mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.0 KiB
225 lines
8.0 KiB
/* |
|
* AAC encoder long term prediction extension |
|
* Copyright (C) 2015 Rostislav Pehlivanov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC encoder long term prediction extension |
|
* @author Rostislav Pehlivanov ( atomnuker gmail com ) |
|
*/ |
|
|
|
#include "aacenc_ltp.h" |
|
#include "aacenc_quantization.h" |
|
#include "aacenc_utils.h" |
|
|
|
/** |
|
* Encode LTP data. |
|
*/ |
|
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, |
|
int common_window) |
|
{ |
|
int i; |
|
IndividualChannelStream *ics = &sce->ics; |
|
if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present) |
|
return; |
|
if (common_window) |
|
put_bits(&s->pb, 1, 0); |
|
put_bits(&s->pb, 1, ics->ltp.present); |
|
if (!ics->ltp.present) |
|
return; |
|
put_bits(&s->pb, 11, ics->ltp.lag); |
|
put_bits(&s->pb, 3, ics->ltp.coef_idx); |
|
for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++) |
|
put_bits(&s->pb, 1, ics->ltp.used[i]); |
|
} |
|
|
|
void ff_aac_ltp_insert_new_frame(AACEncContext *s) |
|
{ |
|
int i, ch, tag, chans, cur_channel, start_ch = 0; |
|
ChannelElement *cpe; |
|
SingleChannelElement *sce; |
|
for (i = 0; i < s->chan_map[0]; i++) { |
|
cpe = &s->cpe[i]; |
|
tag = s->chan_map[i+1]; |
|
chans = tag == TYPE_CPE ? 2 : 1; |
|
for (ch = 0; ch < chans; ch++) { |
|
sce = &cpe->ch[ch]; |
|
cur_channel = start_ch + ch; |
|
/* New sample + overlap */ |
|
memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0])); |
|
memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0])); |
|
memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0])); |
|
sce->ics.ltp.lag = 0; |
|
} |
|
start_ch += chans; |
|
} |
|
} |
|
|
|
/** |
|
* Process LTP parameters |
|
* @see Patent WO2006070265A1 |
|
*/ |
|
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce) |
|
{ |
|
int i, j, lag, samples_num; |
|
float corr, max_ratio, max_corr; |
|
float *pred_signal = &sce->ltp_state[0]; |
|
const float *samples = &s->planar_samples[s->cur_channel][1024]; |
|
|
|
if (s->profile != FF_PROFILE_AAC_LTP) |
|
return; |
|
|
|
/* Calculate lag */ |
|
max_corr = 0.0f; |
|
for (i = 0; i < 2048; i++) { |
|
float s0 = 0.0f, s1 = 0.0f; |
|
const int start = FFMAX(0, i - 1024); |
|
for (j = start; j < 2048; j++) { |
|
const int idx = j - i + 1024; |
|
s0 += samples[j]*pred_signal[idx]; |
|
s1 += pred_signal[idx]*pred_signal[idx]; |
|
} |
|
corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f; |
|
if (corr > max_corr) { |
|
max_corr = corr; |
|
lag = i; |
|
max_ratio = corr/(2048-start); |
|
} |
|
} |
|
|
|
if (lag < 1) |
|
return; |
|
|
|
sce->ics.ltp.lag = lag = av_clip_uintp2(lag, 11); |
|
sce->ics.ltp.coef_idx = quant_array_idx(max_ratio, ltp_coef, 8); |
|
sce->ics.ltp.coef = ltp_coef[sce->ics.ltp.coef_idx]; |
|
|
|
/* Predict the new samples */ |
|
samples_num = 1024 + (lag < 1024 ? lag : 1024); |
|
for (i = 1024; i < samples_num + 1024; i++) |
|
pred_signal[i] = sce->ics.ltp.coef*pred_signal[i-lag]; |
|
memset(&pred_signal[samples_num], 0, (2048 - samples_num)*sizeof(float)); |
|
} |
|
|
|
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe) |
|
{ |
|
int sfb, count = 0; |
|
SingleChannelElement *sce0 = &cpe->ch[0]; |
|
SingleChannelElement *sce1 = &cpe->ch[1]; |
|
|
|
if (!cpe->common_window || |
|
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || |
|
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) |
|
return; |
|
|
|
for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) { |
|
int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb]; |
|
if (sum != 2) { |
|
sce0->ics.ltp.used[sfb] = 0; |
|
} else if (sum == 2) { |
|
count++; |
|
} |
|
} |
|
|
|
sce0->ics.ltp.present = !!count; |
|
sce0->ics.predictor_present = !!count; |
|
} |
|
|
|
/** |
|
* Mark LTP sfb's |
|
*/ |
|
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, |
|
int common_window) |
|
{ |
|
int w, g, w2, i, start = 0, count = 0; |
|
int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB)); |
|
float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1]; |
|
float *PCD34 = &s->scoefs[128*2]; |
|
const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); |
|
|
|
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
if (sce->ics.ltp.lag) { |
|
memset(&sce->lcoeffs[0], 0.0f, 3072*sizeof(sce->lcoeffs[0])); |
|
memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction)); |
|
} |
|
return; |
|
} |
|
|
|
if (!sce->ics.ltp.lag) |
|
return; |
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = 0; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
int bits1 = 0, bits2 = 0; |
|
float dist1 = 0.0f, dist2 = 0.0f; |
|
if (w*16+g > max_ltp) { |
|
start += sce->ics.swb_sizes[g]; |
|
continue; |
|
} |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int bits_tmp1, bits_tmp2; |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) |
|
PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i]; |
|
abs_pow34_v(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]); |
|
abs_pow34_v(PCD34, PCD, sce->ics.swb_sizes[g]); |
|
dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g], |
|
sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g], |
|
s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0); |
|
dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g], |
|
sce->sf_idx[(w+w2)*16+g], |
|
sce->band_type[(w+w2)*16+g], |
|
s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0); |
|
bits1 += bits_tmp1; |
|
bits2 += bits_tmp2; |
|
} |
|
if (dist2 < dist1 && bits2 < bits1) { |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) |
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) |
|
sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i]; |
|
sce->ics.ltp.used[w*16+g] = 1; |
|
saved_bits += bits1 - bits2; |
|
count++; |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
sce->ics.ltp.present = !!count && (saved_bits >= 0); |
|
sce->ics.predictor_present = !!sce->ics.ltp.present; |
|
|
|
/* Reset any marked sfbs */ |
|
if (!sce->ics.ltp.present && !!count) { |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = 0; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (sce->ics.ltp.used[w*16+g]) { |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) { |
|
sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i]; |
|
} |
|
} |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
} |
|
}
|
|
|