mirror of https://github.com/FFmpeg/FFmpeg.git
452 lines
17 KiB
452 lines
17 KiB
/* |
|
* Copyright (c) 2022 Ben Avison |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc., |
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
|
*/ |
|
|
|
#include <string.h> |
|
|
|
#include "checkasm.h" |
|
|
|
#include "libavcodec/vc1dsp.h" |
|
|
|
#include "libavutil/common.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/mem_internal.h" |
|
|
|
#define VC1DSP_TEST(func) { #func, offsetof(VC1DSPContext, func) }, |
|
#define VC1DSP_SIZED_TEST(func, width, height) { #func, offsetof(VC1DSPContext, func), width, height }, |
|
|
|
typedef struct { |
|
const char *name; |
|
size_t offset; |
|
int width; |
|
int height; |
|
} test; |
|
|
|
typedef struct matrix { |
|
size_t width; |
|
size_t height; |
|
float d[]; |
|
} matrix; |
|
|
|
static const matrix T8 = { 8, 8, { |
|
12, 12, 12, 12, 12, 12, 12, 12, |
|
16, 15, 9, 4, -4, -9, -15, -16, |
|
16, 6, -6, -16, -16, -6, 6, 16, |
|
15, -4, -16, -9, 9, 16, 4, -15, |
|
12, -12, -12, 12, 12, -12, -12, 12, |
|
9, -16, 4, 15, -15, -4, 16, -9, |
|
6, -16, 16, -6, -6, 16, -16, 6, |
|
4, -9, 15, -16, 16, -15, 9, -4 |
|
} }; |
|
|
|
static const matrix T4 = { 4, 4, { |
|
17, 17, 17, 17, |
|
22, 10, -10, -22, |
|
17, -17, -17, 17, |
|
10, -22, 22, -10 |
|
} }; |
|
|
|
static const matrix T8t = { 8, 8, { |
|
12, 16, 16, 15, 12, 9, 6, 4, |
|
12, 15, 6, -4, -12, -16, -16, -9, |
|
12, 9, -6, -16, -12, 4, 16, 15, |
|
12, 4, -16, -9, 12, 15, -6, -16, |
|
12, -4, -16, 9, 12, -15, -6, 16, |
|
12, -9, -6, 16, -12, -4, 16, -15, |
|
12, -15, 6, 4, -12, 16, -16, 9, |
|
12, -16, 16, -15, 12, -9, 6, -4 |
|
} }; |
|
|
|
static const matrix T4t = { 4, 4, { |
|
17, 22, 17, 10, |
|
17, 10, -17, -22, |
|
17, -10, -17, 22, |
|
17, -22, 17, -10 |
|
} }; |
|
|
|
static matrix *new_matrix(size_t width, size_t height) |
|
{ |
|
matrix *out = av_mallocz(sizeof (matrix) + height * width * sizeof (float)); |
|
if (out == NULL) { |
|
fprintf(stderr, "Memory allocation failure\n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
out->width = width; |
|
out->height = height; |
|
return out; |
|
} |
|
|
|
static matrix *multiply(const matrix *a, const matrix *b) |
|
{ |
|
matrix *out; |
|
if (a->width != b->height) { |
|
fprintf(stderr, "Incompatible multiplication\n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
out = new_matrix(b->width, a->height); |
|
for (int j = 0; j < out->height; ++j) |
|
for (int i = 0; i < out->width; ++i) { |
|
float sum = 0; |
|
for (int k = 0; k < a->width; ++k) |
|
sum += a->d[j * a->width + k] * b->d[k * b->width + i]; |
|
out->d[j * out->width + i] = sum; |
|
} |
|
return out; |
|
} |
|
|
|
static void normalise(matrix *a) |
|
{ |
|
for (int j = 0; j < a->height; ++j) |
|
for (int i = 0; i < a->width; ++i) { |
|
float *p = a->d + j * a->width + i; |
|
*p *= 64; |
|
if (a->height == 4) |
|
*p /= (const unsigned[]) { 289, 292, 289, 292 } [j]; |
|
else |
|
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [j]; |
|
if (a->width == 4) |
|
*p /= (const unsigned[]) { 289, 292, 289, 292 } [i]; |
|
else |
|
*p /= (const unsigned[]) { 288, 289, 292, 289, 288, 289, 292, 289 } [i]; |
|
} |
|
} |
|
|
|
static void divide_and_round_nearest(matrix *a, float by) |
|
{ |
|
for (int j = 0; j < a->height; ++j) |
|
for (int i = 0; i < a->width; ++i) { |
|
float *p = a->d + j * a->width + i; |
|
*p = rintf(*p / by); |
|
} |
|
} |
|
|
|
static void tweak(matrix *a) |
|
{ |
|
for (int j = 4; j < a->height; ++j) |
|
for (int i = 0; i < a->width; ++i) { |
|
float *p = a->d + j * a->width + i; |
|
*p += 1; |
|
} |
|
} |
|
|
|
/* The VC-1 spec places restrictions on the values permitted at three |
|
* different stages: |
|
* - D: the input coefficients in frequency domain |
|
* - E: the intermediate coefficients, inverse-transformed only horizontally |
|
* - R: the fully inverse-transformed coefficients |
|
* |
|
* To fully cater for the ranges specified requires various intermediate |
|
* values to be held to 17-bit precision; yet these conditions do not appear |
|
* to be utilised in real-world streams. At least some assembly |
|
* implementations have chosen to restrict these values to 16-bit precision, |
|
* to accelerate the decoding of real-world streams at the cost of strict |
|
* adherence to the spec. To avoid our test marking these as failures, |
|
* reduce our random inputs. |
|
*/ |
|
#define ATTENUATION 4 |
|
|
|
static matrix *generate_inverse_quantized_transform_coefficients(size_t width, size_t height) |
|
{ |
|
matrix *raw, *tmp, *D, *E, *R; |
|
raw = new_matrix(width, height); |
|
for (int i = 0; i < width * height; ++i) |
|
raw->d[i] = (int) (rnd() % (1024/ATTENUATION)) - 512/ATTENUATION; |
|
tmp = multiply(height == 8 ? &T8 : &T4, raw); |
|
D = multiply(tmp, width == 8 ? &T8t : &T4t); |
|
normalise(D); |
|
divide_and_round_nearest(D, 1); |
|
for (int i = 0; i < width * height; ++i) { |
|
if (D->d[i] < -2048/ATTENUATION || D->d[i] > 2048/ATTENUATION-1) { |
|
/* Rare, so simply try again */ |
|
av_free(raw); |
|
av_free(tmp); |
|
av_free(D); |
|
return generate_inverse_quantized_transform_coefficients(width, height); |
|
} |
|
} |
|
E = multiply(D, width == 8 ? &T8 : &T4); |
|
divide_and_round_nearest(E, 8); |
|
for (int i = 0; i < width * height; ++i) |
|
if (E->d[i] < -4096/ATTENUATION || E->d[i] > 4096/ATTENUATION-1) { |
|
/* Rare, so simply try again */ |
|
av_free(raw); |
|
av_free(tmp); |
|
av_free(D); |
|
av_free(E); |
|
return generate_inverse_quantized_transform_coefficients(width, height); |
|
} |
|
R = multiply(height == 8 ? &T8t : &T4t, E); |
|
tweak(R); |
|
divide_and_round_nearest(R, 128); |
|
for (int i = 0; i < width * height; ++i) |
|
if (R->d[i] < -512/ATTENUATION || R->d[i] > 512/ATTENUATION-1) { |
|
/* Rare, so simply try again */ |
|
av_free(raw); |
|
av_free(tmp); |
|
av_free(D); |
|
av_free(E); |
|
av_free(R); |
|
return generate_inverse_quantized_transform_coefficients(width, height); |
|
} |
|
av_free(raw); |
|
av_free(tmp); |
|
av_free(E); |
|
av_free(R); |
|
return D; |
|
} |
|
|
|
#define RANDOMIZE_BUFFER16(name, size) \ |
|
do { \ |
|
int i; \ |
|
for (i = 0; i < size; ++i) { \ |
|
uint16_t r = rnd(); \ |
|
AV_WN16A(name##0 + i, r); \ |
|
AV_WN16A(name##1 + i, r); \ |
|
} \ |
|
} while (0) |
|
|
|
#define RANDOMIZE_BUFFER8(name, size) \ |
|
do { \ |
|
int i; \ |
|
for (i = 0; i < size; ++i) { \ |
|
uint8_t r = rnd(); \ |
|
name##0[i] = r; \ |
|
name##1[i] = r; \ |
|
} \ |
|
} while (0) |
|
|
|
#define RANDOMIZE_BUFFER8_MID_WEIGHTED(name, size) \ |
|
do { \ |
|
uint8_t *p##0 = name##0, *p##1 = name##1; \ |
|
int i = (size); \ |
|
while (i-- > 0) { \ |
|
int x = 0x80 | (rnd() & 0x7F); \ |
|
x >>= rnd() % 9; \ |
|
if (rnd() & 1) \ |
|
x = -x; \ |
|
*p##1++ = *p##0++ = 0x80 + x; \ |
|
} \ |
|
} while (0) |
|
|
|
static void check_inv_trans_inplace(void) |
|
{ |
|
/* Inverse transform input coefficients are stored in a 16-bit buffer |
|
* with row stride of 8 coefficients irrespective of transform size. |
|
* vc1_inv_trans_8x8 differs from the others in two ways: coefficients |
|
* are stored in column-major order, and the outputs are written back |
|
* to the input buffer, so we oversize it slightly to catch overruns. */ |
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [10 * 8]); |
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [10 * 8]); |
|
|
|
VC1DSPContext h; |
|
|
|
ff_vc1dsp_init(&h); |
|
|
|
if (check_func(h.vc1_inv_trans_8x8, "vc1dsp.vc1_inv_trans_8x8")) { |
|
matrix *coeffs; |
|
declare_func(void, int16_t *); |
|
RANDOMIZE_BUFFER16(inv_trans_in, 10 * 8); |
|
coeffs = generate_inverse_quantized_transform_coefficients(8, 8); |
|
for (int j = 0; j < 8; ++j) |
|
for (int i = 0; i < 8; ++i) { |
|
int idx = 8 + i * 8 + j; |
|
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * 8 + i]; |
|
} |
|
call_ref(inv_trans_in0 + 8); |
|
call_new(inv_trans_in1 + 8); |
|
if (memcmp(inv_trans_in0, inv_trans_in1, 10 * 8 * sizeof (int16_t))) |
|
fail(); |
|
bench_new(inv_trans_in1 + 8); |
|
av_free(coeffs); |
|
} |
|
} |
|
|
|
static void check_inv_trans_adding(void) |
|
{ |
|
/* Inverse transform input coefficients are stored in a 16-bit buffer |
|
* with row stride of 8 coefficients irrespective of transform size. */ |
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in0, [8 * 8]); |
|
LOCAL_ALIGNED_16(int16_t, inv_trans_in1, [8 * 8]); |
|
|
|
/* For all but vc1_inv_trans_8x8, the inverse transform is narrowed and |
|
* added with saturation to an array of unsigned 8-bit values. Oversize |
|
* this by 8 samples left and right and one row above and below. */ |
|
LOCAL_ALIGNED_8(uint8_t, inv_trans_out0, [10 * 24]); |
|
LOCAL_ALIGNED_8(uint8_t, inv_trans_out1, [10 * 24]); |
|
|
|
VC1DSPContext h; |
|
|
|
const test tests[] = { |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4, 8, 4) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8, 4, 8) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4, 4, 4) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x8_dc, 8, 8) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_8x4_dc, 8, 4) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x8_dc, 4, 8) |
|
VC1DSP_SIZED_TEST(vc1_inv_trans_4x4_dc, 4, 4) |
|
}; |
|
|
|
ff_vc1dsp_init(&h); |
|
|
|
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) { |
|
void (*func)(uint8_t *, ptrdiff_t, int16_t *) = *(void **)((intptr_t) &h + tests[t].offset); |
|
if (check_func(func, "vc1dsp.%s", tests[t].name)) { |
|
matrix *coeffs; |
|
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int16_t *); |
|
RANDOMIZE_BUFFER16(inv_trans_in, 8 * 8); |
|
RANDOMIZE_BUFFER8(inv_trans_out, 10 * 24); |
|
coeffs = generate_inverse_quantized_transform_coefficients(tests[t].width, tests[t].height); |
|
for (int j = 0; j < tests[t].height; ++j) |
|
for (int i = 0; i < tests[t].width; ++i) { |
|
int idx = j * 8 + i; |
|
inv_trans_in1[idx] = inv_trans_in0[idx] = coeffs->d[j * tests[t].width + i]; |
|
} |
|
call_ref(inv_trans_out0 + 24 + 8, 24, inv_trans_in0); |
|
call_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1); |
|
if (memcmp(inv_trans_out0, inv_trans_out1, 10 * 24)) |
|
fail(); |
|
bench_new(inv_trans_out1 + 24 + 8, 24, inv_trans_in1 + 8); |
|
av_free(coeffs); |
|
} |
|
} |
|
} |
|
|
|
static void check_loop_filter(void) |
|
{ |
|
/* Deblocking filter buffers are big enough to hold a 16x16 block, |
|
* plus 16 columns left and 4 rows above to hold filter inputs |
|
* (depending on whether v or h neighbouring block edge, oversized |
|
* horizontally to maintain 16-byte alignment) plus 16 columns and |
|
* 4 rows below to catch write overflows */ |
|
LOCAL_ALIGNED_16(uint8_t, filter_buf0, [24 * 48]); |
|
LOCAL_ALIGNED_16(uint8_t, filter_buf1, [24 * 48]); |
|
|
|
VC1DSPContext h; |
|
|
|
const test tests[] = { |
|
VC1DSP_TEST(vc1_v_loop_filter4) |
|
VC1DSP_TEST(vc1_h_loop_filter4) |
|
VC1DSP_TEST(vc1_v_loop_filter8) |
|
VC1DSP_TEST(vc1_h_loop_filter8) |
|
VC1DSP_TEST(vc1_v_loop_filter16) |
|
VC1DSP_TEST(vc1_h_loop_filter16) |
|
}; |
|
|
|
ff_vc1dsp_init(&h); |
|
|
|
for (size_t t = 0; t < FF_ARRAY_ELEMS(tests); ++t) { |
|
void (*func)(uint8_t *, ptrdiff_t, int) = *(void **)((intptr_t) &h + tests[t].offset); |
|
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int); |
|
if (check_func(func, "vc1dsp.%s", tests[t].name)) { |
|
for (int count = 1000; count > 0; --count) { |
|
int pq = rnd() % 31 + 1; |
|
RANDOMIZE_BUFFER8_MID_WEIGHTED(filter_buf, 24 * 48); |
|
call_ref(filter_buf0 + 4 * 48 + 16, 48, pq); |
|
call_new(filter_buf1 + 4 * 48 + 16, 48, pq); |
|
if (memcmp(filter_buf0, filter_buf1, 24 * 48)) |
|
fail(); |
|
} |
|
} |
|
for (int j = 0; j < 24; ++j) |
|
for (int i = 0; i < 48; ++i) |
|
filter_buf1[j * 48 + i] = 0x60 + 0x40 * (i >= 16 && j >= 4); |
|
if (check_func(func, "vc1dsp.%s_bestcase", tests[t].name)) |
|
bench_new(filter_buf1 + 4 * 48 + 16, 48, 1); |
|
if (check_func(func, "vc1dsp.%s_worstcase", tests[t].name)) |
|
bench_new(filter_buf1 + 4 * 48 + 16, 48, 31); |
|
} |
|
} |
|
|
|
#define TEST_UNESCAPE \ |
|
do { \ |
|
for (int count = 100; count > 0; --count) { \ |
|
escaped_offset = rnd() & 7; \ |
|
unescaped_offset = rnd() & 7; \ |
|
escaped_len = (1u << (rnd() % 8) + 3) - (rnd() & 7); \ |
|
RANDOMIZE_BUFFER8(unescaped, UNESCAPE_BUF_SIZE); \ |
|
len0 = call_ref(escaped0 + escaped_offset, escaped_len, unescaped0 + unescaped_offset); \ |
|
len1 = call_new(escaped1 + escaped_offset, escaped_len, unescaped1 + unescaped_offset); \ |
|
if (len0 != len1 || memcmp(unescaped0, unescaped1, UNESCAPE_BUF_SIZE)) \ |
|
fail(); \ |
|
} \ |
|
} while (0) |
|
|
|
static void check_unescape(void) |
|
{ |
|
/* This appears to be a typical length of buffer in use */ |
|
#define LOG2_UNESCAPE_BUF_SIZE 17 |
|
#define UNESCAPE_BUF_SIZE (1u<<LOG2_UNESCAPE_BUF_SIZE) |
|
LOCAL_ALIGNED_8(uint8_t, escaped0, [UNESCAPE_BUF_SIZE]); |
|
LOCAL_ALIGNED_8(uint8_t, escaped1, [UNESCAPE_BUF_SIZE]); |
|
LOCAL_ALIGNED_8(uint8_t, unescaped0, [UNESCAPE_BUF_SIZE]); |
|
LOCAL_ALIGNED_8(uint8_t, unescaped1, [UNESCAPE_BUF_SIZE]); |
|
|
|
VC1DSPContext h; |
|
|
|
ff_vc1dsp_init(&h); |
|
|
|
if (check_func(h.vc1_unescape_buffer, "vc1dsp.vc1_unescape_buffer")) { |
|
int len0, len1, escaped_offset, unescaped_offset, escaped_len; |
|
declare_func(int, const uint8_t *, int, uint8_t *); |
|
|
|
/* Test data which consists of escapes sequences packed as tightly as possible */ |
|
for (int x = 0; x < UNESCAPE_BUF_SIZE; ++x) |
|
escaped1[x] = escaped0[x] = 3 * (x % 3 == 0); |
|
TEST_UNESCAPE; |
|
|
|
/* Test random data */ |
|
RANDOMIZE_BUFFER8(escaped, UNESCAPE_BUF_SIZE); |
|
TEST_UNESCAPE; |
|
|
|
/* Test data with escape sequences at random intervals */ |
|
for (int x = 0; x <= UNESCAPE_BUF_SIZE - 4;) { |
|
int gap, gap_msb; |
|
escaped1[x+0] = escaped0[x+0] = 0; |
|
escaped1[x+1] = escaped0[x+1] = 0; |
|
escaped1[x+2] = escaped0[x+2] = 3; |
|
escaped1[x+3] = escaped0[x+3] = rnd() & 3; |
|
gap_msb = 2u << (rnd() % 8); |
|
gap = (rnd() &~ -gap_msb) | gap_msb; |
|
x += gap; |
|
} |
|
TEST_UNESCAPE; |
|
|
|
/* Test data which is known to contain no escape sequences */ |
|
memset(escaped0, 0xFF, UNESCAPE_BUF_SIZE); |
|
memset(escaped1, 0xFF, UNESCAPE_BUF_SIZE); |
|
TEST_UNESCAPE; |
|
|
|
/* Benchmark the no-escape-sequences case */ |
|
bench_new(escaped1, UNESCAPE_BUF_SIZE, unescaped1); |
|
} |
|
} |
|
|
|
void checkasm_check_vc1dsp(void) |
|
{ |
|
check_inv_trans_inplace(); |
|
check_inv_trans_adding(); |
|
report("inv_trans"); |
|
|
|
check_loop_filter(); |
|
report("loop_filter"); |
|
|
|
check_unescape(); |
|
report("unescape_buffer"); |
|
}
|
|
|