 4, -16, -9, 12, 15, -6, -16,
12, -4, -16, 9, 12, -15, -6, 16,
12, -9, -6, 16, -12, -4, 16, -15,
12, -15, 6, 4, -12, 16, -16, 9,
12, -16, 16, -15, 12, -9, 6, -4
} };
static const matrix T4t = { 4, 4, {
17, 22, 17, 10,
17, 10, -17, -22,
17, -10, -17, 22,
17, -22, 17, -10
} };
static matrix *new_matrix(size_t width, size_t height)
{
matrix *out = av_mallocz(sizeof (matrix) + height * width * sizeof (float));
if (out == NULL) {
fprintf(stderr, "Memory allocation failure\n");
exit(EXIT_FAILURE);
}
out->width = width;
out->height = height;
return out;
}
static matrix *multiply(const matrix *a, const matrix *b)
{
matrix *out;
if (a->width != b->height) {
fprintf(stderr, "Incompatible multiplication\n");
exit(EXIT_FAILURE);
}
out = new_matrix(b->width, a->height);
for (int j = 0; j < out->height; ++j)
for (int i = 0; i < out->width; ++i) {
float sum = 0;
for (int k = 0; k < a->width; ++k)
sum += a->d[j * a->width + k] * b->d[k * b->width + i];
out->d[j * out->width + i] = sum;
}
return out;
}
static void normalise(matrix *a)
{
for (int j = 0; j < a->height; ++j)
for (int i = 0; i < a->width; ++i) {
float *p = a->d + j * a->width + i;
*p *= 64;
if (a->height == 4)
*p /= (const unsigned[]) { 289, 292, 289, 292 } [j];
else
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [j];
if (a->width == 4)
*p /= (const unsigned[]) { 289, 292, 289, 292 } [i];
else
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [i];
}
}
static void divide_and_round_nearest(matrix *a, float by)
{
for (int j = 0; j < a->height; ++j)
for (int i = 0; i < a->width; ++i) {
float *p = a->d + j * a->width + i;
*p = rintf(*p / by);
}
}
static void tweak(matrix *a)
{
for (int j = 4; j < a->height; ++j)
for (int i = 0; i < a->width; ++i) {
float *p = a->d + j * a->width + i;
*p += 1;
}
}
/* The VC-1 spec places restrictions on the values permitted at three
* different stages:
* - D: the input coefficients in frequency domain
* - E: the intermediate coefficients, inverse-transformed only horizontally
* - R: the fully inverse-transformed coefficients
*
* To fully cater for the ranges specified requires various intermediate
* values to be held to 17-bit precision; yet these conditions do not appear
* to be utilised in real-world streams. At least some assembly
* implementations have chosen to restrict these values to 16-bit precision,
* to accelerate the decoding of real-world streams at the cost of strict
* adherence to the spec. To avoid our test marking these as failures,
* reduce our random inputs.
*/
#define ATTENUATION 4
static matrix *generate_inverse_quantized_transform_coefficients(size_t width, size_t height)
{
matrix *raw, *tmp, *D, *E, *R;
raw = new_matrix(width, height);
for (int i = 0; i < width * height; ++i)
raw->d[i] = (int) (rnd() % (1024/ATTENUATION)) - 512/ATTENUATION;
tmp = multiply(height == 8 ? &T8 : &T4, raw);
D = multiply(tmp, width == 8 ? &T8t : &T4t);
normalise(D);
divide_and_round_nearest(D, 1);
for (int i = 0; i < width * height; ++i) {
if (D->d[i] < -2048/ATTENUATION || D->d[i] > 2048/ATTENUATION-1) {
/* Rare, so simply try again */
av_free(raw);
av_free(tmp);
av_free(D);
return generate_inverse_quantized_transform_coefficients(width, height);
}
}
E = multiply(D, width == 8 ? &T8 : &T4);
divide_and_round_nearest(E, 8);
for (int i = 0; i < width * height; ++i)
if (E->d[i] < -4096/ATTENUATION || E->d[i] > 4096/ATTENUATION-1) {
/* Rare, so simply try again */
av_free(raw);
av_free(tmp);
av_free(D);
av_free(E);
return generate_inverse_quantized_transform_coefficients(width, height);
}
R = multiply(height == 8 ? &T8t : &T4t, E);
tweak(R);
divide_and_round_nearest(R, 128);
for (int i = 0; i < width * height; ++i)
if (R->d[i] < -512/ATTENUATION || R->d[i] > 512/ATTENUATION-1) {
/* Rare, so simply try again */
av_free(raw);
av_free(tmp);
av_free(D);
av_free(E);
av_free(R);
return generate_inverse_quantized_transform_coefficients(width, height);
}
av_free(raw);
av_free(tmp);
av_free(E);
av_free(R);
return D;
}
#define RANDOMIZE_BUFFER16(name, size) \
do { \
int i; \
for (i = 0; i < size; ++i) { \
uint16_t r = rnd(); \
AV_WN16A(name##0 + i, r); \
AV_WN16A(name##1 + i, r); \
} \
} while (0)
#define RANDOMIZE_BUFFER8(name, size) \
do { \
int i; \
for (i = 0; i < size; ++i) { \
uint8_t r = rnd(); \
name##0[i] = r; \
name##1[i] = r; \
} \
} while (0)
#define RANDOMIZE_BUFFER8_MID_WEIGHTED(name, size) \
do { \
uint8_t *p##0 = name##0, *p##1 = name##1; \
int i = (size); \
while (i-- > 0) { \
int x = 0x80 | (rnd() & 0x7F); \
x >>= rnd() % 9; \
if (rnd() & 1) \
x = -x; \
*p##1++ = *p##0++ = 0x80 + x; \
} \
} while (0)
static void check_inv_trans_inplace(void)
{
/* Inverse transform input coefficients are stored in a 16-bit buffer
* with row stride of 8 coefficients irrespective of transform size.
* vc1_inv_trans_8x8 differs from the others in two ways: coefficients
* are stored in column-major order, and the outputs are written back
* to the input buffer, so we oversize it slightly to catch overruns. */
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [10 * 8]);
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [10 * 8]);
VC1DSPContext h;
ff_vc1dsp_init(&h);
if (check_func(h.vc1_inv_trans_8x8, "vc1dsp.vc1_inv_trans_8x8")) {
matrix *coeffs;
declare_func(void, int16_t *);
RANDOMIZE_BUFFER16(inv_trans_in, 10 * 8);
coeffs = generate_inverse_quantized_transform_coefficients(8, 8);
for (int j = 0; j < 8; ++j)
for (int i = 0; i < 8; ++i) {
int idx = 8 + i * 8 + j;
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * 8 + i];
}
call_ref(inv_trans_in0 + 8);
call_new(inv_trans_in1 + 8);
if (memcmp(inv_trans_in0, inv_trans_in1, 10 * 8 * sizeof (int16_t)))
fail();
bench_new(inv_trans_in1 + 8);
av_free(coeffs);
}
}
static void check_inv_trans_adding(void)
{
/* Inverse transform input coefficients are stored in a 16-bit buffer
* with row stride of 8 coefficients irrespective of transform size. */
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [8 * 8]);
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [8 * 8]);
/* For all but vc1_inv_trans_8x8, the inverse transform is narrowed and
* added with saturation to an array of unsigned 8-bit values. Oversize
* this by 8 samples left and right and one row above and below. */
LOCAL_ALIGNED_8(uint8_t, inv_trans_out0, [10 * 24]);
LOCAL_ALIGNED_8(uint8_t, inv_trans_out1, [10 * 24]);
VC1DSPContext h;
const test tests[] = {
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4, 8, 4)
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8, 4, 8)
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4, 4, 4)
VC1DSP_SIZED_TEST(vc1_inv_trans_8x8_dc, 8, 8)
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4_dc, 8, 4)
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8_dc, 4, 8)
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4_dc, 4, 4)
};
ff_vc1dsp_init(&h);
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
void (*func)(uint8_t *, ptrdiff_t, int16_t *) = *(void **)((intptr_t) &h + tests[t].offset);
if (check_func(func, "vc1dsp.%s", tests[t].name)) {
matrix *coeffs;
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int16_t *);
RANDOMIZE_BUFFER16(inv_trans_in, 8 * 8);
RANDOMIZE_BUFFER8(inv_trans_out, 10 * 24);
coeffs = generate_inverse_quantized_transform_coefficients(tests[t].width, tests[t].height);
for (int j = 0; j < tests[t].height; ++j)
for (int i = 0; i < tests[t].width; ++i) {
int idx = j * 8 + i;
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * tests[t].width + i];
}
call_ref(inv_trans_out0 + 24 + 8, 24, inv_trans_in0);
call_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1);
if (memcmp(inv_trans_out0, inv_trans_out1, 10 * 24))
fail();
bench_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1 + 8);
av_free(coeffs);
}
}
}
static void check_loop_filter(void)
{
/* Deblocking filter buffers are big enough to hold a 16x16 block,
* plus 16 columns left and 4 rows above to hold filter inputs
* (depending on whether v or h neighbouring block edge, oversized
* horizontally to maintain 16-byte alignment) plus 16 columns and
* 4 rows below to catch write overflows */
LOCAL_ALIGNED_16(uint8_t, filter_buf0, [24 * 48]);
LOCAL_ALIGNED_16(uint8_t, filter_buf1, [24 * 48]);
VC1DSPContext h;
const test tests[] = {
VC1DSP_TEST(vc1_v_loop_filter4)
VC1DSP_TEST(vc1_h_loop_filter4)
VC1DSP_TEST(vc1_v_loop_filter8)
VC1DSP_TEST(vc1_h_loop_filter8)
VC1DSP_TEST(vc1_v_loop_filter16)
VC1DSP_TEST(vc1_h_loop_filter16)
};
ff_vc1dsp_init(&h);
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) {
void (*func)(uint8_t *, ptrdiff_t, int) = *(void **)((intptr_t) &h + tests[t].offset);
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int);
if (check_func(func, "vc1dsp.%s", tests[t].name)) {
for (int count = 1000; count > 0; --count) {
int pq = rnd() % 31 + 1;
RANDOMIZE_BUFFER8_MID_WEIGHTED(filter_buf, 24 * 48);
call_ref(filter_buf0 + 4 * 48 + 16, 48, pq);
call_new(filter_buf1 + 4 * 48 + 16, 48, pq);
if (memcmp(filter_buf0, filter_buf1, 24 * 48))
fail();
}
}
for (int j = 0; j < 24; ++j)
for (int i = 0; i < 48; ++i)
filter_buf1[j * 48 + i] = 0x60 + 0x40 * (i >= 16 && j >= 4);
if (check_func(func, "vc1dsp.%s_bestcase", tests[t].name))
bench_new(filter_buf1 + 4 * 48 + 16, 48, 1);
if (check_func(func, "vc1dsp.%s_worstcase", tests[t].name))
bench_new(filter_buf1 + 4 * 48 + 16, 48, 31);
}
}
#define TEST_UNESCAPE \
do { \
for (int count = 100; count > 0; --count) { \
escaped_offset = rnd() & 7; \
unescaped_offset = rnd() & 7; \
escaped_len = (1u << (rnd() % 8) + 3) - (rnd() & 7); \
RANDOMIZE_BUFFER8(unescaped, UNESCAPE_BUF_SIZE); \
len0 = call_ref(escaped0 + escaped_offset, escaped_len, unescaped0 + unescaped_offset); \
len1 = call_new(escaped1 + escaped_offset, escaped_len, unescaped1 + unescaped_offset); \
if (len0 != len1 || memcmp(unescaped0, unescaped1, UNESCAPE_BUF_SIZE)) \
fail(); \
} \
} while (0)
static void check_unescape(void)
{
/* This appears to be a typical length of buffer in use */
#define LOG2_UNESCAPE_BUF_SIZE 17
#define UNESCAPE_BUF_SIZE (1u<<LOG2_UNESCAPE_BUF_SIZE)
LOCAL_ALIGNED_8(uint8_t, escaped0, [UNESCAPE_BUF_SIZE]);
LOCAL_ALIGNED_8(uint8_t, escaped1, [UNESCAPE_BUF_SIZE]);
LOCAL_ALIGNED_8(uint8_t, unescaped0, [UNESCAPE_BUF_SIZE]);
LOCAL_ALIGNED_8(uint8_t, unescaped1, [UNESCAPE_BUF_SIZE]);
VC1DSPContext h;
ff_vc1dsp_init(&h);
if (check_func(h.vc1_unescape_buffer, "vc1dsp.vc1_unescape_buffer")) {
int len0, len1, escaped_offset, unescaped_offset, escaped_len;
declare_func(int, const uint8_t *, int, uint8_t *);
/* Test data which consists of escapes sequences packed as tightly as possible */
for (int x = 0; x < UNESCAPE_BUF_SIZE; ++x)
escaped1[x] = escaped0[x] = 3 * (x % 3 == 0);
TEST_UNESCAPE;
/* Test random data */
RANDOMIZE_BUFFER8(escaped, UNESCAPE_BUF_SIZE);
TEST_UNESCAPE;
/* Test data with escape sequences at random intervals */
for (int x = 0; x <= UNESCAPE_BUF_SIZE - 4;) {
int gap, gap_msb;
escaped1[x+0] = escaped0[x+0] = 0;
escaped1[x+1] = escaped0[x+1] = 0;
escaped1[x+2] = escaped0[x+2] = 3;
escaped1[x+3] = escaped0[x+3] = rnd() & 3;
gap_msb = 2u << (rnd() % 8);
gap = (rnd() &~ -gap_msb) | gap_msb;
x += gap;
}
TEST_UNESCAPE;
/* Test data which is known to contain no escape sequences */
memset(escaped0, 0xFF, UNESCAPE_BUF_SIZE);
memset(escaped1, 0xFF, UNESCAPE_BUF_SIZE);
TEST_UNESCAPE;
/* Benchmark the no-escape-sequences case */
bench_new(escaped1, UNESCAPE_BUF_SIZE, unescaped1);
}
}
void checkasm_check_vc1dsp(void)
{
check_inv_trans_inplace();
check_inv_trans_adding();
report("inv_trans");
check_loop_filter();
report("loop_filter");
check_unescape();
report("unescape_buffer");
}