mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
484 lines
18 KiB
484 lines
18 KiB
/* |
|
* Copyright (c) 2012 Andrew D'Addesio |
|
* Copyright (c) 2013-2014 Mozilla Corporation |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
#include "celt.h" |
|
#include "pvq.h" |
|
#include "tab.h" |
|
|
|
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
float lowband_scratch[8 * 22]; |
|
float norm1[2 * 8 * 100]; |
|
float *norm2 = norm1 + 8 * 100; |
|
|
|
int totalbits = (f->framebits << 3) - f->anticollapse_needed; |
|
|
|
int update_lowband = 1; |
|
int lowband_offset = 0; |
|
|
|
int i, j; |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; |
|
int band_offset = ff_celt_freq_bands[i] << f->size; |
|
int band_size = ff_celt_freq_range[i] << f->size; |
|
float *X = f->block[0].coeffs + band_offset; |
|
float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; |
|
float *norm_loc1, *norm_loc2; |
|
|
|
int consumed = opus_rc_tell_frac(rc); |
|
int effective_lowband = -1; |
|
int b = 0; |
|
|
|
/* Compute how many bits we want to allocate to this band */ |
|
if (i != f->start_band) |
|
f->remaining -= consumed; |
|
f->remaining2 = totalbits - consumed - 1; |
|
if (i <= f->coded_bands - 1) { |
|
int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); |
|
b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); |
|
} |
|
|
|
if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] || |
|
i == f->start_band + 1) && (update_lowband || lowband_offset == 0)) |
|
lowband_offset = i; |
|
|
|
if (i == f->start_band + 1) { |
|
/* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into |
|
the second to ensure the second band never has to use the LCG. */ |
|
int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size; |
|
|
|
memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float)); |
|
|
|
if (f->channels == 2) |
|
memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float)); |
|
} |
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're |
|
going to be folding from. */ |
|
if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || |
|
f->blocks > 1 || f->tf_change[i] < 0)) { |
|
int foldstart, foldend; |
|
|
|
/* This ensures we never repeat spectral content within one band */ |
|
effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], |
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); |
|
foldstart = lowband_offset; |
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband); |
|
foldend = lowband_offset - 1; |
|
while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]); |
|
|
|
cm[0] = cm[1] = 0; |
|
for (j = foldstart; j < foldend; j++) { |
|
cm[0] |= f->block[0].collapse_masks[j]; |
|
cm[1] |= f->block[f->channels - 1].collapse_masks[j]; |
|
} |
|
} |
|
|
|
if (f->dual_stereo && i == f->intensity_stereo) { |
|
/* Switch off dual stereo to do intensity */ |
|
f->dual_stereo = 0; |
|
for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) |
|
norm1[j] = (norm1[j] + norm2[j]) / 2; |
|
} |
|
|
|
norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL; |
|
norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL; |
|
|
|
if (f->dual_stereo) { |
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1, |
|
f->blocks, norm_loc1, f->size, |
|
norm1 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[0]); |
|
|
|
cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1, |
|
f->blocks, norm_loc2, f->size, |
|
norm2 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[1]); |
|
} else { |
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0, |
|
f->blocks, norm_loc1, f->size, |
|
norm1 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[0] | cm[1]); |
|
cm[1] = cm[0]; |
|
} |
|
|
|
f->block[0].collapse_masks[i] = (uint8_t)cm[0]; |
|
f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; |
|
f->remaining += f->pulses[i] + consumed; |
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */ |
|
update_lowband = (b > band_size << 3); |
|
} |
|
} |
|
|
|
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2) |
|
|
|
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode) |
|
{ |
|
int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; |
|
int skip_startband = f->start_band; |
|
int skip_bit = 0; |
|
int intensitystereo_bit = 0; |
|
int dualstereo_bit = 0; |
|
int dynalloc = 6; |
|
int extrabits = 0; |
|
|
|
int boost[CELT_MAX_BANDS] = { 0 }; |
|
int trim_offset[CELT_MAX_BANDS]; |
|
int threshold[CELT_MAX_BANDS]; |
|
int bits1[CELT_MAX_BANDS]; |
|
int bits2[CELT_MAX_BANDS]; |
|
|
|
/* Spread */ |
|
if (opus_rc_tell(rc) + 4 <= f->framebits) { |
|
if (encode) |
|
ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); |
|
else |
|
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); |
|
} else { |
|
f->spread = CELT_SPREAD_NORMAL; |
|
} |
|
|
|
/* Initialize static allocation caps */ |
|
for (i = 0; i < CELT_MAX_BANDS; i++) |
|
f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]); |
|
|
|
/* Band boosts */ |
|
tbits_8ths = f->framebits << 3; |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; |
|
int b_dynalloc = dynalloc; |
|
int boost_amount = f->alloc_boost[i]; |
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); |
|
|
|
while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) { |
|
int is_boost; |
|
if (encode) { |
|
is_boost = boost_amount--; |
|
ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); |
|
} else { |
|
is_boost = ff_opus_rc_dec_log(rc, b_dynalloc); |
|
} |
|
|
|
if (!is_boost) |
|
break; |
|
|
|
boost[i] += quanta; |
|
tbits_8ths -= quanta; |
|
|
|
b_dynalloc = 1; |
|
} |
|
|
|
if (boost[i]) |
|
dynalloc = FFMAX(dynalloc - 1, 2); |
|
} |
|
|
|
/* Allocation trim */ |
|
if (!encode) |
|
f->alloc_trim = 5; |
|
if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) |
|
if (encode) |
|
ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); |
|
else |
|
f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); |
|
|
|
/* Anti-collapse bit reservation */ |
|
tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; |
|
f->anticollapse_needed = 0; |
|
if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) |
|
f->anticollapse_needed = 1 << 3; |
|
tbits_8ths -= f->anticollapse_needed; |
|
|
|
/* Band skip bit reservation */ |
|
if (tbits_8ths >= 1 << 3) |
|
skip_bit = 1 << 3; |
|
tbits_8ths -= skip_bit; |
|
|
|
/* Intensity/dual stereo bit reservation */ |
|
if (f->channels == 2) { |
|
intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; |
|
if (intensitystereo_bit <= tbits_8ths) { |
|
tbits_8ths -= intensitystereo_bit; |
|
if (tbits_8ths >= 1 << 3) { |
|
dualstereo_bit = 1 << 3; |
|
tbits_8ths -= 1 << 3; |
|
} |
|
} else { |
|
intensitystereo_bit = 0; |
|
} |
|
} |
|
|
|
/* Trim offsets */ |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int trim = f->alloc_trim - 5 - f->size; |
|
int band = ff_celt_freq_range[i] * (f->end_band - i - 1); |
|
int duration = f->size + 3; |
|
int scale = duration + f->channels - 1; |
|
|
|
/* PVQ minimum allocation threshold, below this value the band is |
|
* skipped */ |
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, |
|
f->channels << 3); |
|
|
|
trim_offset[i] = trim * (band << scale) >> 6; |
|
|
|
if (ff_celt_freq_range[i] << f->size == 1) |
|
trim_offset[i] -= f->channels << 3; |
|
} |
|
|
|
/* Bisection */ |
|
low = 1; |
|
high = CELT_VECTORS - 1; |
|
while (low <= high) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]); |
|
|
|
if (bandbits) |
|
bandbits = FFMAX(bandbits + trim_offset[i], 0); |
|
bandbits += boost[i]; |
|
|
|
if (bandbits >= threshold[i] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, f->caps[i]); |
|
} else if (bandbits >= f->channels << 3) { |
|
total += f->channels << 3; |
|
} |
|
} |
|
|
|
if (total > tbits_8ths) |
|
high = center - 1; |
|
else |
|
low = center + 1; |
|
} |
|
high = low--; |
|
|
|
/* Bisection */ |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]); |
|
bits2[i] = high >= CELT_VECTORS ? f->caps[i] : |
|
NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]); |
|
|
|
if (bits1[i]) |
|
bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0); |
|
if (bits2[i]) |
|
bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0); |
|
|
|
if (low) |
|
bits1[i] += boost[i]; |
|
bits2[i] += boost[i]; |
|
|
|
if (boost[i]) |
|
skip_startband = i; |
|
bits2[i] = FFMAX(bits2[i] - bits1[i], 0); |
|
} |
|
|
|
/* Bisection */ |
|
low = 0; |
|
high = 1 << CELT_ALLOC_STEPS; |
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (j = f->end_band - 1; j >= f->start_band; j--) { |
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[j] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, f->caps[j]); |
|
} else if (bandbits >= f->channels << 3) |
|
total += f->channels << 3; |
|
} |
|
if (total > tbits_8ths) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
/* Bisection */ |
|
done = total = 0; |
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[i] || done) |
|
done = 1; |
|
else |
|
bandbits = (bandbits >= f->channels << 3) ? |
|
f->channels << 3 : 0; |
|
|
|
bandbits = FFMIN(bandbits, f->caps[i]); |
|
f->pulses[i] = bandbits; |
|
total += bandbits; |
|
} |
|
|
|
/* Band skipping */ |
|
for (f->coded_bands = f->end_band; ; f->coded_bands--) { |
|
int allocation; |
|
j = f->coded_bands - 1; |
|
|
|
if (j == skip_startband) { |
|
/* all remaining bands are not skipped */ |
|
tbits_8ths += skip_bit; |
|
break; |
|
} |
|
|
|
/* determine the number of bits available for coding "do not skip" markers */ |
|
remaining = tbits_8ths - total; |
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]; |
|
allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0); |
|
|
|
/* a "do not skip" marker is only coded if the allocation is |
|
* above the chosen threshold */ |
|
if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { |
|
int do_not_skip; |
|
if (encode) { |
|
do_not_skip = f->coded_bands <= f->skip_band_floor; |
|
ff_opus_rc_enc_log(rc, do_not_skip, 1); |
|
} else { |
|
do_not_skip = ff_opus_rc_dec_log(rc, 1); |
|
} |
|
|
|
if (do_not_skip) |
|
break; |
|
|
|
total += 1 << 3; |
|
allocation -= 1 << 3; |
|
} |
|
|
|
/* the band is skipped, so reclaim its bits */ |
|
total -= f->pulses[j]; |
|
if (intensitystereo_bit) { |
|
total -= intensitystereo_bit; |
|
intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; |
|
total += intensitystereo_bit; |
|
} |
|
|
|
total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; |
|
} |
|
|
|
/* IS start band */ |
|
if (encode) { |
|
if (intensitystereo_bit) { |
|
f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); |
|
ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); |
|
} |
|
} else { |
|
f->intensity_stereo = f->dual_stereo = 0; |
|
if (intensitystereo_bit) |
|
f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); |
|
} |
|
|
|
/* DS flag */ |
|
if (f->intensity_stereo <= f->start_band) |
|
tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ |
|
else if (dualstereo_bit) |
|
if (encode) |
|
ff_opus_rc_enc_log(rc, f->dual_stereo, 1); |
|
else |
|
f->dual_stereo = ff_opus_rc_dec_log(rc, 1); |
|
|
|
/* Supply the remaining bits in this frame to lower bands */ |
|
remaining = tbits_8ths - total; |
|
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
const int bits = FFMIN(remaining, ff_celt_freq_range[i]); |
|
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; |
|
remaining -= bits; |
|
} |
|
|
|
/* Finally determine the allocation */ |
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
int N = ff_celt_freq_range[i] << f->size; |
|
int prev_extra = extrabits; |
|
f->pulses[i] += extrabits; |
|
|
|
if (N > 1) { |
|
int dof; /* degrees of freedom */ |
|
int temp; /* dof * channels * log(dof) */ |
|
int fine_bits; |
|
int max_bits; |
|
int offset; /* fine energy quantization offset, i.e. |
|
* extra bits assigned over the standard |
|
* totalbits/dof */ |
|
|
|
extrabits = FFMAX(f->pulses[i] - f->caps[i], 0); |
|
f->pulses[i] -= extrabits; |
|
|
|
/* intensity stereo makes use of an extra degree of freedom */ |
|
dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); |
|
temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); |
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET; |
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */ |
|
offset += dof << 1; |
|
|
|
/* grant an additional bias for the first and second pulses */ |
|
if (f->pulses[i] + offset < 2 * (dof << 3)) |
|
offset += temp >> 2; |
|
else if (f->pulses[i] + offset < 3 * (dof << 3)) |
|
offset += temp >> 3; |
|
|
|
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); |
|
max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); |
|
max_bits = FFMAX(max_bits, 0); |
|
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); |
|
|
|
/* If fine_bits was rounded down or capped, |
|
* give priority for the final fine energy pass */ |
|
f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); |
|
|
|
/* the remaining bits are assigned to PVQ */ |
|
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; |
|
} else { |
|
/* all bits go to fine energy except for the sign bit */ |
|
extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0); |
|
f->pulses[i] -= extrabits; |
|
f->fine_bits[i] = 0; |
|
f->fine_priority[i] = 1; |
|
} |
|
|
|
/* hand back a limited number of extra fine energy bits to this band */ |
|
if (extrabits > 0) { |
|
int fineextra = FFMIN(extrabits >> (f->channels + 2), |
|
CELT_MAX_FINE_BITS - f->fine_bits[i]); |
|
f->fine_bits[i] += fineextra; |
|
|
|
fineextra <<= f->channels + 2; |
|
f->fine_priority[i] = (fineextra >= extrabits - prev_extra); |
|
extrabits -= fineextra; |
|
} |
|
} |
|
f->remaining = extrabits; |
|
|
|
/* skipped bands dedicate all of their bits for fine energy */ |
|
for (; i < f->end_band; i++) { |
|
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; |
|
f->pulses[i] = 0; |
|
f->fine_priority[i] = f->fine_bits[i] < 1; |
|
} |
|
}
|
|
|