mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
998 lines
40 KiB
998 lines
40 KiB
/* |
|
* AAC coefficients encoder |
|
* Copyright (C) 2008-2009 Konstantin Shishkov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC coefficients encoder |
|
*/ |
|
|
|
/*********************************** |
|
* TODOs: |
|
* speedup quantizer selection |
|
* add sane pulse detection |
|
***********************************/ |
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage |
|
|
|
#include <float.h> |
|
|
|
#include "libavutil/mathematics.h" |
|
#include "mathops.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "aac.h" |
|
#include "aacenc.h" |
|
#include "aactab.h" |
|
#include "aacenctab.h" |
|
#include "aacenc_utils.h" |
|
#include "aacenc_quantization.h" |
|
#include "aac_tablegen_decl.h" |
|
|
|
#include "aacenc_is.h" |
|
#include "aacenc_tns.h" |
|
#include "aacenc_ltp.h" |
|
#include "aacenc_pred.h" |
|
|
|
#include "libavcodec/aaccoder_twoloop.h" |
|
|
|
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread |
|
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */ |
|
#define NOISE_SPREAD_THRESHOLD 0.5073f |
|
|
|
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to |
|
* replace low energy non zero bands */ |
|
#define NOISE_LAMBDA_REPLACE 1.948f |
|
|
|
#include "libavcodec/aaccoder_trellis.h" |
|
|
|
/** |
|
* structure used in optimal codebook search |
|
*/ |
|
typedef struct BandCodingPath { |
|
int prev_idx; ///< pointer to the previous path point |
|
float cost; ///< path cost |
|
int run; |
|
} BandCodingPath; |
|
|
|
/** |
|
* Encode band info for single window group bands. |
|
*/ |
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, |
|
int win, int group_len, const float lambda) |
|
{ |
|
BandCodingPath path[120][CB_TOT_ALL]; |
|
int w, swb, cb, start, size; |
|
int i, j; |
|
const int max_sfb = sce->ics.max_sfb; |
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; |
|
const int run_esc = (1 << run_bits) - 1; |
|
int idx, ppos, count; |
|
int stackrun[120], stackcb[120], stack_len; |
|
float next_minrd = INFINITY; |
|
int next_mincb = 0; |
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024); |
|
start = win*128; |
|
for (cb = 0; cb < CB_TOT_ALL; cb++) { |
|
path[0][cb].cost = 0.0f; |
|
path[0][cb].prev_idx = -1; |
|
path[0][cb].run = 0; |
|
} |
|
for (swb = 0; swb < max_sfb; swb++) { |
|
size = sce->ics.swb_sizes[swb]; |
|
if (sce->zeroes[win*16 + swb]) { |
|
for (cb = 0; cb < CB_TOT_ALL; cb++) { |
|
path[swb+1][cb].prev_idx = cb; |
|
path[swb+1][cb].cost = path[swb][cb].cost; |
|
path[swb+1][cb].run = path[swb][cb].run + 1; |
|
} |
|
} else { |
|
float minrd = next_minrd; |
|
int mincb = next_mincb; |
|
next_minrd = INFINITY; |
|
next_mincb = 0; |
|
for (cb = 0; cb < CB_TOT_ALL; cb++) { |
|
float cost_stay_here, cost_get_here; |
|
float rd = 0.0f; |
|
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] || |
|
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) { |
|
path[swb+1][cb].prev_idx = -1; |
|
path[swb+1][cb].cost = INFINITY; |
|
path[swb+1][cb].run = path[swb][cb].run + 1; |
|
continue; |
|
} |
|
for (w = 0; w < group_len; w++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; |
|
rd += quantize_band_cost(s, &sce->coeffs[start + w*128], |
|
&s->scoefs[start + w*128], size, |
|
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb], |
|
lambda / band->threshold, INFINITY, NULL, NULL, 0); |
|
} |
|
cost_stay_here = path[swb][cb].cost + rd; |
|
cost_get_here = minrd + rd + run_bits + 4; |
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] |
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) |
|
cost_stay_here += run_bits; |
|
if (cost_get_here < cost_stay_here) { |
|
path[swb+1][cb].prev_idx = mincb; |
|
path[swb+1][cb].cost = cost_get_here; |
|
path[swb+1][cb].run = 1; |
|
} else { |
|
path[swb+1][cb].prev_idx = cb; |
|
path[swb+1][cb].cost = cost_stay_here; |
|
path[swb+1][cb].run = path[swb][cb].run + 1; |
|
} |
|
if (path[swb+1][cb].cost < next_minrd) { |
|
next_minrd = path[swb+1][cb].cost; |
|
next_mincb = cb; |
|
} |
|
} |
|
} |
|
start += sce->ics.swb_sizes[swb]; |
|
} |
|
|
|
//convert resulting path from backward-linked list |
|
stack_len = 0; |
|
idx = 0; |
|
for (cb = 1; cb < CB_TOT_ALL; cb++) |
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) |
|
idx = cb; |
|
ppos = max_sfb; |
|
while (ppos > 0) { |
|
av_assert1(idx >= 0); |
|
cb = idx; |
|
stackrun[stack_len] = path[ppos][cb].run; |
|
stackcb [stack_len] = cb; |
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx; |
|
ppos -= path[ppos][cb].run; |
|
stack_len++; |
|
} |
|
//perform actual band info encoding |
|
start = 0; |
|
for (i = stack_len - 1; i >= 0; i--) { |
|
cb = aac_cb_out_map[stackcb[i]]; |
|
put_bits(&s->pb, 4, cb); |
|
count = stackrun[i]; |
|
memset(sce->zeroes + win*16 + start, !cb, count); |
|
//XXX: memset when band_type is also uint8_t |
|
for (j = 0; j < count; j++) { |
|
sce->band_type[win*16 + start] = cb; |
|
start++; |
|
} |
|
while (count >= run_esc) { |
|
put_bits(&s->pb, run_bits, run_esc); |
|
count -= run_esc; |
|
} |
|
put_bits(&s->pb, run_bits, count); |
|
} |
|
} |
|
|
|
|
|
typedef struct TrellisPath { |
|
float cost; |
|
int prev; |
|
} TrellisPath; |
|
|
|
#define TRELLIS_STAGES 121 |
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1) |
|
|
|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce) |
|
{ |
|
int w, g, start = 0; |
|
int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0]; |
|
int bands = 0; |
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = 0; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { |
|
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100); |
|
minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]); |
|
bands++; |
|
} else if (sce->band_type[w*16+g] == NOISE_BT) { |
|
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155); |
|
minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]); |
|
bands++; |
|
} |
|
start += sce->ics.swb_sizes[g]; |
|
} |
|
} |
|
|
|
if (!bands) |
|
return; |
|
|
|
/* Clip the scalefactor indices */ |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF); |
|
} else if (sce->band_type[w*16+g] == NOISE_BT) { |
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, |
|
SingleChannelElement *sce, |
|
const float lambda) |
|
{ |
|
int q, w, w2, g, start = 0; |
|
int i, j; |
|
int idx; |
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES]; |
|
int bandaddr[TRELLIS_STAGES]; |
|
int minq; |
|
float mincost; |
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; |
|
int q0, q1, qcnt = 0; |
|
|
|
for (i = 0; i < 1024; i++) { |
|
float t = fabsf(sce->coeffs[i]); |
|
if (t > 0.0f) { |
|
q0f = FFMIN(q0f, t); |
|
q1f = FFMAX(q1f, t); |
|
qnrgf += t*t; |
|
qcnt++; |
|
} |
|
} |
|
|
|
if (!qcnt) { |
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); |
|
memset(sce->zeroes, 1, sizeof(sce->zeroes)); |
|
return; |
|
} |
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped |
|
q0 = coef2minsf(q0f); |
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero |
|
q1 = coef2maxsf(q1f); |
|
if (q1 - q0 > 60) { |
|
int q0low = q0; |
|
int q1high = q1; |
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped |
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); |
|
q1 = qnrg + 30; |
|
q0 = qnrg - 30; |
|
if (q0 < q0low) { |
|
q1 += q0low - q0; |
|
q0 = q0low; |
|
} else if (q1 > q1high) { |
|
q0 -= q1 - q1high; |
|
q1 = q1high; |
|
} |
|
} |
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) { |
|
paths[0][i].cost = 0.0f; |
|
paths[0][i].prev = -1; |
|
} |
|
for (j = 1; j < TRELLIS_STAGES; j++) { |
|
for (i = 0; i < TRELLIS_STATES; i++) { |
|
paths[j][i].cost = INFINITY; |
|
paths[j][i].prev = -2; |
|
} |
|
} |
|
idx = 1; |
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = &sce->coeffs[start]; |
|
float qmin, qmax; |
|
int nz = 0; |
|
|
|
bandaddr[idx] = w * 16 + g; |
|
qmin = INT_MAX; |
|
qmax = 0.0f; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (band->energy <= band->threshold || band->threshold == 0.0f) { |
|
sce->zeroes[(w+w2)*16+g] = 1; |
|
continue; |
|
} |
|
sce->zeroes[(w+w2)*16+g] = 0; |
|
nz = 1; |
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) { |
|
float t = fabsf(coefs[w2*128+i]); |
|
if (t > 0.0f) |
|
qmin = FFMIN(qmin, t); |
|
qmax = FFMAX(qmax, t); |
|
} |
|
} |
|
if (nz) { |
|
int minscale, maxscale; |
|
float minrd = INFINITY; |
|
float maxval; |
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped |
|
minscale = coef2minsf(qmin); |
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero |
|
maxscale = coef2maxsf(qmax); |
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); |
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); |
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); |
|
for (q = minscale; q < maxscale; q++) { |
|
float dist = 0; |
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], |
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0); |
|
} |
|
minrd = FFMIN(minrd, dist); |
|
|
|
for (i = 0; i < q1 - q0; i++) { |
|
float cost; |
|
cost = paths[idx - 1][i].cost + dist |
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; |
|
if (cost < paths[idx][q].cost) { |
|
paths[idx][q].cost = cost; |
|
paths[idx][q].prev = i; |
|
} |
|
} |
|
} |
|
} else { |
|
for (q = 0; q < q1 - q0; q++) { |
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1; |
|
paths[idx][q].prev = q; |
|
} |
|
} |
|
sce->zeroes[w*16+g] = !nz; |
|
start += sce->ics.swb_sizes[g]; |
|
idx++; |
|
} |
|
} |
|
idx--; |
|
mincost = paths[idx][0].cost; |
|
minq = 0; |
|
for (i = 1; i < TRELLIS_STATES; i++) { |
|
if (paths[idx][i].cost < mincost) { |
|
mincost = paths[idx][i].cost; |
|
minq = i; |
|
} |
|
} |
|
while (idx) { |
|
sce->sf_idx[bandaddr[idx]] = minq + q0; |
|
minq = paths[idx][minq].prev; |
|
idx--; |
|
} |
|
//set the same quantizers inside window groups |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) |
|
for (g = 0; g < sce->ics.num_swb; g++) |
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) |
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; |
|
} |
|
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, |
|
SingleChannelElement *sce, |
|
const float lambda) |
|
{ |
|
int start = 0, i, w, w2, g; |
|
float uplim[128], maxq[128]; |
|
int minq, maxsf; |
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda; |
|
int last = 0, lastband = 0, curband = 0; |
|
float avg_energy = 0.0; |
|
if (sce->ics.num_windows == 1) { |
|
start = 0; |
|
for (i = 0; i < 1024; i++) { |
|
if (i - start >= sce->ics.swb_sizes[curband]) { |
|
start += sce->ics.swb_sizes[curband]; |
|
curband++; |
|
} |
|
if (sce->coeffs[i]) { |
|
avg_energy += sce->coeffs[i] * sce->coeffs[i]; |
|
last = i; |
|
lastband = curband; |
|
} |
|
} |
|
} else { |
|
for (w = 0; w < 8; w++) { |
|
const float *coeffs = &sce->coeffs[w*128]; |
|
curband = start = 0; |
|
for (i = 0; i < 128; i++) { |
|
if (i - start >= sce->ics.swb_sizes[curband]) { |
|
start += sce->ics.swb_sizes[curband]; |
|
curband++; |
|
} |
|
if (coeffs[i]) { |
|
avg_energy += coeffs[i] * coeffs[i]; |
|
last = FFMAX(last, i); |
|
lastband = FFMAX(lastband, curband); |
|
} |
|
} |
|
} |
|
} |
|
last++; |
|
avg_energy /= last; |
|
if (avg_energy == 0.0f) { |
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++) |
|
sce->sf_idx[i] = SCALE_ONE_POS; |
|
return; |
|
} |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
float *coefs = &sce->coeffs[start]; |
|
const int size = sce->ics.swb_sizes[g]; |
|
int start2 = start, end2 = start + size, peakpos = start; |
|
float maxval = -1, thr = 0.0f, t; |
|
maxq[w*16+g] = 0.0f; |
|
if (g > lastband) { |
|
maxq[w*16+g] = 0.0f; |
|
start += size; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) |
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size); |
|
continue; |
|
} |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
for (i = 0; i < size; i++) { |
|
float t = coefs[w2*128+i]*coefs[w2*128+i]; |
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i])); |
|
thr += t; |
|
if (sce->ics.num_windows == 1 && maxval < t) { |
|
maxval = t; |
|
peakpos = start+i; |
|
} |
|
} |
|
} |
|
if (sce->ics.num_windows == 1) { |
|
start2 = FFMAX(peakpos - 2, start2); |
|
end2 = FFMIN(peakpos + 3, end2); |
|
} else { |
|
start2 -= start; |
|
end2 -= start; |
|
} |
|
start += size; |
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband); |
|
t = 1.0 - (1.0 * start2 / last); |
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075); |
|
} |
|
} |
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); |
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
start = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
const float *coefs = &sce->coeffs[start]; |
|
const float *scaled = &s->scoefs[start]; |
|
const int size = sce->ics.swb_sizes[g]; |
|
int scf, prev_scf, step; |
|
int min_scf = -1, max_scf = 256; |
|
float curdiff; |
|
if (maxq[w*16+g] < 21.544) { |
|
sce->zeroes[w*16+g] = 1; |
|
start += size; |
|
continue; |
|
} |
|
sce->zeroes[w*16+g] = 0; |
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218); |
|
for (;;) { |
|
float dist = 0.0f; |
|
int quant_max; |
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
int b; |
|
dist += quantize_band_cost(s, coefs + w2*128, |
|
scaled + w2*128, |
|
sce->ics.swb_sizes[g], |
|
scf, |
|
ESC_BT, |
|
lambda, |
|
INFINITY, |
|
&b, NULL, |
|
0); |
|
dist -= b; |
|
} |
|
dist *= 1.0f / 512.0f / lambda; |
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD); |
|
if (quant_max >= 8191) { // too much, return to the previous quantizer |
|
sce->sf_idx[w*16+g] = prev_scf; |
|
break; |
|
} |
|
prev_scf = scf; |
|
curdiff = fabsf(dist - uplim[w*16+g]); |
|
if (curdiff <= 1.0f) |
|
step = 0; |
|
else |
|
step = log2f(curdiff); |
|
if (dist > uplim[w*16+g]) |
|
step = -step; |
|
scf += step; |
|
scf = av_clip_uint8(scf); |
|
step = scf - prev_scf; |
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) { |
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf); |
|
break; |
|
} |
|
if (step > 0) |
|
min_scf = prev_scf; |
|
else |
|
max_scf = prev_scf; |
|
} |
|
start += size; |
|
} |
|
} |
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX; |
|
for (i = 1; i < 128; i++) { |
|
if (!sce->sf_idx[i]) |
|
sce->sf_idx[i] = sce->sf_idx[i-1]; |
|
else |
|
minq = FFMIN(minq, sce->sf_idx[i]); |
|
} |
|
if (minq == INT_MAX) |
|
minq = 0; |
|
minq = FFMIN(minq, SCALE_MAX_POS); |
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); |
|
for (i = 126; i >= 0; i--) { |
|
if (!sce->sf_idx[i]) |
|
sce->sf_idx[i] = sce->sf_idx[i+1]; |
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf); |
|
} |
|
} |
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, |
|
SingleChannelElement *sce, |
|
const float lambda) |
|
{ |
|
int i, w, w2, g; |
|
int minq = 255; |
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
if (band->energy <= band->threshold) { |
|
sce->sf_idx[(w+w2)*16+g] = 218; |
|
sce->zeroes[(w+w2)*16+g] = 1; |
|
} else { |
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218); |
|
sce->zeroes[(w+w2)*16+g] = 0; |
|
} |
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]); |
|
} |
|
} |
|
} |
|
for (i = 0; i < 128; i++) { |
|
sce->sf_idx[i] = 140; |
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1); |
|
} |
|
//set the same quantizers inside window groups |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) |
|
for (g = 0; g < sce->ics.num_swb; g++) |
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) |
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; |
|
} |
|
|
|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) |
|
{ |
|
FFPsyBand *band; |
|
int w, g, w2, i; |
|
int wlen = 1024 / sce->ics.num_windows; |
|
int bandwidth, cutoff; |
|
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128]; |
|
float *NOR34 = &s->scoefs[3*128]; |
|
const float lambda = s->lambda; |
|
const float freq_mult = avctx->sample_rate*0.5f/wlen; |
|
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda); |
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); |
|
const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f); |
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); |
|
|
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate |
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels) |
|
* (lambda / 120.f); |
|
|
|
/** Keep this in sync with twoloop's cutoff selection */ |
|
float rate_bandwidth_multiplier = 1.5f; |
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE) |
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) |
|
: (avctx->bit_rate / avctx->channels); |
|
|
|
frame_bit_rate *= 1.15f; |
|
|
|
if (avctx->cutoff > 0) { |
|
bandwidth = avctx->cutoff; |
|
} else { |
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); |
|
} |
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; |
|
|
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
int wstart = w*128; |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
int noise_sfi; |
|
float dist1 = 0.0f, dist2 = 0.0f, noise_amp; |
|
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh; |
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; |
|
float min_energy = -1.0f, max_energy = 0.0f; |
|
const int start = wstart+sce->ics.swb_offset[g]; |
|
const float freq = (start-wstart)*freq_mult; |
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); |
|
if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) |
|
continue; |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
sfb_energy += band->energy; |
|
spread = FFMIN(spread, band->spread); |
|
threshold += band->threshold; |
|
if (!w2) { |
|
min_energy = max_energy = band->energy; |
|
} else { |
|
min_energy = FFMIN(min_energy, band->energy); |
|
max_energy = FFMAX(max_energy, band->energy); |
|
} |
|
} |
|
|
|
/* Ramps down at ~8000Hz and loosens the dist threshold */ |
|
dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias; |
|
|
|
/* PNS is acceptable when all of these are true: |
|
* 1. high spread energy (noise-like band) |
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) |
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) |
|
* |
|
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important) |
|
*/ |
|
if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold || |
|
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) || |
|
min_energy < pns_transient_energy_r * max_energy ) { |
|
sce->pns_ener[w*16+g] = sfb_energy; |
|
continue; |
|
} |
|
|
|
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread); |
|
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */ |
|
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */ |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
float band_energy, scale, pns_senergy; |
|
const int start_c = (w+w2)*128+sce->ics.swb_offset[g]; |
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) |
|
PNS[i] = s->random_state = lcg_random(s->random_state); |
|
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); |
|
scale = noise_amp/sqrtf(band_energy); |
|
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]); |
|
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); |
|
pns_energy += pns_senergy; |
|
abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]); |
|
abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]); |
|
dist1 += quantize_band_cost(s, &sce->coeffs[start_c], |
|
NOR34, |
|
sce->ics.swb_sizes[g], |
|
sce->sf_idx[(w+w2)*16+g], |
|
sce->band_alt[(w+w2)*16+g], |
|
lambda/band->threshold, INFINITY, NULL, NULL, 0); |
|
/* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */ |
|
dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold; |
|
} |
|
if (g && sce->sf_idx[(w+w2)*16+g-1] == NOISE_BT) { |
|
dist2 += 5; |
|
} else { |
|
dist2 += 9; |
|
} |
|
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */ |
|
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy; |
|
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) { |
|
sce->band_type[w*16+g] = NOISE_BT; |
|
sce->zeroes[w*16+g] = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) |
|
{ |
|
FFPsyBand *band; |
|
int w, g, w2; |
|
int wlen = 1024 / sce->ics.num_windows; |
|
int bandwidth, cutoff; |
|
const float lambda = s->lambda; |
|
const float freq_mult = avctx->sample_rate*0.5f/wlen; |
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); |
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); |
|
|
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate |
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels) |
|
* (lambda / 120.f); |
|
|
|
/** Keep this in sync with twoloop's cutoff selection */ |
|
float rate_bandwidth_multiplier = 1.5f; |
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE) |
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) |
|
: (avctx->bit_rate / avctx->channels); |
|
|
|
frame_bit_rate *= 1.15f; |
|
|
|
if (avctx->cutoff > 0) { |
|
bandwidth = avctx->cutoff; |
|
} else { |
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); |
|
} |
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; |
|
|
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; |
|
float min_energy = -1.0f, max_energy = 0.0f; |
|
const int start = sce->ics.swb_offset[g]; |
|
const float freq = start*freq_mult; |
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); |
|
if (freq < NOISE_LOW_LIMIT || start >= cutoff) { |
|
sce->can_pns[w*16+g] = 0; |
|
continue; |
|
} |
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { |
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; |
|
sfb_energy += band->energy; |
|
spread = FFMIN(spread, band->spread); |
|
threshold += band->threshold; |
|
if (!w2) { |
|
min_energy = max_energy = band->energy; |
|
} else { |
|
min_energy = FFMIN(min_energy, band->energy); |
|
max_energy = FFMAX(max_energy, band->energy); |
|
} |
|
} |
|
|
|
/* PNS is acceptable when all of these are true: |
|
* 1. high spread energy (noise-like band) |
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) |
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) |
|
*/ |
|
sce->pns_ener[w*16+g] = sfb_energy; |
|
if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) { |
|
sce->can_pns[w*16+g] = 0; |
|
} else { |
|
sce->can_pns[w*16+g] = 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe) |
|
{ |
|
int start = 0, i, w, w2, g, sid_sf_boost; |
|
float M[128], S[128]; |
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3; |
|
const float lambda = s->lambda; |
|
const float mslambda = FFMIN(1.0f, lambda / 120.f); |
|
SingleChannelElement *sce0 = &cpe->ch[0]; |
|
SingleChannelElement *sce1 = &cpe->ch[1]; |
|
if (!cpe->common_window) |
|
return; |
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { |
|
int min_sf_idx_mid = SCALE_MAX_POS; |
|
int min_sf_idx_side = SCALE_MAX_POS; |
|
for (g = 0; g < sce0->ics.num_swb; g++) { |
|
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT) |
|
min_sf_idx_mid = FFMIN(min_sf_idx_mid, sce0->sf_idx[w*16+g]); |
|
if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT) |
|
min_sf_idx_side = FFMIN(min_sf_idx_side, sce1->sf_idx[w*16+g]); |
|
} |
|
|
|
start = 0; |
|
for (g = 0; g < sce0->ics.num_swb; g++) { |
|
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f; |
|
cpe->ms_mask[w*16+g] = 0; |
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { |
|
float Mmax = 0.0f, Smax = 0.0f; |
|
|
|
/* Must compute mid/side SF and book for the whole window group */ |
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { |
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { |
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i] |
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5; |
|
S[i] = M[i] |
|
- sce1->coeffs[start+(w+w2)*128+i]; |
|
} |
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); |
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); |
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) { |
|
Mmax = FFMAX(Mmax, M34[i]); |
|
Smax = FFMAX(Smax, S34[i]); |
|
} |
|
} |
|
|
|
for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) { |
|
float dist1 = 0.0f, dist2 = 0.0f; |
|
int B0 = 0, B1 = 0; |
|
int minidx; |
|
int mididx, sididx; |
|
int midcb, sidcb; |
|
|
|
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]); |
|
mididx = av_clip(minidx, min_sf_idx_mid, min_sf_idx_mid + SCALE_MAX_DIFF); |
|
sididx = av_clip(minidx - sid_sf_boost * 3, min_sf_idx_side, min_sf_idx_side + SCALE_MAX_DIFF); |
|
midcb = find_min_book(Mmax, mididx); |
|
sidcb = find_min_book(Smax, sididx); |
|
|
|
if ((mididx > minidx) || (sididx > minidx)) { |
|
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */ |
|
continue; |
|
} |
|
|
|
/* No CB can be zero */ |
|
midcb = FFMAX(1,midcb); |
|
sidcb = FFMAX(1,sidcb); |
|
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { |
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; |
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; |
|
float minthr = FFMIN(band0->threshold, band1->threshold); |
|
int b1,b2,b3,b4; |
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { |
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i] |
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5; |
|
S[i] = M[i] |
|
- sce1->coeffs[start+(w+w2)*128+i]; |
|
} |
|
|
|
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); |
|
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); |
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]); |
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]); |
|
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], |
|
L34, |
|
sce0->ics.swb_sizes[g], |
|
sce0->sf_idx[(w+w2)*16+g], |
|
sce0->band_type[(w+w2)*16+g], |
|
lambda / band0->threshold, INFINITY, &b1, NULL, 0); |
|
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], |
|
R34, |
|
sce1->ics.swb_sizes[g], |
|
sce1->sf_idx[(w+w2)*16+g], |
|
sce1->band_type[(w+w2)*16+g], |
|
lambda / band1->threshold, INFINITY, &b2, NULL, 0); |
|
dist2 += quantize_band_cost(s, M, |
|
M34, |
|
sce0->ics.swb_sizes[g], |
|
sce0->sf_idx[(w+w2)*16+g], |
|
sce0->band_type[(w+w2)*16+g], |
|
lambda / minthr, INFINITY, &b3, NULL, 0); |
|
dist2 += quantize_band_cost(s, S, |
|
S34, |
|
sce1->ics.swb_sizes[g], |
|
sce1->sf_idx[(w+w2)*16+g], |
|
sce1->band_type[(w+w2)*16+g], |
|
mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0); |
|
B0 += b1+b2; |
|
B1 += b3+b4; |
|
dist1 -= B0; |
|
dist2 -= B1; |
|
} |
|
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0; |
|
if (cpe->ms_mask[w*16+g]) { |
|
/* Setting the M/S mask is useful with I/S, but only the flag */ |
|
if (!cpe->is_mask[w*16+g]) { |
|
sce0->sf_idx[w*16+g] = mididx; |
|
sce1->sf_idx[w*16+g] = sididx; |
|
sce0->band_type[w*16+g] = midcb; |
|
sce1->band_type[w*16+g] = sidcb; |
|
} |
|
break; |
|
} else if (B1 > B0) { |
|
/* More boost won't fix this */ |
|
break; |
|
} |
|
} |
|
} |
|
start += sce0->ics.swb_sizes[g]; |
|
} |
|
} |
|
} |
|
|
|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = { |
|
[AAC_CODER_FAAC] = { |
|
search_for_quantizers_faac, |
|
encode_window_bands_info, |
|
quantize_and_encode_band, |
|
ff_aac_encode_tns_info, |
|
ff_aac_encode_ltp_info, |
|
ff_aac_encode_main_pred, |
|
ff_aac_adjust_common_pred, |
|
ff_aac_adjust_common_ltp, |
|
ff_aac_apply_main_pred, |
|
ff_aac_apply_tns, |
|
ff_aac_update_ltp, |
|
ff_aac_ltp_insert_new_frame, |
|
set_special_band_scalefactors, |
|
search_for_pns, |
|
mark_pns, |
|
ff_aac_search_for_tns, |
|
ff_aac_search_for_ltp, |
|
search_for_ms, |
|
ff_aac_search_for_is, |
|
ff_aac_search_for_pred, |
|
}, |
|
[AAC_CODER_ANMR] = { |
|
search_for_quantizers_anmr, |
|
encode_window_bands_info, |
|
quantize_and_encode_band, |
|
ff_aac_encode_tns_info, |
|
ff_aac_encode_ltp_info, |
|
ff_aac_encode_main_pred, |
|
ff_aac_adjust_common_pred, |
|
ff_aac_adjust_common_ltp, |
|
ff_aac_apply_main_pred, |
|
ff_aac_apply_tns, |
|
ff_aac_update_ltp, |
|
ff_aac_ltp_insert_new_frame, |
|
set_special_band_scalefactors, |
|
search_for_pns, |
|
mark_pns, |
|
ff_aac_search_for_tns, |
|
ff_aac_search_for_ltp, |
|
search_for_ms, |
|
ff_aac_search_for_is, |
|
ff_aac_search_for_pred, |
|
}, |
|
[AAC_CODER_TWOLOOP] = { |
|
search_for_quantizers_twoloop, |
|
codebook_trellis_rate, |
|
quantize_and_encode_band, |
|
ff_aac_encode_tns_info, |
|
ff_aac_encode_ltp_info, |
|
ff_aac_encode_main_pred, |
|
ff_aac_adjust_common_pred, |
|
ff_aac_adjust_common_ltp, |
|
ff_aac_apply_main_pred, |
|
ff_aac_apply_tns, |
|
ff_aac_update_ltp, |
|
ff_aac_ltp_insert_new_frame, |
|
set_special_band_scalefactors, |
|
search_for_pns, |
|
mark_pns, |
|
ff_aac_search_for_tns, |
|
ff_aac_search_for_ltp, |
|
search_for_ms, |
|
ff_aac_search_for_is, |
|
ff_aac_search_for_pred, |
|
}, |
|
[AAC_CODER_FAST] = { |
|
search_for_quantizers_fast, |
|
encode_window_bands_info, |
|
quantize_and_encode_band, |
|
ff_aac_encode_tns_info, |
|
ff_aac_encode_ltp_info, |
|
ff_aac_encode_main_pred, |
|
ff_aac_adjust_common_pred, |
|
ff_aac_adjust_common_ltp, |
|
ff_aac_apply_main_pred, |
|
ff_aac_apply_tns, |
|
ff_aac_update_ltp, |
|
ff_aac_ltp_insert_new_frame, |
|
set_special_band_scalefactors, |
|
search_for_pns, |
|
mark_pns, |
|
ff_aac_search_for_tns, |
|
ff_aac_search_for_ltp, |
|
search_for_ms, |
|
ff_aac_search_for_is, |
|
ff_aac_search_for_pred, |
|
}, |
|
};
|
|
|