mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1251 lines
43 KiB
1251 lines
43 KiB
/* |
|
* DCA compatible decoder |
|
* Copyright (C) 2004 Gildas Bazin |
|
* Copyright (C) 2004 Benjamin Zores |
|
* Copyright (C) 2006 Benjamin Larsson |
|
* Copyright (C) 2007 Konstantin Shishkov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file dca.c |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "bitstream.h" |
|
#include "dcadata.h" |
|
#include "dcahuff.h" |
|
#include "dca.h" |
|
|
|
//#define TRACE |
|
|
|
#define DCA_PRIM_CHANNELS_MAX (5) |
|
#define DCA_SUBBANDS (32) |
|
#define DCA_ABITS_MAX (32) /* Should be 28 */ |
|
#define DCA_SUBSUBFAMES_MAX (4) |
|
#define DCA_LFE_MAX (3) |
|
|
|
enum DCAMode { |
|
DCA_MONO = 0, |
|
DCA_CHANNEL, |
|
DCA_STEREO, |
|
DCA_STEREO_SUMDIFF, |
|
DCA_STEREO_TOTAL, |
|
DCA_3F, |
|
DCA_2F1R, |
|
DCA_3F1R, |
|
DCA_2F2R, |
|
DCA_3F2R, |
|
DCA_4F2R |
|
}; |
|
|
|
#define DCA_DOLBY 101 /* FIXME */ |
|
|
|
#define DCA_CHANNEL_BITS 6 |
|
#define DCA_CHANNEL_MASK 0x3F |
|
|
|
#define DCA_LFE 0x80 |
|
|
|
#define HEADER_SIZE 14 |
|
#define CONVERT_BIAS 384 |
|
|
|
#define DCA_MAX_FRAME_SIZE 16383 |
|
|
|
/** Bit allocation */ |
|
typedef struct { |
|
int offset; ///< code values offset |
|
int maxbits[8]; ///< max bits in VLC |
|
int wrap; ///< wrap for get_vlc2() |
|
VLC vlc[8]; ///< actual codes |
|
} BitAlloc; |
|
|
|
static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select |
|
static BitAlloc dca_tmode; ///< transition mode VLCs |
|
static BitAlloc dca_scalefactor; ///< scalefactor VLCs |
|
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs |
|
|
|
/** Pre-calculated cosine modulation coefs for the QMF */ |
|
static float cos_mod[544]; |
|
|
|
static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx) |
|
{ |
|
return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset; |
|
} |
|
|
|
typedef struct { |
|
AVCodecContext *avctx; |
|
/* Frame header */ |
|
int frame_type; ///< type of the current frame |
|
int samples_deficit; ///< deficit sample count |
|
int crc_present; ///< crc is present in the bitstream |
|
int sample_blocks; ///< number of PCM sample blocks |
|
int frame_size; ///< primary frame byte size |
|
int amode; ///< audio channels arrangement |
|
int sample_rate; ///< audio sampling rate |
|
int bit_rate; ///< transmission bit rate |
|
|
|
int downmix; ///< embedded downmix enabled |
|
int dynrange; ///< embedded dynamic range flag |
|
int timestamp; ///< embedded time stamp flag |
|
int aux_data; ///< auxiliary data flag |
|
int hdcd; ///< source material is mastered in HDCD |
|
int ext_descr; ///< extension audio descriptor flag |
|
int ext_coding; ///< extended coding flag |
|
int aspf; ///< audio sync word insertion flag |
|
int lfe; ///< low frequency effects flag |
|
int predictor_history; ///< predictor history flag |
|
int header_crc; ///< header crc check bytes |
|
int multirate_inter; ///< multirate interpolator switch |
|
int version; ///< encoder software revision |
|
int copy_history; ///< copy history |
|
int source_pcm_res; ///< source pcm resolution |
|
int front_sum; ///< front sum/difference flag |
|
int surround_sum; ///< surround sum/difference flag |
|
int dialog_norm; ///< dialog normalisation parameter |
|
|
|
/* Primary audio coding header */ |
|
int subframes; ///< number of subframes |
|
int prim_channels; ///< number of primary audio channels |
|
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count |
|
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband |
|
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index |
|
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book |
|
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book |
|
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select |
|
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select |
|
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment |
|
|
|
/* Primary audio coding side information */ |
|
int subsubframes; ///< number of subsubframes |
|
int partial_samples; ///< partial subsubframe samples count |
|
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not) |
|
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs |
|
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index |
|
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients) |
|
int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient) |
|
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook |
|
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors |
|
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients |
|
int dynrange_coef; ///< dynamic range coefficient |
|
|
|
int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands |
|
|
|
float lfe_data[2 * DCA_SUBSUBFAMES_MAX * DCA_LFE_MAX * |
|
2 /*history */ ]; ///< Low frequency effect data |
|
int lfe_scale_factor; |
|
|
|
/* Subband samples history (for ADPCM) */ |
|
float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4]; |
|
float subband_fir_hist[DCA_PRIM_CHANNELS_MAX][512]; |
|
float subband_fir_noidea[DCA_PRIM_CHANNELS_MAX][64]; |
|
|
|
int output; ///< type of output |
|
int bias; ///< output bias |
|
|
|
DECLARE_ALIGNED_16(float, samples[1536]); /* 6 * 256 = 1536, might only need 5 */ |
|
DECLARE_ALIGNED_16(int16_t, tsamples[1536]); |
|
|
|
uint8_t dca_buffer[DCA_MAX_FRAME_SIZE]; |
|
int dca_buffer_size; ///< how much data is in the dca_buffer |
|
|
|
GetBitContext gb; |
|
/* Current position in DCA frame */ |
|
int current_subframe; |
|
int current_subsubframe; |
|
|
|
int debug_flag; ///< used for suppressing repeated error messages output |
|
DSPContext dsp; |
|
} DCAContext; |
|
|
|
static void dca_init_vlcs(void) |
|
{ |
|
static int vlcs_inited = 0; |
|
int i, j; |
|
|
|
if (vlcs_inited) |
|
return; |
|
|
|
dca_bitalloc_index.offset = 1; |
|
dca_bitalloc_index.wrap = 1; |
|
for (i = 0; i < 5; i++) |
|
init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12, |
|
bitalloc_12_bits[i], 1, 1, |
|
bitalloc_12_codes[i], 2, 2, 1); |
|
dca_scalefactor.offset = -64; |
|
dca_scalefactor.wrap = 2; |
|
for (i = 0; i < 5; i++) |
|
init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129, |
|
scales_bits[i], 1, 1, |
|
scales_codes[i], 2, 2, 1); |
|
dca_tmode.offset = 0; |
|
dca_tmode.wrap = 1; |
|
for (i = 0; i < 4; i++) |
|
init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4, |
|
tmode_bits[i], 1, 1, |
|
tmode_codes[i], 2, 2, 1); |
|
|
|
for(i = 0; i < 10; i++) |
|
for(j = 0; j < 7; j++){ |
|
if(!bitalloc_codes[i][j]) break; |
|
dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i]; |
|
dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4); |
|
init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j], |
|
bitalloc_sizes[i], |
|
bitalloc_bits[i][j], 1, 1, |
|
bitalloc_codes[i][j], 2, 2, 1); |
|
} |
|
vlcs_inited = 1; |
|
} |
|
|
|
static inline void get_array(GetBitContext *gb, int *dst, int len, int bits) |
|
{ |
|
while(len--) |
|
*dst++ = get_bits(gb, bits); |
|
} |
|
|
|
static int dca_parse_frame_header(DCAContext * s) |
|
{ |
|
int i, j; |
|
static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 }; |
|
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 }; |
|
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 }; |
|
|
|
s->bias = CONVERT_BIAS; |
|
|
|
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8); |
|
|
|
/* Sync code */ |
|
get_bits(&s->gb, 32); |
|
|
|
/* Frame header */ |
|
s->frame_type = get_bits(&s->gb, 1); |
|
s->samples_deficit = get_bits(&s->gb, 5) + 1; |
|
s->crc_present = get_bits(&s->gb, 1); |
|
s->sample_blocks = get_bits(&s->gb, 7) + 1; |
|
s->frame_size = get_bits(&s->gb, 14) + 1; |
|
if (s->frame_size < 95) |
|
return -1; |
|
s->amode = get_bits(&s->gb, 6); |
|
s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)]; |
|
if (!s->sample_rate) |
|
return -1; |
|
s->bit_rate = dca_bit_rates[get_bits(&s->gb, 5)]; |
|
if (!s->bit_rate) |
|
return -1; |
|
|
|
s->downmix = get_bits(&s->gb, 1); |
|
s->dynrange = get_bits(&s->gb, 1); |
|
s->timestamp = get_bits(&s->gb, 1); |
|
s->aux_data = get_bits(&s->gb, 1); |
|
s->hdcd = get_bits(&s->gb, 1); |
|
s->ext_descr = get_bits(&s->gb, 3); |
|
s->ext_coding = get_bits(&s->gb, 1); |
|
s->aspf = get_bits(&s->gb, 1); |
|
s->lfe = get_bits(&s->gb, 2); |
|
s->predictor_history = get_bits(&s->gb, 1); |
|
|
|
/* TODO: check CRC */ |
|
if (s->crc_present) |
|
s->header_crc = get_bits(&s->gb, 16); |
|
|
|
s->multirate_inter = get_bits(&s->gb, 1); |
|
s->version = get_bits(&s->gb, 4); |
|
s->copy_history = get_bits(&s->gb, 2); |
|
s->source_pcm_res = get_bits(&s->gb, 3); |
|
s->front_sum = get_bits(&s->gb, 1); |
|
s->surround_sum = get_bits(&s->gb, 1); |
|
s->dialog_norm = get_bits(&s->gb, 4); |
|
|
|
/* FIXME: channels mixing levels */ |
|
s->output = s->amode; |
|
if(s->lfe) s->output |= DCA_LFE; |
|
|
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type); |
|
av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit); |
|
av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present); |
|
av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n", |
|
s->sample_blocks, s->sample_blocks * 32); |
|
av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size); |
|
av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n", |
|
s->amode, dca_channels[s->amode]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i (%i Hz)\n", |
|
s->sample_rate, dca_sample_rates[s->sample_rate]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i (%i bits/s)\n", |
|
s->bit_rate, dca_bit_rates[s->bit_rate]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix); |
|
av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange); |
|
av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp); |
|
av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data); |
|
av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd); |
|
av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr); |
|
av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding); |
|
av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf); |
|
av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe); |
|
av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n", |
|
s->predictor_history); |
|
av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc); |
|
av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n", |
|
s->multirate_inter); |
|
av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version); |
|
av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history); |
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"source pcm resolution: %i (%i bits/sample)\n", |
|
s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum); |
|
av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum); |
|
av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
#endif |
|
|
|
/* Primary audio coding header */ |
|
s->subframes = get_bits(&s->gb, 4) + 1; |
|
s->prim_channels = get_bits(&s->gb, 3) + 1; |
|
|
|
|
|
for (i = 0; i < s->prim_channels; i++) { |
|
s->subband_activity[i] = get_bits(&s->gb, 5) + 2; |
|
if (s->subband_activity[i] > DCA_SUBBANDS) |
|
s->subband_activity[i] = DCA_SUBBANDS; |
|
} |
|
for (i = 0; i < s->prim_channels; i++) { |
|
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1; |
|
if (s->vq_start_subband[i] > DCA_SUBBANDS) |
|
s->vq_start_subband[i] = DCA_SUBBANDS; |
|
} |
|
get_array(&s->gb, s->joint_intensity, s->prim_channels, 3); |
|
get_array(&s->gb, s->transient_huffman, s->prim_channels, 2); |
|
get_array(&s->gb, s->scalefactor_huffman, s->prim_channels, 3); |
|
get_array(&s->gb, s->bitalloc_huffman, s->prim_channels, 3); |
|
|
|
/* Get codebooks quantization indexes */ |
|
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman)); |
|
for (j = 1; j < 11; j++) |
|
for (i = 0; i < s->prim_channels; i++) |
|
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]); |
|
|
|
/* Get scale factor adjustment */ |
|
for (j = 0; j < 11; j++) |
|
for (i = 0; i < s->prim_channels; i++) |
|
s->scalefactor_adj[i][j] = 1; |
|
|
|
for (j = 1; j < 11; j++) |
|
for (i = 0; i < s->prim_channels; i++) |
|
if (s->quant_index_huffman[i][j] < thr[j]) |
|
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)]; |
|
|
|
if (s->crc_present) { |
|
/* Audio header CRC check */ |
|
get_bits(&s->gb, 16); |
|
} |
|
|
|
s->current_subframe = 0; |
|
s->current_subsubframe = 0; |
|
|
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes); |
|
av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels); |
|
for(i = 0; i < s->prim_channels; i++){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:"); |
|
for (j = 0; j < 11; j++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", |
|
s->quant_index_huffman[i][j]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:"); |
|
for (j = 0; j < 11; j++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static inline int get_scale(GetBitContext *gb, int level, int value) |
|
{ |
|
if (level < 5) { |
|
/* huffman encoded */ |
|
value += get_bitalloc(gb, &dca_scalefactor, level); |
|
} else if(level < 8) |
|
value = get_bits(gb, level + 1); |
|
return value; |
|
} |
|
|
|
static int dca_subframe_header(DCAContext * s) |
|
{ |
|
/* Primary audio coding side information */ |
|
int j, k; |
|
|
|
s->subsubframes = get_bits(&s->gb, 2) + 1; |
|
s->partial_samples = get_bits(&s->gb, 3); |
|
for (j = 0; j < s->prim_channels; j++) { |
|
for (k = 0; k < s->subband_activity[j]; k++) |
|
s->prediction_mode[j][k] = get_bits(&s->gb, 1); |
|
} |
|
|
|
/* Get prediction codebook */ |
|
for (j = 0; j < s->prim_channels; j++) { |
|
for (k = 0; k < s->subband_activity[j]; k++) { |
|
if (s->prediction_mode[j][k] > 0) { |
|
/* (Prediction coefficient VQ address) */ |
|
s->prediction_vq[j][k] = get_bits(&s->gb, 12); |
|
} |
|
} |
|
} |
|
|
|
/* Bit allocation index */ |
|
for (j = 0; j < s->prim_channels; j++) { |
|
for (k = 0; k < s->vq_start_subband[j]; k++) { |
|
if (s->bitalloc_huffman[j] == 6) |
|
s->bitalloc[j][k] = get_bits(&s->gb, 5); |
|
else if (s->bitalloc_huffman[j] == 5) |
|
s->bitalloc[j][k] = get_bits(&s->gb, 4); |
|
else { |
|
s->bitalloc[j][k] = |
|
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]); |
|
} |
|
|
|
if (s->bitalloc[j][k] > 26) { |
|
// av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n", |
|
// j, k, s->bitalloc[j][k]); |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
/* Transition mode */ |
|
for (j = 0; j < s->prim_channels; j++) { |
|
for (k = 0; k < s->subband_activity[j]; k++) { |
|
s->transition_mode[j][k] = 0; |
|
if (s->subsubframes > 1 && |
|
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) { |
|
s->transition_mode[j][k] = |
|
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]); |
|
} |
|
} |
|
} |
|
|
|
for (j = 0; j < s->prim_channels; j++) { |
|
uint32_t *scale_table; |
|
int scale_sum; |
|
|
|
memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2); |
|
|
|
if (s->scalefactor_huffman[j] == 6) |
|
scale_table = (uint32_t *) scale_factor_quant7; |
|
else |
|
scale_table = (uint32_t *) scale_factor_quant6; |
|
|
|
/* When huffman coded, only the difference is encoded */ |
|
scale_sum = 0; |
|
|
|
for (k = 0; k < s->subband_activity[j]; k++) { |
|
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) { |
|
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum); |
|
s->scale_factor[j][k][0] = scale_table[scale_sum]; |
|
} |
|
|
|
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) { |
|
/* Get second scale factor */ |
|
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum); |
|
s->scale_factor[j][k][1] = scale_table[scale_sum]; |
|
} |
|
} |
|
} |
|
|
|
/* Joint subband scale factor codebook select */ |
|
for (j = 0; j < s->prim_channels; j++) { |
|
/* Transmitted only if joint subband coding enabled */ |
|
if (s->joint_intensity[j] > 0) |
|
s->joint_huff[j] = get_bits(&s->gb, 3); |
|
} |
|
|
|
/* Scale factors for joint subband coding */ |
|
for (j = 0; j < s->prim_channels; j++) { |
|
int source_channel; |
|
|
|
/* Transmitted only if joint subband coding enabled */ |
|
if (s->joint_intensity[j] > 0) { |
|
int scale = 0; |
|
source_channel = s->joint_intensity[j] - 1; |
|
|
|
/* When huffman coded, only the difference is encoded |
|
* (is this valid as well for joint scales ???) */ |
|
|
|
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) { |
|
scale = get_scale(&s->gb, s->joint_huff[j], 0); |
|
scale += 64; /* bias */ |
|
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */ |
|
} |
|
|
|
if (!s->debug_flag & 0x02) { |
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"Joint stereo coding not supported\n"); |
|
s->debug_flag |= 0x02; |
|
} |
|
} |
|
} |
|
|
|
/* Stereo downmix coefficients */ |
|
if (s->prim_channels > 2) { |
|
if(s->downmix) { |
|
for (j = 0; j < s->prim_channels; j++) { |
|
s->downmix_coef[j][0] = get_bits(&s->gb, 7); |
|
s->downmix_coef[j][1] = get_bits(&s->gb, 7); |
|
} |
|
} else { |
|
int am = s->amode & DCA_CHANNEL_MASK; |
|
for (j = 0; j < s->prim_channels; j++) { |
|
s->downmix_coef[j][0] = dca_default_coeffs[am][j][0]; |
|
s->downmix_coef[j][1] = dca_default_coeffs[am][j][1]; |
|
} |
|
} |
|
} |
|
|
|
/* Dynamic range coefficient */ |
|
if (s->dynrange) |
|
s->dynrange_coef = get_bits(&s->gb, 8); |
|
|
|
/* Side information CRC check word */ |
|
if (s->crc_present) { |
|
get_bits(&s->gb, 16); |
|
} |
|
|
|
/* |
|
* Primary audio data arrays |
|
*/ |
|
|
|
/* VQ encoded high frequency subbands */ |
|
for (j = 0; j < s->prim_channels; j++) |
|
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++) |
|
/* 1 vector -> 32 samples */ |
|
s->high_freq_vq[j][k] = get_bits(&s->gb, 10); |
|
|
|
/* Low frequency effect data */ |
|
if (s->lfe) { |
|
/* LFE samples */ |
|
int lfe_samples = 2 * s->lfe * s->subsubframes; |
|
float lfe_scale; |
|
|
|
for (j = lfe_samples; j < lfe_samples * 2; j++) { |
|
/* Signed 8 bits int */ |
|
s->lfe_data[j] = get_sbits(&s->gb, 8); |
|
} |
|
|
|
/* Scale factor index */ |
|
s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)]; |
|
|
|
/* Quantization step size * scale factor */ |
|
lfe_scale = 0.035 * s->lfe_scale_factor; |
|
|
|
for (j = lfe_samples; j < lfe_samples * 2; j++) |
|
s->lfe_data[j] *= lfe_scale; |
|
} |
|
|
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes); |
|
av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n", |
|
s->partial_samples); |
|
for (j = 0; j < s->prim_channels; j++) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:"); |
|
for (k = 0; k < s->subband_activity[j]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) { |
|
for (k = 0; k < s->subband_activity[j]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"prediction coefs: %f, %f, %f, %f\n", |
|
(float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192, |
|
(float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192, |
|
(float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192, |
|
(float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: "); |
|
for (k = 0; k < s->vq_start_subband[j]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:"); |
|
for (k = 0; k < s->subband_activity[j]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:"); |
|
for (k = 0; k < s->subband_activity[j]; k++) { |
|
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]); |
|
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]); |
|
} |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) { |
|
if (s->joint_intensity[j] > 0) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n"); |
|
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
} |
|
if (s->prim_channels > 2 && s->downmix) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n"); |
|
for (j = 0; j < s->prim_channels; j++) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]); |
|
} |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
for (j = 0; j < s->prim_channels; j++) |
|
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++) |
|
av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]); |
|
if(s->lfe){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n"); |
|
for (j = lfe_samples; j < lfe_samples * 2; j++) |
|
av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]); |
|
av_log(s->avctx, AV_LOG_DEBUG, "\n"); |
|
} |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static void qmf_32_subbands(DCAContext * s, int chans, |
|
float samples_in[32][8], float *samples_out, |
|
float scale, float bias) |
|
{ |
|
float *prCoeff; |
|
int i, j, k; |
|
float praXin[33], *raXin = &praXin[1]; |
|
|
|
float *subband_fir_hist = s->subband_fir_hist[chans]; |
|
float *subband_fir_hist2 = s->subband_fir_noidea[chans]; |
|
|
|
int chindex = 0, subindex; |
|
|
|
praXin[0] = 0.0; |
|
|
|
/* Select filter */ |
|
if (!s->multirate_inter) /* Non-perfect reconstruction */ |
|
prCoeff = (float *) fir_32bands_nonperfect; |
|
else /* Perfect reconstruction */ |
|
prCoeff = (float *) fir_32bands_perfect; |
|
|
|
/* Reconstructed channel sample index */ |
|
for (subindex = 0; subindex < 8; subindex++) { |
|
float t1, t2, sum[16], diff[16]; |
|
|
|
/* Load in one sample from each subband and clear inactive subbands */ |
|
for (i = 0; i < s->subband_activity[chans]; i++) |
|
raXin[i] = samples_in[i][subindex]; |
|
for (; i < 32; i++) |
|
raXin[i] = 0.0; |
|
|
|
/* Multiply by cosine modulation coefficients and |
|
* create temporary arrays SUM and DIFF */ |
|
for (j = 0, k = 0; k < 16; k++) { |
|
t1 = 0.0; |
|
t2 = 0.0; |
|
for (i = 0; i < 16; i++, j++){ |
|
t1 += (raXin[2 * i] + raXin[2 * i + 1]) * cos_mod[j]; |
|
t2 += (raXin[2 * i] + raXin[2 * i - 1]) * cos_mod[j + 256]; |
|
} |
|
sum[k] = t1 + t2; |
|
diff[k] = t1 - t2; |
|
} |
|
|
|
j = 512; |
|
/* Store history */ |
|
for (k = 0; k < 16; k++) |
|
subband_fir_hist[k] = cos_mod[j++] * sum[k]; |
|
for (k = 0; k < 16; k++) |
|
subband_fir_hist[32-k-1] = cos_mod[j++] * diff[k]; |
|
|
|
/* Multiply by filter coefficients */ |
|
for (k = 31, i = 0; i < 32; i++, k--) |
|
for (j = 0; j < 512; j += 64){ |
|
subband_fir_hist2[i] += prCoeff[i+j] * ( subband_fir_hist[i+j] - subband_fir_hist[j+k]); |
|
subband_fir_hist2[i+32] += prCoeff[i+j+32]*(-subband_fir_hist[i+j] - subband_fir_hist[j+k]); |
|
} |
|
|
|
/* Create 32 PCM output samples */ |
|
for (i = 0; i < 32; i++) |
|
samples_out[chindex++] = subband_fir_hist2[i] * scale + bias; |
|
|
|
/* Update working arrays */ |
|
memmove(&subband_fir_hist[32], &subband_fir_hist[0], (512 - 32) * sizeof(float)); |
|
memmove(&subband_fir_hist2[0], &subband_fir_hist2[32], 32 * sizeof(float)); |
|
memset(&subband_fir_hist2[32], 0, 32 * sizeof(float)); |
|
} |
|
} |
|
|
|
static void lfe_interpolation_fir(int decimation_select, |
|
int num_deci_sample, float *samples_in, |
|
float *samples_out, float scale, |
|
float bias) |
|
{ |
|
/* samples_in: An array holding decimated samples. |
|
* Samples in current subframe starts from samples_in[0], |
|
* while samples_in[-1], samples_in[-2], ..., stores samples |
|
* from last subframe as history. |
|
* |
|
* samples_out: An array holding interpolated samples |
|
*/ |
|
|
|
int decifactor, k, j; |
|
const float *prCoeff; |
|
|
|
int interp_index = 0; /* Index to the interpolated samples */ |
|
int deciindex; |
|
|
|
/* Select decimation filter */ |
|
if (decimation_select == 1) { |
|
decifactor = 128; |
|
prCoeff = lfe_fir_128; |
|
} else { |
|
decifactor = 64; |
|
prCoeff = lfe_fir_64; |
|
} |
|
/* Interpolation */ |
|
for (deciindex = 0; deciindex < num_deci_sample; deciindex++) { |
|
/* One decimated sample generates decifactor interpolated ones */ |
|
for (k = 0; k < decifactor; k++) { |
|
float rTmp = 0.0; |
|
//FIXME the coeffs are symetric, fix that |
|
for (j = 0; j < 512 / decifactor; j++) |
|
rTmp += samples_in[deciindex - j] * prCoeff[k + j * decifactor]; |
|
samples_out[interp_index++] = rTmp / scale + bias; |
|
} |
|
} |
|
} |
|
|
|
/* downmixing routines */ |
|
#define MIX_REAR1(samples, si1, rs, coef) \ |
|
samples[i] += samples[si1] * coef[rs][0]; \ |
|
samples[i+256] += samples[si1] * coef[rs][1]; |
|
|
|
#define MIX_REAR2(samples, si1, si2, rs, coef) \ |
|
samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs+1][0]; \ |
|
samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs+1][1]; |
|
|
|
#define MIX_FRONT3(samples, coef) \ |
|
t = samples[i]; \ |
|
samples[i] = t * coef[0][0] + samples[i+256] * coef[1][0] + samples[i+512] * coef[2][0]; \ |
|
samples[i+256] = t * coef[0][1] + samples[i+256] * coef[1][1] + samples[i+512] * coef[2][1]; |
|
|
|
#define DOWNMIX_TO_STEREO(op1, op2) \ |
|
for(i = 0; i < 256; i++){ \ |
|
op1 \ |
|
op2 \ |
|
} |
|
|
|
static void dca_downmix(float *samples, int srcfmt, |
|
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]) |
|
{ |
|
int i; |
|
float t; |
|
float coef[DCA_PRIM_CHANNELS_MAX][2]; |
|
|
|
for(i=0; i<DCA_PRIM_CHANNELS_MAX; i++) { |
|
coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]]; |
|
coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]]; |
|
} |
|
|
|
switch (srcfmt) { |
|
case DCA_MONO: |
|
case DCA_CHANNEL: |
|
case DCA_STEREO_TOTAL: |
|
case DCA_STEREO_SUMDIFF: |
|
case DCA_4F2R: |
|
av_log(NULL, 0, "Not implemented!\n"); |
|
break; |
|
case DCA_STEREO: |
|
break; |
|
case DCA_3F: |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),); |
|
break; |
|
case DCA_2F1R: |
|
DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + 512, 2, coef),); |
|
break; |
|
case DCA_3F1R: |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
|
MIX_REAR1(samples, i + 768, 3, coef)); |
|
break; |
|
case DCA_2F2R: |
|
DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + 512, i + 768, 2, coef),); |
|
break; |
|
case DCA_3F2R: |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
|
MIX_REAR2(samples, i + 768, i + 1024, 3, coef)); |
|
break; |
|
} |
|
} |
|
|
|
|
|
/* Very compact version of the block code decoder that does not use table |
|
* look-up but is slightly slower */ |
|
static int decode_blockcode(int code, int levels, int *values) |
|
{ |
|
int i; |
|
int offset = (levels - 1) >> 1; |
|
|
|
for (i = 0; i < 4; i++) { |
|
values[i] = (code % levels) - offset; |
|
code /= levels; |
|
} |
|
|
|
if (code == 0) |
|
return 0; |
|
else { |
|
av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 }; |
|
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 }; |
|
|
|
static int dca_subsubframe(DCAContext * s) |
|
{ |
|
int k, l; |
|
int subsubframe = s->current_subsubframe; |
|
|
|
float *quant_step_table; |
|
|
|
/* FIXME */ |
|
float subband_samples[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8]; |
|
|
|
/* |
|
* Audio data |
|
*/ |
|
|
|
/* Select quantization step size table */ |
|
if (s->bit_rate == 0x1f) |
|
quant_step_table = (float *) lossless_quant_d; |
|
else |
|
quant_step_table = (float *) lossy_quant_d; |
|
|
|
for (k = 0; k < s->prim_channels; k++) { |
|
for (l = 0; l < s->vq_start_subband[k]; l++) { |
|
int m; |
|
|
|
/* Select the mid-tread linear quantizer */ |
|
int abits = s->bitalloc[k][l]; |
|
|
|
float quant_step_size = quant_step_table[abits]; |
|
float rscale; |
|
|
|
/* |
|
* Determine quantization index code book and its type |
|
*/ |
|
|
|
/* Select quantization index code book */ |
|
int sel = s->quant_index_huffman[k][abits]; |
|
|
|
/* |
|
* Extract bits from the bit stream |
|
*/ |
|
if(!abits){ |
|
memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0])); |
|
}else if(abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){ |
|
if(abits <= 7){ |
|
/* Block code */ |
|
int block_code1, block_code2, size, levels; |
|
int block[8]; |
|
|
|
size = abits_sizes[abits-1]; |
|
levels = abits_levels[abits-1]; |
|
|
|
block_code1 = get_bits(&s->gb, size); |
|
/* FIXME Should test return value */ |
|
decode_blockcode(block_code1, levels, block); |
|
block_code2 = get_bits(&s->gb, size); |
|
decode_blockcode(block_code2, levels, &block[4]); |
|
for (m = 0; m < 8; m++) |
|
subband_samples[k][l][m] = block[m]; |
|
}else{ |
|
/* no coding */ |
|
for (m = 0; m < 8; m++) |
|
subband_samples[k][l][m] = get_sbits(&s->gb, abits - 3); |
|
} |
|
}else{ |
|
/* Huffman coded */ |
|
for (m = 0; m < 8; m++) |
|
subband_samples[k][l][m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel); |
|
} |
|
|
|
/* Deal with transients */ |
|
if (s->transition_mode[k][l] && |
|
subsubframe >= s->transition_mode[k][l]) |
|
rscale = quant_step_size * s->scale_factor[k][l][1]; |
|
else |
|
rscale = quant_step_size * s->scale_factor[k][l][0]; |
|
|
|
rscale *= s->scalefactor_adj[k][sel]; |
|
|
|
for (m = 0; m < 8; m++) |
|
subband_samples[k][l][m] *= rscale; |
|
|
|
/* |
|
* Inverse ADPCM if in prediction mode |
|
*/ |
|
if (s->prediction_mode[k][l]) { |
|
int n; |
|
for (m = 0; m < 8; m++) { |
|
for (n = 1; n <= 4; n++) |
|
if (m >= n) |
|
subband_samples[k][l][m] += |
|
(adpcm_vb[s->prediction_vq[k][l]][n - 1] * |
|
subband_samples[k][l][m - n] / 8192); |
|
else if (s->predictor_history) |
|
subband_samples[k][l][m] += |
|
(adpcm_vb[s->prediction_vq[k][l]][n - 1] * |
|
s->subband_samples_hist[k][l][m - n + |
|
4] / 8192); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Decode VQ encoded high frequencies |
|
*/ |
|
for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) { |
|
/* 1 vector -> 32 samples but we only need the 8 samples |
|
* for this subsubframe. */ |
|
int m; |
|
|
|
if (!s->debug_flag & 0x01) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n"); |
|
s->debug_flag |= 0x01; |
|
} |
|
|
|
for (m = 0; m < 8; m++) { |
|
subband_samples[k][l][m] = |
|
high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 + |
|
m] |
|
* (float) s->scale_factor[k][l][0] / 16.0; |
|
} |
|
} |
|
} |
|
|
|
/* Check for DSYNC after subsubframe */ |
|
if (s->aspf || subsubframe == s->subsubframes - 1) { |
|
if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */ |
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n"); |
|
#endif |
|
} else { |
|
av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n"); |
|
} |
|
} |
|
|
|
/* Backup predictor history for adpcm */ |
|
for (k = 0; k < s->prim_channels; k++) |
|
for (l = 0; l < s->vq_start_subband[k]; l++) |
|
memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4], |
|
4 * sizeof(subband_samples[0][0][0])); |
|
|
|
/* 32 subbands QMF */ |
|
for (k = 0; k < s->prim_channels; k++) { |
|
/* static float pcm_to_double[8] = |
|
{32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/ |
|
qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * k], |
|
2.0 / 3 /*pcm_to_double[s->source_pcm_res] */ , |
|
0 /*s->bias */ ); |
|
} |
|
|
|
/* Down mixing */ |
|
|
|
if (s->prim_channels > dca_channels[s->output & DCA_CHANNEL_MASK]) { |
|
dca_downmix(s->samples, s->amode, s->downmix_coef); |
|
} |
|
|
|
/* Generate LFE samples for this subsubframe FIXME!!! */ |
|
if (s->output & DCA_LFE) { |
|
int lfe_samples = 2 * s->lfe * s->subsubframes; |
|
int i_channels = dca_channels[s->output & DCA_CHANNEL_MASK]; |
|
|
|
lfe_interpolation_fir(s->lfe, 2 * s->lfe, |
|
s->lfe_data + lfe_samples + |
|
2 * s->lfe * subsubframe, |
|
&s->samples[256 * i_channels], |
|
8388608.0, s->bias); |
|
/* Outputs 20bits pcm samples */ |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int dca_subframe_footer(DCAContext * s) |
|
{ |
|
int aux_data_count = 0, i; |
|
int lfe_samples; |
|
|
|
/* |
|
* Unpack optional information |
|
*/ |
|
|
|
if (s->timestamp) |
|
get_bits(&s->gb, 32); |
|
|
|
if (s->aux_data) |
|
aux_data_count = get_bits(&s->gb, 6); |
|
|
|
for (i = 0; i < aux_data_count; i++) |
|
get_bits(&s->gb, 8); |
|
|
|
if (s->crc_present && (s->downmix || s->dynrange)) |
|
get_bits(&s->gb, 16); |
|
|
|
lfe_samples = 2 * s->lfe * s->subsubframes; |
|
for (i = 0; i < lfe_samples; i++) { |
|
s->lfe_data[i] = s->lfe_data[i + lfe_samples]; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode a dca frame block |
|
* |
|
* @param s pointer to the DCAContext |
|
*/ |
|
|
|
static int dca_decode_block(DCAContext * s) |
|
{ |
|
|
|
/* Sanity check */ |
|
if (s->current_subframe >= s->subframes) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i", |
|
s->current_subframe, s->subframes); |
|
return -1; |
|
} |
|
|
|
if (!s->current_subsubframe) { |
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n"); |
|
#endif |
|
/* Read subframe header */ |
|
if (dca_subframe_header(s)) |
|
return -1; |
|
} |
|
|
|
/* Read subsubframe */ |
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n"); |
|
#endif |
|
if (dca_subsubframe(s)) |
|
return -1; |
|
|
|
/* Update state */ |
|
s->current_subsubframe++; |
|
if (s->current_subsubframe >= s->subsubframes) { |
|
s->current_subsubframe = 0; |
|
s->current_subframe++; |
|
} |
|
if (s->current_subframe >= s->subframes) { |
|
#ifdef TRACE |
|
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n"); |
|
#endif |
|
/* Read subframe footer */ |
|
if (dca_subframe_footer(s)) |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Convert bitstream to one representation based on sync marker |
|
*/ |
|
static int dca_convert_bitstream(uint8_t * src, int src_size, uint8_t * dst, |
|
int max_size) |
|
{ |
|
uint32_t mrk; |
|
int i, tmp; |
|
uint16_t *ssrc = (uint16_t *) src, *sdst = (uint16_t *) dst; |
|
PutBitContext pb; |
|
|
|
if((unsigned)src_size > (unsigned)max_size) { |
|
av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n"); |
|
return -1; |
|
} |
|
|
|
mrk = AV_RB32(src); |
|
switch (mrk) { |
|
case DCA_MARKER_RAW_BE: |
|
memcpy(dst, src, FFMIN(src_size, max_size)); |
|
return FFMIN(src_size, max_size); |
|
case DCA_MARKER_RAW_LE: |
|
for (i = 0; i < (FFMIN(src_size, max_size) + 1) >> 1; i++) |
|
*sdst++ = bswap_16(*ssrc++); |
|
return FFMIN(src_size, max_size); |
|
case DCA_MARKER_14B_BE: |
|
case DCA_MARKER_14B_LE: |
|
init_put_bits(&pb, dst, max_size); |
|
for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) { |
|
tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF; |
|
put_bits(&pb, 14, tmp); |
|
} |
|
flush_put_bits(&pb); |
|
return (put_bits_count(&pb) + 7) >> 3; |
|
default: |
|
return -1; |
|
} |
|
} |
|
|
|
/** |
|
* Main frame decoding function |
|
* FIXME add arguments |
|
*/ |
|
static int dca_decode_frame(AVCodecContext * avctx, |
|
void *data, int *data_size, |
|
uint8_t * buf, int buf_size) |
|
{ |
|
|
|
int i, j, k; |
|
int16_t *samples = data; |
|
DCAContext *s = avctx->priv_data; |
|
int channels; |
|
|
|
|
|
s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer, DCA_MAX_FRAME_SIZE); |
|
if (s->dca_buffer_size == -1) { |
|
av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n"); |
|
return -1; |
|
} |
|
|
|
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8); |
|
if (dca_parse_frame_header(s) < 0) { |
|
//seems like the frame is corrupt, try with the next one |
|
return buf_size; |
|
} |
|
//set AVCodec values with parsed data |
|
avctx->sample_rate = s->sample_rate; |
|
avctx->bit_rate = s->bit_rate; |
|
|
|
channels = s->prim_channels + !!s->lfe; |
|
if(avctx->channels == 0) { |
|
avctx->channels = channels; |
|
} else if(channels < avctx->channels) { |
|
av_log(avctx, AV_LOG_WARNING, "DTS source channels are less than " |
|
"specified: output to %d channels.\n", channels); |
|
avctx->channels = channels; |
|
} |
|
if(avctx->channels == 2) { |
|
s->output = DCA_STEREO; |
|
} else if(avctx->channels != channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot downmix DTS to %d channels.\n", |
|
avctx->channels); |
|
return -1; |
|
} |
|
|
|
channels = avctx->channels; |
|
if(*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels) |
|
return -1; |
|
*data_size = 0; |
|
for (i = 0; i < (s->sample_blocks / 8); i++) { |
|
dca_decode_block(s); |
|
s->dsp.float_to_int16(s->tsamples, s->samples, 256 * channels); |
|
/* interleave samples */ |
|
for (j = 0; j < 256; j++) { |
|
for (k = 0; k < channels; k++) |
|
samples[k] = s->tsamples[j + k * 256]; |
|
samples += channels; |
|
} |
|
*data_size += 256 * sizeof(int16_t) * channels; |
|
} |
|
|
|
return buf_size; |
|
} |
|
|
|
|
|
|
|
/** |
|
* Build the cosine modulation tables for the QMF |
|
* |
|
* @param s pointer to the DCAContext |
|
*/ |
|
|
|
static void pre_calc_cosmod(DCAContext * s) |
|
{ |
|
int i, j, k; |
|
static int cosmod_inited = 0; |
|
|
|
if(cosmod_inited) return; |
|
for (j = 0, k = 0; k < 16; k++) |
|
for (i = 0; i < 16; i++) |
|
cos_mod[j++] = cos((2 * i + 1) * (2 * k + 1) * M_PI / 64); |
|
|
|
for (k = 0; k < 16; k++) |
|
for (i = 0; i < 16; i++) |
|
cos_mod[j++] = cos((i) * (2 * k + 1) * M_PI / 32); |
|
|
|
for (k = 0; k < 16; k++) |
|
cos_mod[j++] = 0.25 / (2 * cos((2 * k + 1) * M_PI / 128)); |
|
|
|
for (k = 0; k < 16; k++) |
|
cos_mod[j++] = -0.25 / (2.0 * sin((2 * k + 1) * M_PI / 128)); |
|
|
|
cosmod_inited = 1; |
|
} |
|
|
|
|
|
/** |
|
* DCA initialization |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static int dca_decode_init(AVCodecContext * avctx) |
|
{ |
|
DCAContext *s = avctx->priv_data; |
|
|
|
s->avctx = avctx; |
|
dca_init_vlcs(); |
|
pre_calc_cosmod(s); |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
return 0; |
|
} |
|
|
|
|
|
AVCodec dca_decoder = { |
|
.name = "dca", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_DTS, |
|
.priv_data_size = sizeof(DCAContext), |
|
.init = dca_decode_init, |
|
.decode = dca_decode_frame, |
|
};
|
|
|