mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1491 lines
55 KiB
1491 lines
55 KiB
/* |
|
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder |
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/h264.h |
|
* H.264 / AVC / MPEG4 part10 codec. |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#ifndef AVCODEC_H264_H |
|
#define AVCODEC_H264_H |
|
|
|
#include "libavutil/intreadwrite.h" |
|
#include "dsputil.h" |
|
#include "cabac.h" |
|
#include "mpegvideo.h" |
|
#include "h264pred.h" |
|
#include "rectangle.h" |
|
|
|
#define interlaced_dct interlaced_dct_is_a_bad_name |
|
#define mb_intra mb_intra_is_not_initialized_see_mb_type |
|
|
|
#define LUMA_DC_BLOCK_INDEX 25 |
|
#define CHROMA_DC_BLOCK_INDEX 26 |
|
|
|
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 |
|
#define COEFF_TOKEN_VLC_BITS 8 |
|
#define TOTAL_ZEROS_VLC_BITS 9 |
|
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 |
|
#define RUN_VLC_BITS 3 |
|
#define RUN7_VLC_BITS 6 |
|
|
|
#define MAX_SPS_COUNT 32 |
|
#define MAX_PPS_COUNT 256 |
|
|
|
#define MAX_MMCO_COUNT 66 |
|
|
|
#define MAX_DELAYED_PIC_COUNT 16 |
|
|
|
/* Compiling in interlaced support reduces the speed |
|
* of progressive decoding by about 2%. */ |
|
#define ALLOW_INTERLACE |
|
|
|
#define ALLOW_NOCHROMA |
|
|
|
#define FMO 0 |
|
|
|
/** |
|
* The maximum number of slices supported by the decoder. |
|
* must be a power of 2 |
|
*/ |
|
#define MAX_SLICES 16 |
|
|
|
#ifdef ALLOW_INTERLACE |
|
#define MB_MBAFF h->mb_mbaff |
|
#define MB_FIELD h->mb_field_decoding_flag |
|
#define FRAME_MBAFF h->mb_aff_frame |
|
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME) |
|
#else |
|
#define MB_MBAFF 0 |
|
#define MB_FIELD 0 |
|
#define FRAME_MBAFF 0 |
|
#define FIELD_PICTURE 0 |
|
#undef IS_INTERLACED |
|
#define IS_INTERLACED(mb_type) 0 |
|
#endif |
|
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE) |
|
|
|
#ifdef ALLOW_NOCHROMA |
|
#define CHROMA h->sps.chroma_format_idc |
|
#else |
|
#define CHROMA 1 |
|
#endif |
|
|
|
#ifndef CABAC |
|
#define CABAC h->pps.cabac |
|
#endif |
|
|
|
#define EXTENDED_SAR 255 |
|
|
|
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit |
|
#define MB_TYPE_8x8DCT 0x01000000 |
|
#define IS_REF0(a) ((a) & MB_TYPE_REF0) |
|
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) |
|
|
|
/** |
|
* Value of Picture.reference when Picture is not a reference picture, but |
|
* is held for delayed output. |
|
*/ |
|
#define DELAYED_PIC_REF 4 |
|
|
|
|
|
/* NAL unit types */ |
|
enum { |
|
NAL_SLICE=1, |
|
NAL_DPA, |
|
NAL_DPB, |
|
NAL_DPC, |
|
NAL_IDR_SLICE, |
|
NAL_SEI, |
|
NAL_SPS, |
|
NAL_PPS, |
|
NAL_AUD, |
|
NAL_END_SEQUENCE, |
|
NAL_END_STREAM, |
|
NAL_FILLER_DATA, |
|
NAL_SPS_EXT, |
|
NAL_AUXILIARY_SLICE=19 |
|
}; |
|
|
|
/** |
|
* SEI message types |
|
*/ |
|
typedef enum { |
|
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) |
|
SEI_TYPE_PIC_TIMING = 1, ///< picture timing |
|
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data |
|
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync) |
|
} SEI_Type; |
|
|
|
/** |
|
* pic_struct in picture timing SEI message |
|
*/ |
|
typedef enum { |
|
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame |
|
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field |
|
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field |
|
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order |
|
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order |
|
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order |
|
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order |
|
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling |
|
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling |
|
} SEI_PicStructType; |
|
|
|
/** |
|
* Sequence parameter set |
|
*/ |
|
typedef struct SPS{ |
|
|
|
int profile_idc; |
|
int level_idc; |
|
int chroma_format_idc; |
|
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag |
|
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 |
|
int poc_type; ///< pic_order_cnt_type |
|
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 |
|
int delta_pic_order_always_zero_flag; |
|
int offset_for_non_ref_pic; |
|
int offset_for_top_to_bottom_field; |
|
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle |
|
int ref_frame_count; ///< num_ref_frames |
|
int gaps_in_frame_num_allowed_flag; |
|
int mb_width; ///< pic_width_in_mbs_minus1 + 1 |
|
int mb_height; ///< pic_height_in_map_units_minus1 + 1 |
|
int frame_mbs_only_flag; |
|
int mb_aff; ///<mb_adaptive_frame_field_flag |
|
int direct_8x8_inference_flag; |
|
int crop; ///< frame_cropping_flag |
|
unsigned int crop_left; ///< frame_cropping_rect_left_offset |
|
unsigned int crop_right; ///< frame_cropping_rect_right_offset |
|
unsigned int crop_top; ///< frame_cropping_rect_top_offset |
|
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset |
|
int vui_parameters_present_flag; |
|
AVRational sar; |
|
int video_signal_type_present_flag; |
|
int full_range; |
|
int colour_description_present_flag; |
|
enum AVColorPrimaries color_primaries; |
|
enum AVColorTransferCharacteristic color_trc; |
|
enum AVColorSpace colorspace; |
|
int timing_info_present_flag; |
|
uint32_t num_units_in_tick; |
|
uint32_t time_scale; |
|
int fixed_frame_rate_flag; |
|
short offset_for_ref_frame[256]; //FIXME dyn aloc? |
|
int bitstream_restriction_flag; |
|
int num_reorder_frames; |
|
int scaling_matrix_present; |
|
uint8_t scaling_matrix4[6][16]; |
|
uint8_t scaling_matrix8[2][64]; |
|
int nal_hrd_parameters_present_flag; |
|
int vcl_hrd_parameters_present_flag; |
|
int pic_struct_present_flag; |
|
int time_offset_length; |
|
int cpb_cnt; ///< See H.264 E.1.2 |
|
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1 |
|
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1 |
|
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1 |
|
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8 |
|
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8 |
|
int residual_color_transform_flag; ///< residual_colour_transform_flag |
|
}SPS; |
|
|
|
/** |
|
* Picture parameter set |
|
*/ |
|
typedef struct PPS{ |
|
unsigned int sps_id; |
|
int cabac; ///< entropy_coding_mode_flag |
|
int pic_order_present; ///< pic_order_present_flag |
|
int slice_group_count; ///< num_slice_groups_minus1 + 1 |
|
int mb_slice_group_map_type; |
|
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1 |
|
int weighted_pred; ///< weighted_pred_flag |
|
int weighted_bipred_idc; |
|
int init_qp; ///< pic_init_qp_minus26 + 26 |
|
int init_qs; ///< pic_init_qs_minus26 + 26 |
|
int chroma_qp_index_offset[2]; |
|
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag |
|
int constrained_intra_pred; ///< constrained_intra_pred_flag |
|
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag |
|
int transform_8x8_mode; ///< transform_8x8_mode_flag |
|
uint8_t scaling_matrix4[6][16]; |
|
uint8_t scaling_matrix8[2][64]; |
|
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table |
|
int chroma_qp_diff; |
|
}PPS; |
|
|
|
/** |
|
* Memory management control operation opcode. |
|
*/ |
|
typedef enum MMCOOpcode{ |
|
MMCO_END=0, |
|
MMCO_SHORT2UNUSED, |
|
MMCO_LONG2UNUSED, |
|
MMCO_SHORT2LONG, |
|
MMCO_SET_MAX_LONG, |
|
MMCO_RESET, |
|
MMCO_LONG, |
|
} MMCOOpcode; |
|
|
|
/** |
|
* Memory management control operation. |
|
*/ |
|
typedef struct MMCO{ |
|
MMCOOpcode opcode; |
|
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) |
|
int long_arg; ///< index, pic_num, or num long refs depending on opcode |
|
} MMCO; |
|
|
|
/** |
|
* H264Context |
|
*/ |
|
typedef struct H264Context{ |
|
MpegEncContext s; |
|
int nal_ref_idc; |
|
int nal_unit_type; |
|
uint8_t *rbsp_buffer[2]; |
|
unsigned int rbsp_buffer_size[2]; |
|
|
|
/** |
|
* Used to parse AVC variant of h264 |
|
*/ |
|
int is_avc; ///< this flag is != 0 if codec is avc1 |
|
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) |
|
|
|
int chroma_qp[2]; //QPc |
|
|
|
int qp_thresh; ///< QP threshold to skip loopfilter |
|
|
|
int prev_mb_skipped; |
|
int next_mb_skipped; |
|
|
|
//prediction stuff |
|
int chroma_pred_mode; |
|
int intra16x16_pred_mode; |
|
|
|
int topleft_mb_xy; |
|
int top_mb_xy; |
|
int topright_mb_xy; |
|
int left_mb_xy[2]; |
|
|
|
int topleft_type; |
|
int top_type; |
|
int topright_type; |
|
int left_type[2]; |
|
|
|
const uint8_t * left_block; |
|
int topleft_partition; |
|
|
|
int8_t intra4x4_pred_mode_cache[5*8]; |
|
int8_t (*intra4x4_pred_mode); |
|
H264PredContext hpc; |
|
unsigned int topleft_samples_available; |
|
unsigned int top_samples_available; |
|
unsigned int topright_samples_available; |
|
unsigned int left_samples_available; |
|
uint8_t (*top_borders[2])[16+2*8]; |
|
uint8_t left_border[2*(17+2*9)]; |
|
|
|
/** |
|
* non zero coeff count cache. |
|
* is 64 if not available. |
|
*/ |
|
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8]; |
|
|
|
/* |
|
.UU.YYYY |
|
.UU.YYYY |
|
.vv.YYYY |
|
.VV.YYYY |
|
*/ |
|
uint8_t (*non_zero_count)[32]; |
|
|
|
/** |
|
* Motion vector cache. |
|
*/ |
|
DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2]; |
|
DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8]; |
|
#define LIST_NOT_USED -1 //FIXME rename? |
|
#define PART_NOT_AVAILABLE -2 |
|
|
|
/** |
|
* is 1 if the specific list MV&references are set to 0,0,-2. |
|
*/ |
|
int mv_cache_clean[2]; |
|
|
|
/** |
|
* number of neighbors (top and/or left) that used 8x8 dct |
|
*/ |
|
int neighbor_transform_size; |
|
|
|
/** |
|
* block_offset[ 0..23] for frame macroblocks |
|
* block_offset[24..47] for field macroblocks |
|
*/ |
|
int block_offset[2*(16+8)]; |
|
|
|
uint32_t *mb2b_xy; //FIXME are these 4 a good idea? |
|
uint32_t *mb2br_xy; |
|
int b_stride; //FIXME use s->b4_stride |
|
|
|
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff |
|
int mb_uvlinesize; |
|
|
|
int emu_edge_width; |
|
int emu_edge_height; |
|
|
|
SPS *sps_buffers[MAX_SPS_COUNT]; |
|
SPS sps; ///< current sps |
|
|
|
PPS *pps_buffers[MAX_PPS_COUNT]; |
|
/** |
|
* current pps |
|
*/ |
|
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that? |
|
|
|
uint32_t dequant4_buffer[6][52][16]; |
|
uint32_t dequant8_buffer[2][52][64]; |
|
uint32_t (*dequant4_coeff[6])[16]; |
|
uint32_t (*dequant8_coeff[2])[64]; |
|
int dequant_coeff_pps; ///< reinit tables when pps changes |
|
|
|
int slice_num; |
|
uint16_t *slice_table_base; |
|
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 |
|
int slice_type; |
|
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) |
|
int slice_type_fixed; |
|
|
|
//interlacing specific flags |
|
int mb_aff_frame; |
|
int mb_field_decoding_flag; |
|
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag |
|
|
|
DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4]; |
|
|
|
//POC stuff |
|
int poc_lsb; |
|
int poc_msb; |
|
int delta_poc_bottom; |
|
int delta_poc[2]; |
|
int frame_num; |
|
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 |
|
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 |
|
int frame_num_offset; ///< for POC type 2 |
|
int prev_frame_num_offset; ///< for POC type 2 |
|
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 |
|
|
|
/** |
|
* frame_num for frames or 2*frame_num+1 for field pics. |
|
*/ |
|
int curr_pic_num; |
|
|
|
/** |
|
* max_frame_num or 2*max_frame_num for field pics. |
|
*/ |
|
int max_pic_num; |
|
|
|
//Weighted pred stuff |
|
int use_weight; |
|
int use_weight_chroma; |
|
int luma_log2_weight_denom; |
|
int chroma_log2_weight_denom; |
|
int luma_weight[2][48][2]; |
|
int chroma_weight[2][48][2][2]; |
|
int implicit_weight[48][48]; |
|
|
|
//deblock |
|
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 |
|
int slice_alpha_c0_offset; |
|
int slice_beta_offset; |
|
|
|
int redundant_pic_count; |
|
|
|
int direct_spatial_mv_pred; |
|
int col_parity; |
|
int col_fieldoff; |
|
int dist_scale_factor[16]; |
|
int dist_scale_factor_field[2][32]; |
|
int map_col_to_list0[2][16+32]; |
|
int map_col_to_list0_field[2][2][16+32]; |
|
|
|
/** |
|
* num_ref_idx_l0/1_active_minus1 + 1 |
|
*/ |
|
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode |
|
unsigned int list_count; |
|
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type |
|
Picture *short_ref[32]; |
|
Picture *long_ref[32]; |
|
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture |
|
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. |
|
Reordered version of default_ref_list |
|
according to picture reordering in slice header */ |
|
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 |
|
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size? |
|
int outputed_poc; |
|
|
|
/** |
|
* memory management control operations buffer. |
|
*/ |
|
MMCO mmco[MAX_MMCO_COUNT]; |
|
int mmco_index; |
|
|
|
int long_ref_count; ///< number of actual long term references |
|
int short_ref_count; ///< number of actual short term references |
|
|
|
//data partitioning |
|
GetBitContext intra_gb; |
|
GetBitContext inter_gb; |
|
GetBitContext *intra_gb_ptr; |
|
GetBitContext *inter_gb_ptr; |
|
|
|
DECLARE_ALIGNED_16(DCTELEM, mb)[16*24]; |
|
DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb |
|
|
|
/** |
|
* Cabac |
|
*/ |
|
CABACContext cabac; |
|
uint8_t cabac_state[460]; |
|
int cabac_init_idc; |
|
|
|
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */ |
|
uint16_t *cbp_table; |
|
int cbp; |
|
int top_cbp; |
|
int left_cbp; |
|
/* chroma_pred_mode for i4x4 or i16x16, else 0 */ |
|
uint8_t *chroma_pred_mode_table; |
|
int last_qscale_diff; |
|
uint8_t (*mvd_table[2])[2]; |
|
DECLARE_ALIGNED_16(uint8_t, mvd_cache)[2][5*8][2]; |
|
uint8_t *direct_table; |
|
uint8_t direct_cache[5*8]; |
|
|
|
uint8_t zigzag_scan[16]; |
|
uint8_t zigzag_scan8x8[64]; |
|
uint8_t zigzag_scan8x8_cavlc[64]; |
|
uint8_t field_scan[16]; |
|
uint8_t field_scan8x8[64]; |
|
uint8_t field_scan8x8_cavlc[64]; |
|
const uint8_t *zigzag_scan_q0; |
|
const uint8_t *zigzag_scan8x8_q0; |
|
const uint8_t *zigzag_scan8x8_cavlc_q0; |
|
const uint8_t *field_scan_q0; |
|
const uint8_t *field_scan8x8_q0; |
|
const uint8_t *field_scan8x8_cavlc_q0; |
|
|
|
int x264_build; |
|
|
|
/** |
|
* @defgroup multithreading Members for slice based multithreading |
|
* @{ |
|
*/ |
|
struct H264Context *thread_context[MAX_THREADS]; |
|
|
|
/** |
|
* current slice number, used to initalize slice_num of each thread/context |
|
*/ |
|
int current_slice; |
|
|
|
/** |
|
* Max number of threads / contexts. |
|
* This is equal to AVCodecContext.thread_count unless |
|
* multithreaded decoding is impossible, in which case it is |
|
* reduced to 1. |
|
*/ |
|
int max_contexts; |
|
|
|
/** |
|
* 1 if the single thread fallback warning has already been |
|
* displayed, 0 otherwise. |
|
*/ |
|
int single_decode_warning; |
|
|
|
int last_slice_type; |
|
/** @} */ |
|
|
|
int mb_xy; |
|
|
|
/** |
|
* pic_struct in picture timing SEI message |
|
*/ |
|
SEI_PicStructType sei_pic_struct; |
|
|
|
/** |
|
* Complement sei_pic_struct |
|
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. |
|
* However, soft telecined frames may have these values. |
|
* This is used in an attempt to flag soft telecine progressive. |
|
*/ |
|
int prev_interlaced_frame; |
|
|
|
/** |
|
* Bit set of clock types for fields/frames in picture timing SEI message. |
|
* For each found ct_type, appropriate bit is set (e.g., bit 1 for |
|
* interlaced). |
|
*/ |
|
int sei_ct_type; |
|
|
|
/** |
|
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2 |
|
*/ |
|
int sei_dpb_output_delay; |
|
|
|
/** |
|
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2 |
|
*/ |
|
int sei_cpb_removal_delay; |
|
|
|
/** |
|
* recovery_frame_cnt from SEI message |
|
* |
|
* Set to -1 if no recovery point SEI message found or to number of frames |
|
* before playback synchronizes. Frames having recovery point are key |
|
* frames. |
|
*/ |
|
int sei_recovery_frame_cnt; |
|
|
|
int is_complex; |
|
|
|
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag |
|
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag |
|
|
|
// Timestamp stuff |
|
int sei_buffering_period_present; ///< Buffering period SEI flag |
|
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs |
|
|
|
//SVQ3 specific fields |
|
int halfpel_flag; |
|
int thirdpel_flag; |
|
int unknown_svq3_flag; |
|
int next_slice_index; |
|
uint32_t svq3_watermark_key; |
|
}H264Context; |
|
|
|
|
|
extern const uint8_t ff_h264_chroma_qp[52]; |
|
|
|
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp); |
|
|
|
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); |
|
|
|
/** |
|
* Decode SEI |
|
*/ |
|
int ff_h264_decode_sei(H264Context *h); |
|
|
|
/** |
|
* Decode SPS |
|
*/ |
|
int ff_h264_decode_seq_parameter_set(H264Context *h); |
|
|
|
/** |
|
* Decode PPS |
|
*/ |
|
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); |
|
|
|
/** |
|
* Decodes a network abstraction layer unit. |
|
* @param consumed is the number of bytes used as input |
|
* @param length is the length of the array |
|
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing? |
|
* @returns decoded bytes, might be src+1 if no escapes |
|
*/ |
|
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); |
|
|
|
/** |
|
* identifies the exact end of the bitstream |
|
* @return the length of the trailing, or 0 if damaged |
|
*/ |
|
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src); |
|
|
|
/** |
|
* frees any data that may have been allocated in the H264 context like SPS, PPS etc. |
|
*/ |
|
av_cold void ff_h264_free_context(H264Context *h); |
|
|
|
/** |
|
* reconstructs bitstream slice_type. |
|
*/ |
|
int ff_h264_get_slice_type(const H264Context *h); |
|
|
|
/** |
|
* allocates tables. |
|
* needs width/height |
|
*/ |
|
int ff_h264_alloc_tables(H264Context *h); |
|
|
|
/** |
|
* fills the default_ref_list. |
|
*/ |
|
int ff_h264_fill_default_ref_list(H264Context *h); |
|
|
|
int ff_h264_decode_ref_pic_list_reordering(H264Context *h); |
|
void ff_h264_fill_mbaff_ref_list(H264Context *h); |
|
void ff_h264_remove_all_refs(H264Context *h); |
|
|
|
/** |
|
* Executes the reference picture marking (memory management control operations). |
|
*/ |
|
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); |
|
|
|
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb); |
|
|
|
|
|
/** |
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra4x4_pred_mode(H264Context *h); |
|
|
|
/** |
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. |
|
*/ |
|
int ff_h264_check_intra_pred_mode(H264Context *h, int mode); |
|
|
|
void ff_h264_write_back_intra_pred_mode(H264Context *h); |
|
void ff_h264_hl_decode_mb(H264Context *h); |
|
int ff_h264_frame_start(H264Context *h); |
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx); |
|
av_cold int ff_h264_decode_end(AVCodecContext *avctx); |
|
av_cold void ff_h264_decode_init_vlc(void); |
|
|
|
/** |
|
* decodes a macroblock |
|
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed |
|
*/ |
|
int ff_h264_decode_mb_cavlc(H264Context *h); |
|
|
|
/** |
|
* decodes a CABAC coded macroblock |
|
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed |
|
*/ |
|
int ff_h264_decode_mb_cabac(H264Context *h); |
|
|
|
void ff_h264_init_cabac_states(H264Context *h); |
|
|
|
void ff_h264_direct_dist_scale_factor(H264Context * const h); |
|
void ff_h264_direct_ref_list_init(H264Context * const h); |
|
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type); |
|
|
|
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
|
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
|
|
|
/** |
|
* Reset SEI values at the beginning of the frame. |
|
* |
|
* @param h H.264 context. |
|
*/ |
|
void ff_h264_reset_sei(H264Context *h); |
|
|
|
|
|
/* |
|
o-o o-o |
|
/ / / |
|
o-o o-o |
|
,---' |
|
o-o o-o |
|
/ / / |
|
o-o o-o |
|
*/ |
|
//This table must be here because scan8[constant] must be known at compiletime |
|
static const uint8_t scan8[16 + 2*4]={ |
|
4+1*8, 5+1*8, 4+2*8, 5+2*8, |
|
6+1*8, 7+1*8, 6+2*8, 7+2*8, |
|
4+3*8, 5+3*8, 4+4*8, 5+4*8, |
|
6+3*8, 7+3*8, 6+4*8, 7+4*8, |
|
1+1*8, 2+1*8, |
|
1+2*8, 2+2*8, |
|
1+4*8, 2+4*8, |
|
1+5*8, 2+5*8, |
|
}; |
|
|
|
static av_always_inline uint32_t pack16to32(int a, int b){ |
|
#if HAVE_BIGENDIAN |
|
return (b&0xFFFF) + (a<<16); |
|
#else |
|
return (a&0xFFFF) + (b<<16); |
|
#endif |
|
} |
|
|
|
static av_always_inline uint16_t pack8to16(int a, int b){ |
|
#if HAVE_BIGENDIAN |
|
return (b&0xFF) + (a<<8); |
|
#else |
|
return (a&0xFF) + (b<<8); |
|
#endif |
|
} |
|
|
|
/** |
|
* gets the chroma qp. |
|
*/ |
|
static inline int get_chroma_qp(H264Context *h, int t, int qscale){ |
|
return h->pps.chroma_qp_table[t][qscale]; |
|
} |
|
|
|
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my); |
|
|
|
static void fill_decode_neighbors(H264Context *h, int mb_type){ |
|
MpegEncContext * const s = &h->s; |
|
const int mb_xy= h->mb_xy; |
|
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
|
static const uint8_t left_block_options[4][16]={ |
|
{0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8}, |
|
{2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8}, |
|
{0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}, |
|
{0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8} |
|
}; |
|
|
|
h->topleft_partition= -1; |
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra |
|
* stuff, I can't imagine that these complex rules are worth it. */ |
|
|
|
topleft_xy = top_xy - 1; |
|
topright_xy= top_xy + 1; |
|
left_xy[1] = left_xy[0] = mb_xy-1; |
|
h->left_block = left_block_options[0]; |
|
if(FRAME_MBAFF){ |
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); |
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
|
if(s->mb_y&1){ |
|
if (left_mb_field_flag != curr_mb_field_flag) { |
|
left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1; |
|
if (curr_mb_field_flag) { |
|
left_xy[1] += s->mb_stride; |
|
h->left_block = left_block_options[3]; |
|
} else { |
|
topleft_xy += s->mb_stride; |
|
// take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition |
|
h->topleft_partition = 0; |
|
h->left_block = left_block_options[1]; |
|
} |
|
} |
|
}else{ |
|
if(curr_mb_field_flag){ |
|
topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1); |
|
topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1); |
|
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); |
|
} |
|
if (left_mb_field_flag != curr_mb_field_flag) { |
|
if (curr_mb_field_flag) { |
|
left_xy[1] += s->mb_stride; |
|
h->left_block = left_block_options[3]; |
|
} else { |
|
h->left_block = left_block_options[2]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
h->topleft_mb_xy = topleft_xy; |
|
h->top_mb_xy = top_xy; |
|
h->topright_mb_xy= topright_xy; |
|
h->left_mb_xy[0] = left_xy[0]; |
|
h->left_mb_xy[1] = left_xy[1]; |
|
//FIXME do we need all in the context? |
|
|
|
h->topleft_type = s->current_picture.mb_type[topleft_xy] ; |
|
h->top_type = s->current_picture.mb_type[top_xy] ; |
|
h->topright_type= s->current_picture.mb_type[topright_xy]; |
|
h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ; |
|
h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ; |
|
|
|
if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0; |
|
if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; |
|
if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0; |
|
if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0; |
|
} |
|
|
|
static void fill_decode_caches(H264Context *h, int mb_type){ |
|
MpegEncContext * const s = &h->s; |
|
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
|
int topleft_type, top_type, topright_type, left_type[2]; |
|
const uint8_t * left_block= h->left_block; |
|
int i; |
|
|
|
topleft_xy = h->topleft_mb_xy ; |
|
top_xy = h->top_mb_xy ; |
|
topright_xy = h->topright_mb_xy; |
|
left_xy[0] = h->left_mb_xy[0] ; |
|
left_xy[1] = h->left_mb_xy[1] ; |
|
topleft_type = h->topleft_type ; |
|
top_type = h->top_type ; |
|
topright_type= h->topright_type ; |
|
left_type[0] = h->left_type[0] ; |
|
left_type[1] = h->left_type[1] ; |
|
|
|
if(!IS_SKIP(mb_type)){ |
|
if(IS_INTRA(mb_type)){ |
|
int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; |
|
h->topleft_samples_available= |
|
h->top_samples_available= |
|
h->left_samples_available= 0xFFFF; |
|
h->topright_samples_available= 0xEEEA; |
|
|
|
if(!(top_type & type_mask)){ |
|
h->topleft_samples_available= 0xB3FF; |
|
h->top_samples_available= 0x33FF; |
|
h->topright_samples_available= 0x26EA; |
|
} |
|
if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){ |
|
if(IS_INTERLACED(mb_type)){ |
|
if(!(left_type[0] & type_mask)){ |
|
h->topleft_samples_available&= 0xDFFF; |
|
h->left_samples_available&= 0x5FFF; |
|
} |
|
if(!(left_type[1] & type_mask)){ |
|
h->topleft_samples_available&= 0xFF5F; |
|
h->left_samples_available&= 0xFF5F; |
|
} |
|
}else{ |
|
int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride]; |
|
|
|
assert(left_xy[0] == left_xy[1]); |
|
if(!((left_typei & type_mask) && (left_type[0] & type_mask))){ |
|
h->topleft_samples_available&= 0xDF5F; |
|
h->left_samples_available&= 0x5F5F; |
|
} |
|
} |
|
}else{ |
|
if(!(left_type[0] & type_mask)){ |
|
h->topleft_samples_available&= 0xDF5F; |
|
h->left_samples_available&= 0x5F5F; |
|
} |
|
} |
|
|
|
if(!(topleft_type & type_mask)) |
|
h->topleft_samples_available&= 0x7FFF; |
|
|
|
if(!(topright_type & type_mask)) |
|
h->topright_samples_available&= 0xFBFF; |
|
|
|
if(IS_INTRA4x4(mb_type)){ |
|
if(IS_INTRA4x4(top_type)){ |
|
AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]); |
|
}else{ |
|
h->intra4x4_pred_mode_cache[4+8*0]= |
|
h->intra4x4_pred_mode_cache[5+8*0]= |
|
h->intra4x4_pred_mode_cache[6+8*0]= |
|
h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask); |
|
} |
|
for(i=0; i<2; i++){ |
|
if(IS_INTRA4x4(left_type[i])){ |
|
int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]]; |
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]]; |
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]]; |
|
}else{ |
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= |
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
0 . T T. T T T T |
|
1 L . .L . . . . |
|
2 L . .L . . . . |
|
3 . T TL . . . . |
|
4 L . .L . . . . |
|
5 L . .. . . . . |
|
*/ |
|
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) |
|
if(top_type){ |
|
AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]); |
|
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8]; |
|
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8]; |
|
|
|
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8]; |
|
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8]; |
|
}else { |
|
h->non_zero_count_cache[1+8*0]= |
|
h->non_zero_count_cache[2+8*0]= |
|
|
|
h->non_zero_count_cache[1+8*3]= |
|
h->non_zero_count_cache[2+8*3]= |
|
AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040); |
|
} |
|
|
|
for (i=0; i<2; i++) { |
|
if(left_type[i]){ |
|
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]]; |
|
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]]; |
|
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]]; |
|
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]]; |
|
}else{ |
|
h->non_zero_count_cache[3+8*1 + 2*8*i]= |
|
h->non_zero_count_cache[3+8*2 + 2*8*i]= |
|
h->non_zero_count_cache[0+8*1 + 8*i]= |
|
h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; |
|
} |
|
} |
|
|
|
if( CABAC ) { |
|
// top_cbp |
|
if(top_type) { |
|
h->top_cbp = h->cbp_table[top_xy]; |
|
} else { |
|
h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F; |
|
} |
|
// left_cbp |
|
if (left_type[0]) { |
|
h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0) |
|
| ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2) |
|
| (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2); |
|
} else { |
|
h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F; |
|
} |
|
} |
|
} |
|
|
|
#if 1 |
|
if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){ |
|
int list; |
|
for(list=0; list<h->list_count; list++){ |
|
if(!USES_LIST(mb_type, list)){ |
|
/*if(!h->mv_cache_clean[list]){ |
|
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all? |
|
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t)); |
|
h->mv_cache_clean[list]= 1; |
|
}*/ |
|
continue; |
|
} |
|
assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)); |
|
|
|
h->mv_cache_clean[list]= 0; |
|
|
|
if(USES_LIST(top_type, list)){ |
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
|
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); |
|
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
|
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2]; |
|
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
|
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3]; |
|
}else{ |
|
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); |
|
AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101); |
|
} |
|
|
|
if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){ |
|
for(i=0; i<2; i++){ |
|
int cache_idx = scan8[0] - 1 + i*2*8; |
|
if(USES_LIST(left_type[i], list)){ |
|
const int b_xy= h->mb2b_xy[left_xy[i]] + 3; |
|
const int b8_xy= 4*left_xy[i] + 1; |
|
AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]); |
|
AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]); |
|
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)]; |
|
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)]; |
|
}else{ |
|
AV_ZERO32(h->mv_cache [list][cache_idx ]); |
|
AV_ZERO32(h->mv_cache [list][cache_idx+8]); |
|
h->ref_cache[list][cache_idx ]= |
|
h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
|
} |
|
} |
|
}else{ |
|
if(USES_LIST(left_type[0], list)){ |
|
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
|
const int b8_xy= 4*left_xy[0] + 1; |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]); |
|
h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)]; |
|
}else{ |
|
AV_ZERO32(h->mv_cache [list][scan8[0] - 1]); |
|
h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
|
} |
|
} |
|
|
|
if(USES_LIST(topright_type, list)){ |
|
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; |
|
AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]); |
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2]; |
|
}else{ |
|
AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]); |
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
|
} |
|
if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){ |
|
if(USES_LIST(topleft_type, list)){ |
|
const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride); |
|
const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2); |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]); |
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
|
}else{ |
|
AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]); |
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
|
} |
|
} |
|
|
|
if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF) |
|
continue; |
|
|
|
if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) { |
|
h->ref_cache[list][scan8[4 ]] = |
|
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE; |
|
AV_ZERO32(h->mv_cache [list][scan8[4 ]]); |
|
AV_ZERO32(h->mv_cache [list][scan8[12]]); |
|
|
|
if( CABAC ) { |
|
/* XXX beurk, Load mvd */ |
|
if(USES_LIST(top_type, list)){ |
|
const int b_xy= h->mb2br_xy[top_xy]; |
|
AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]); |
|
}else{ |
|
AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]); |
|
} |
|
if(USES_LIST(left_type[0], list)){ |
|
const int b_xy= h->mb2br_xy[left_xy[0]] + 6; |
|
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]); |
|
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]); |
|
}else{ |
|
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]); |
|
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]); |
|
} |
|
if(USES_LIST(left_type[1], list)){ |
|
const int b_xy= h->mb2br_xy[left_xy[1]] + 6; |
|
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]); |
|
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]); |
|
}else{ |
|
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]); |
|
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]); |
|
} |
|
AV_ZERO16(h->mvd_cache [list][scan8[4 ]]); |
|
AV_ZERO16(h->mvd_cache [list][scan8[12]]); |
|
if(h->slice_type_nos == FF_B_TYPE){ |
|
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1); |
|
|
|
if(IS_DIRECT(top_type)){ |
|
AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_DIRECT2>>1)); |
|
}else if(IS_8X8(top_type)){ |
|
int b8_xy = 4*top_xy; |
|
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2]; |
|
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3]; |
|
}else{ |
|
AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1)); |
|
} |
|
|
|
if(IS_DIRECT(left_type[0])) |
|
h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1; |
|
else if(IS_8X8(left_type[0])) |
|
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)]; |
|
else |
|
h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1; |
|
|
|
if(IS_DIRECT(left_type[1])) |
|
h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1; |
|
else if(IS_8X8(left_type[1])) |
|
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)]; |
|
else |
|
h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1; |
|
} |
|
} |
|
} |
|
if(FRAME_MBAFF){ |
|
#define MAP_MVS\ |
|
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ |
|
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ |
|
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ |
|
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ |
|
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ |
|
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ |
|
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ |
|
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ |
|
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ |
|
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) |
|
if(MB_FIELD){ |
|
#define MAP_F2F(idx, mb_type)\ |
|
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
|
h->ref_cache[list][idx] <<= 1;\ |
|
h->mv_cache[list][idx][1] /= 2;\ |
|
h->mvd_cache[list][idx][1] >>=1;\ |
|
} |
|
MAP_MVS |
|
#undef MAP_F2F |
|
}else{ |
|
#define MAP_F2F(idx, mb_type)\ |
|
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
|
h->ref_cache[list][idx] >>= 1;\ |
|
h->mv_cache[list][idx][1] <<= 1;\ |
|
h->mvd_cache[list][idx][1] <<= 1;\ |
|
} |
|
MAP_MVS |
|
#undef MAP_F2F |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]); |
|
} |
|
|
|
/** |
|
* |
|
* @returns non zero if the loop filter can be skiped |
|
*/ |
|
static int fill_filter_caches(H264Context *h, int mb_type){ |
|
MpegEncContext * const s = &h->s; |
|
const int mb_xy= h->mb_xy; |
|
int top_xy, left_xy[2]; |
|
int top_type, left_type[2]; |
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
|
|
|
//FIXME deblocking could skip the intra and nnz parts. |
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra |
|
* stuff, I can't imagine that these complex rules are worth it. */ |
|
|
|
left_xy[1] = left_xy[0] = mb_xy-1; |
|
if(FRAME_MBAFF){ |
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); |
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
|
if(s->mb_y&1){ |
|
if (left_mb_field_flag != curr_mb_field_flag) { |
|
left_xy[0] -= s->mb_stride; |
|
} |
|
}else{ |
|
if(curr_mb_field_flag){ |
|
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); |
|
} |
|
if (left_mb_field_flag != curr_mb_field_flag) { |
|
left_xy[1] += s->mb_stride; |
|
} |
|
} |
|
} |
|
|
|
h->top_mb_xy = top_xy; |
|
h->left_mb_xy[0] = left_xy[0]; |
|
h->left_mb_xy[1] = left_xy[1]; |
|
{ |
|
//for sufficiently low qp, filtering wouldn't do anything |
|
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp |
|
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice |
|
int qp = s->current_picture.qscale_table[mb_xy]; |
|
if(qp <= qp_thresh |
|
&& (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh) |
|
&& (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){ |
|
if(!FRAME_MBAFF) |
|
return 1; |
|
if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh) |
|
&& (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh)) |
|
return 1; |
|
} |
|
} |
|
|
|
if(h->deblocking_filter == 2){ |
|
h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0; |
|
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; |
|
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; |
|
}else{ |
|
h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0; |
|
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0; |
|
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0; |
|
} |
|
if(IS_INTRA(mb_type)) |
|
return 0; |
|
|
|
AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]); |
|
AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]); |
|
AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]); |
|
AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]); |
|
AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]); |
|
|
|
h->cbp= h->cbp_table[mb_xy]; |
|
|
|
{ |
|
int list; |
|
for(list=0; list<h->list_count; list++){ |
|
int8_t *ref; |
|
int y, b_stride; |
|
int16_t (*mv_dst)[2]; |
|
int16_t (*mv_src)[2]; |
|
|
|
if(!USES_LIST(mb_type, list)){ |
|
fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4); |
|
AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u); |
|
AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u); |
|
AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u); |
|
AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u); |
|
continue; |
|
} |
|
|
|
ref = &s->current_picture.ref_index[list][4*mb_xy]; |
|
{ |
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
|
AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); |
|
AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); |
|
ref += 2; |
|
AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); |
|
AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101); |
|
} |
|
|
|
b_stride = h->b_stride; |
|
mv_dst = &h->mv_cache[list][scan8[0]]; |
|
mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride]; |
|
for(y=0; y<4; y++){ |
|
AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride); |
|
} |
|
|
|
} |
|
} |
|
|
|
|
|
/* |
|
0 . T T. T T T T |
|
1 L . .L . . . . |
|
2 L . .L . . . . |
|
3 . T TL . . . . |
|
4 L . .L . . . . |
|
5 L . .. . . . . |
|
*/ |
|
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec) |
|
if(top_type){ |
|
AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]); |
|
} |
|
|
|
if(left_type[0]){ |
|
h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8]; |
|
h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8]; |
|
h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8]; |
|
h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8]; |
|
} |
|
|
|
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs |
|
if(!CABAC && h->pps.transform_8x8_mode){ |
|
if(IS_8x8DCT(top_type)){ |
|
h->non_zero_count_cache[4+8*0]= |
|
h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4; |
|
h->non_zero_count_cache[6+8*0]= |
|
h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8; |
|
} |
|
if(IS_8x8DCT(left_type[0])){ |
|
h->non_zero_count_cache[3+8*1]= |
|
h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF |
|
} |
|
if(IS_8x8DCT(left_type[1])){ |
|
h->non_zero_count_cache[3+8*3]= |
|
h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF |
|
} |
|
|
|
if(IS_8x8DCT(mb_type)){ |
|
h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]= |
|
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1; |
|
|
|
h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]= |
|
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2; |
|
|
|
h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]= |
|
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4; |
|
|
|
h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]= |
|
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8; |
|
} |
|
} |
|
|
|
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){ |
|
int list; |
|
for(list=0; list<h->list_count; list++){ |
|
if(USES_LIST(top_type, list)){ |
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
|
const int b8_xy= 4*top_xy + 2; |
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
|
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); |
|
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
|
h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]]; |
|
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
|
h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]]; |
|
}else{ |
|
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); |
|
AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u); |
|
} |
|
|
|
if(!IS_INTERLACED(mb_type^left_type[0])){ |
|
if(USES_LIST(left_type[0], list)){ |
|
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
|
const int b8_xy= 4*left_xy[0] + 1; |
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2); |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]); |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]); |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]); |
|
AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]); |
|
h->ref_cache[list][scan8[0] - 1 + 0 ]= |
|
h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]]; |
|
h->ref_cache[list][scan8[0] - 1 +16 ]= |
|
h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]]; |
|
}else{ |
|
AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]); |
|
AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]); |
|
AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]); |
|
AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]); |
|
h->ref_cache[list][scan8[0] - 1 + 0 ]= |
|
h->ref_cache[list][scan8[0] - 1 + 8 ]= |
|
h->ref_cache[list][scan8[0] - 1 + 16 ]= |
|
h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* gets the predicted intra4x4 prediction mode. |
|
*/ |
|
static inline int pred_intra_mode(H264Context *h, int n){ |
|
const int index8= scan8[n]; |
|
const int left= h->intra4x4_pred_mode_cache[index8 - 1]; |
|
const int top = h->intra4x4_pred_mode_cache[index8 - 8]; |
|
const int min= FFMIN(left, top); |
|
|
|
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min); |
|
|
|
if(min<0) return DC_PRED; |
|
else return min; |
|
} |
|
|
|
static inline void write_back_non_zero_count(H264Context *h){ |
|
const int mb_xy= h->mb_xy; |
|
|
|
AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]); |
|
AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]); |
|
AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]); |
|
AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]); |
|
AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]); |
|
} |
|
|
|
static inline void write_back_motion(H264Context *h, int mb_type){ |
|
MpegEncContext * const s = &h->s; |
|
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy |
|
const int b8_xy= 4*h->mb_xy; |
|
int list; |
|
|
|
if(!USES_LIST(mb_type, 0)) |
|
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); |
|
|
|
for(list=0; list<h->list_count; list++){ |
|
int y, b_stride; |
|
int16_t (*mv_dst)[2]; |
|
int16_t (*mv_src)[2]; |
|
|
|
if(!USES_LIST(mb_type, list)) |
|
continue; |
|
|
|
b_stride = h->b_stride; |
|
mv_dst = &s->current_picture.motion_val[list][b_xy]; |
|
mv_src = &h->mv_cache[list][scan8[0]]; |
|
for(y=0; y<4; y++){ |
|
AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y); |
|
} |
|
if( CABAC ) { |
|
uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]]; |
|
uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]]; |
|
if(IS_SKIP(mb_type)) |
|
AV_ZERO128(mvd_dst); |
|
else{ |
|
AV_COPY64(mvd_dst, mvd_src + 8*3); |
|
AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0); |
|
AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1); |
|
AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2); |
|
} |
|
} |
|
|
|
{ |
|
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; |
|
ref_index[0+0*2]= h->ref_cache[list][scan8[0]]; |
|
ref_index[1+0*2]= h->ref_cache[list][scan8[4]]; |
|
ref_index[0+1*2]= h->ref_cache[list][scan8[8]]; |
|
ref_index[1+1*2]= h->ref_cache[list][scan8[12]]; |
|
} |
|
} |
|
|
|
if(h->slice_type_nos == FF_B_TYPE && CABAC){ |
|
if(IS_8X8(mb_type)){ |
|
uint8_t *direct_table = &h->direct_table[4*h->mb_xy]; |
|
direct_table[1] = h->sub_mb_type[1]>>1; |
|
direct_table[2] = h->sub_mb_type[2]>>1; |
|
direct_table[3] = h->sub_mb_type[3]>>1; |
|
} |
|
} |
|
} |
|
|
|
static inline int get_dct8x8_allowed(H264Context *h){ |
|
if(h->sps.direct_8x8_inference_flag) |
|
return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL)); |
|
else |
|
return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL)); |
|
} |
|
|
|
/** |
|
* decodes a P_SKIP or B_SKIP macroblock |
|
*/ |
|
static void decode_mb_skip(H264Context *h){ |
|
MpegEncContext * const s = &h->s; |
|
const int mb_xy= h->mb_xy; |
|
int mb_type=0; |
|
|
|
memset(h->non_zero_count[mb_xy], 0, 32); |
|
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui |
|
|
|
if(MB_FIELD) |
|
mb_type|= MB_TYPE_INTERLACED; |
|
|
|
if( h->slice_type_nos == FF_B_TYPE ) |
|
{ |
|
// just for fill_caches. pred_direct_motion will set the real mb_type |
|
mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; |
|
if(h->direct_spatial_mv_pred){ |
|
fill_decode_neighbors(h, mb_type); |
|
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... |
|
} |
|
ff_h264_pred_direct_motion(h, &mb_type); |
|
mb_type|= MB_TYPE_SKIP; |
|
} |
|
else |
|
{ |
|
int mx, my; |
|
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; |
|
|
|
fill_decode_neighbors(h, mb_type); |
|
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ... |
|
pred_pskip_motion(h, &mx, &my); |
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); |
|
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); |
|
} |
|
|
|
write_back_motion(h, mb_type); |
|
s->current_picture.mb_type[mb_xy]= mb_type; |
|
s->current_picture.qscale_table[mb_xy]= s->qscale; |
|
h->slice_table[ mb_xy ]= h->slice_num; |
|
h->prev_mb_skipped= 1; |
|
} |
|
|
|
#include "h264_mvpred.h" //For pred_pskip_motion() |
|
|
|
#endif /* AVCODEC_H264_H */
|
|
|