mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
930 lines
30 KiB
930 lines
30 KiB
/* |
|
* Copyright (c) 2007-2008 CSIRO |
|
* Copyright (c) 2007-2009 Xiph.Org Foundation |
|
* Copyright (c) 2008-2009 Gregory Maxwell |
|
* Copyright (c) 2012 Andrew D'Addesio |
|
* Copyright (c) 2013-2014 Mozilla Corporation |
|
* Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <float.h> |
|
|
|
#include "config_components.h" |
|
|
|
#include "libavutil/mem.h" |
|
#include "mathops.h" |
|
#include "opustab.h" |
|
#include "opus_pvq.h" |
|
|
|
#define ROUND_MUL16(a,b) ((MUL16(a, b) + 16384) >> 15) |
|
|
|
#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)]) |
|
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1)) |
|
|
|
static inline int16_t celt_cos(int16_t x) |
|
{ |
|
x = (MUL16(x, x) + 4096) >> 13; |
|
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); |
|
return x + 1; |
|
} |
|
|
|
static inline int celt_log2tan(int isin, int icos) |
|
{ |
|
int lc, ls; |
|
lc = opus_ilog(icos); |
|
ls = opus_ilog(isin); |
|
icos <<= 15 - lc; |
|
isin <<= 15 - ls; |
|
return (ls << 11) - (lc << 11) + |
|
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) - |
|
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932); |
|
} |
|
|
|
static inline int celt_bits2pulses(const uint8_t *cache, int bits) |
|
{ |
|
// TODO: Find the size of cache and make it into an array in the parameters list |
|
int i, low = 0, high; |
|
|
|
high = cache[0]; |
|
bits--; |
|
|
|
for (i = 0; i < 6; i++) { |
|
int center = (low + high + 1) >> 1; |
|
if (cache[center] >= bits) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high; |
|
} |
|
|
|
static inline int celt_pulses2bits(const uint8_t *cache, int pulses) |
|
{ |
|
// TODO: Find the size of cache and make it into an array in the parameters list |
|
return (pulses == 0) ? 0 : cache[pulses] + 1; |
|
} |
|
|
|
static inline void celt_normalize_residual(const int * restrict iy, float * restrict X, |
|
int N, float g) |
|
{ |
|
int i; |
|
for (i = 0; i < N; i++) |
|
X[i] = g * iy[i]; |
|
} |
|
|
|
static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride, |
|
float c, float s) |
|
{ |
|
float *Xptr; |
|
int i; |
|
|
|
Xptr = X; |
|
for (i = 0; i < len - stride; i++) { |
|
float x1 = Xptr[0]; |
|
float x2 = Xptr[stride]; |
|
Xptr[stride] = c * x2 + s * x1; |
|
*Xptr++ = c * x1 - s * x2; |
|
} |
|
|
|
Xptr = &X[len - 2 * stride - 1]; |
|
for (i = len - 2 * stride - 1; i >= 0; i--) { |
|
float x1 = Xptr[0]; |
|
float x2 = Xptr[stride]; |
|
Xptr[stride] = c * x2 + s * x1; |
|
*Xptr-- = c * x1 - s * x2; |
|
} |
|
} |
|
|
|
static inline void celt_exp_rotation(float *X, uint32_t len, |
|
uint32_t stride, uint32_t K, |
|
enum CeltSpread spread, const int encode) |
|
{ |
|
uint32_t stride2 = 0; |
|
float c, s; |
|
float gain, theta; |
|
int i; |
|
|
|
if (2*K >= len || spread == CELT_SPREAD_NONE) |
|
return; |
|
|
|
gain = (float)len / (len + (20 - 5*spread) * K); |
|
theta = M_PI * gain * gain / 4; |
|
|
|
c = cosf(theta); |
|
s = sinf(theta); |
|
|
|
if (len >= stride << 3) { |
|
stride2 = 1; |
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding. |
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */ |
|
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len) |
|
stride2++; |
|
} |
|
|
|
len /= stride; |
|
for (i = 0; i < stride; i++) { |
|
if (encode) { |
|
celt_exp_rotation_impl(X + i * len, len, 1, c, -s); |
|
if (stride2) |
|
celt_exp_rotation_impl(X + i * len, len, stride2, s, -c); |
|
} else { |
|
if (stride2) |
|
celt_exp_rotation_impl(X + i * len, len, stride2, s, c); |
|
celt_exp_rotation_impl(X + i * len, len, 1, c, s); |
|
} |
|
} |
|
} |
|
|
|
static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) |
|
{ |
|
int i, j, N0 = N / B; |
|
uint32_t collapse_mask = 0; |
|
|
|
if (B <= 1) |
|
return 1; |
|
|
|
for (i = 0; i < B; i++) |
|
for (j = 0; j < N0; j++) |
|
collapse_mask |= (!!iy[i*N0+j]) << i; |
|
return collapse_mask; |
|
} |
|
|
|
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N) |
|
{ |
|
int i; |
|
float xp = 0, side = 0; |
|
float E[2]; |
|
float mid2; |
|
float gain[2]; |
|
|
|
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
|
for (i = 0; i < N; i++) { |
|
xp += X[i] * Y[i]; |
|
side += Y[i] * Y[i]; |
|
} |
|
|
|
/* Compensating for the mid normalization */ |
|
xp *= mid; |
|
mid2 = mid; |
|
E[0] = mid2 * mid2 + side - 2 * xp; |
|
E[1] = mid2 * mid2 + side + 2 * xp; |
|
if (E[0] < 6e-4f || E[1] < 6e-4f) { |
|
for (i = 0; i < N; i++) |
|
Y[i] = X[i]; |
|
return; |
|
} |
|
|
|
gain[0] = 1.0f / sqrtf(E[0]); |
|
gain[1] = 1.0f / sqrtf(E[1]); |
|
|
|
for (i = 0; i < N; i++) { |
|
float value[2]; |
|
/* Apply mid scaling (side is already scaled) */ |
|
value[0] = mid * X[i]; |
|
value[1] = Y[i]; |
|
X[i] = gain[0] * (value[0] - value[1]); |
|
Y[i] = gain[1] * (value[0] + value[1]); |
|
} |
|
} |
|
|
|
static void celt_interleave_hadamard(float *tmp, float *X, int N0, |
|
int stride, int hadamard) |
|
{ |
|
int i, j, N = N0*stride; |
|
const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
|
|
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[j*stride+i] = X[order[i]*N0+j]; |
|
|
|
memcpy(X, tmp, N*sizeof(float)); |
|
} |
|
|
|
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0, |
|
int stride, int hadamard) |
|
{ |
|
int i, j, N = N0*stride; |
|
const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30]; |
|
|
|
for (i = 0; i < stride; i++) |
|
for (j = 0; j < N0; j++) |
|
tmp[order[i]*N0+j] = X[j*stride+i]; |
|
|
|
memcpy(X, tmp, N*sizeof(float)); |
|
} |
|
|
|
static void celt_haar1(float *X, int N0, int stride) |
|
{ |
|
int i, j; |
|
N0 >>= 1; |
|
for (i = 0; i < stride; i++) { |
|
for (j = 0; j < N0; j++) { |
|
float x0 = X[stride * (2 * j + 0) + i]; |
|
float x1 = X[stride * (2 * j + 1) + i]; |
|
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2; |
|
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2; |
|
} |
|
} |
|
} |
|
|
|
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap, |
|
int stereo) |
|
{ |
|
int qn, qb; |
|
int N2 = 2 * N - 1; |
|
if (stereo && N == 2) |
|
N2--; |
|
|
|
/* The upper limit ensures that in a stereo split with itheta==16384, we'll |
|
* always have enough bits left over to code at least one pulse in the |
|
* side; otherwise it would collapse, since it doesn't get folded. */ |
|
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3); |
|
qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1; |
|
return qn; |
|
} |
|
|
|
/* Convert the quantized vector to an index */ |
|
static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y) |
|
{ |
|
int i, idx = 0, sum = 0; |
|
for (i = N - 1; i >= 0; i--) { |
|
const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1); |
|
idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s; |
|
sum += FFABS(y[i]); |
|
} |
|
return idx; |
|
} |
|
|
|
// this code was adapted from libopus |
|
static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y) |
|
{ |
|
uint64_t norm = 0; |
|
uint32_t q, p; |
|
int s, val; |
|
int k0; |
|
|
|
while (N > 2) { |
|
/*Lots of pulses case:*/ |
|
if (K >= N) { |
|
const uint32_t *row = ff_celt_pvq_u_row[N]; |
|
|
|
/* Are the pulses in this dimension negative? */ |
|
p = row[K + 1]; |
|
s = -(i >= p); |
|
i -= p & s; |
|
|
|
/*Count how many pulses were placed in this dimension.*/ |
|
k0 = K; |
|
q = row[N]; |
|
if (q > i) { |
|
K = N; |
|
do { |
|
p = ff_celt_pvq_u_row[--K][N]; |
|
} while (p > i); |
|
} else |
|
for (p = row[K]; p > i; p = row[K]) |
|
K--; |
|
|
|
i -= p; |
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
} else { /*Lots of dimensions case:*/ |
|
/*Are there any pulses in this dimension at all?*/ |
|
p = ff_celt_pvq_u_row[K ][N]; |
|
q = ff_celt_pvq_u_row[K + 1][N]; |
|
|
|
if (p <= i && i < q) { |
|
i -= p; |
|
*y++ = 0; |
|
} else { |
|
/*Are the pulses in this dimension negative?*/ |
|
s = -(i >= q); |
|
i -= q & s; |
|
|
|
/*Count how many pulses were placed in this dimension.*/ |
|
k0 = K; |
|
do p = ff_celt_pvq_u_row[--K][N]; |
|
while (p > i); |
|
|
|
i -= p; |
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
} |
|
} |
|
N--; |
|
} |
|
|
|
/* N == 2 */ |
|
p = 2 * K + 1; |
|
s = -(i >= p); |
|
i -= p & s; |
|
k0 = K; |
|
K = (i + 1) / 2; |
|
|
|
if (K) |
|
i -= 2 * K - 1; |
|
|
|
val = (k0 - K + s) ^ s; |
|
norm += val * val; |
|
*y++ = val; |
|
|
|
/* N==1 */ |
|
s = -i; |
|
val = (K + s) ^ s; |
|
norm += val * val; |
|
*y = val; |
|
|
|
return norm; |
|
} |
|
|
|
static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
|
{ |
|
ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K)); |
|
} |
|
|
|
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K) |
|
{ |
|
const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K)); |
|
return celt_cwrsi(N, K, idx, y); |
|
} |
|
|
|
#if CONFIG_OPUS_ENCODER |
|
/* |
|
* Faster than libopus's search, operates entirely in the signed domain. |
|
* Slightly worse/better depending on N, K and the input vector. |
|
*/ |
|
static float ppp_pvq_search_c(float *X, int *y, int K, int N) |
|
{ |
|
int i, y_norm = 0; |
|
float res = 0.0f, xy_norm = 0.0f; |
|
|
|
for (i = 0; i < N; i++) |
|
res += FFABS(X[i]); |
|
|
|
res = K/(res + FLT_EPSILON); |
|
|
|
for (i = 0; i < N; i++) { |
|
y[i] = lrintf(res*X[i]); |
|
y_norm += y[i]*y[i]; |
|
xy_norm += y[i]*X[i]; |
|
K -= FFABS(y[i]); |
|
} |
|
|
|
while (K) { |
|
int max_idx = 0, phase = FFSIGN(K); |
|
float max_num = 0.0f; |
|
float max_den = 1.0f; |
|
y_norm += 1.0f; |
|
|
|
for (i = 0; i < N; i++) { |
|
/* If the sum has been overshot and the best place has 0 pulses allocated |
|
* to it, attempting to decrease it further will actually increase the |
|
* sum. Prevent this by disregarding any 0 positions when decrementing. */ |
|
const int ca = 1 ^ ((y[i] == 0) & (phase < 0)); |
|
const int y_new = y_norm + 2*phase*FFABS(y[i]); |
|
float xy_new = xy_norm + 1*phase*FFABS(X[i]); |
|
xy_new = xy_new * xy_new; |
|
if (ca && (max_den*xy_new) > (y_new*max_num)) { |
|
max_den = y_new; |
|
max_num = xy_new; |
|
max_idx = i; |
|
} |
|
} |
|
|
|
K -= phase; |
|
|
|
phase *= FFSIGN(X[max_idx]); |
|
xy_norm += 1*phase*X[max_idx]; |
|
y_norm += 2*phase*y[max_idx]; |
|
y[max_idx] += phase; |
|
} |
|
|
|
return (float)y_norm; |
|
} |
|
#endif |
|
|
|
static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
|
enum CeltSpread spread, uint32_t blocks, float gain, |
|
CeltPVQ *pvq) |
|
{ |
|
int *y = pvq->qcoeff; |
|
|
|
celt_exp_rotation(X, N, blocks, K, spread, 1); |
|
gain /= sqrtf(pvq->pvq_search(X, y, K, N)); |
|
celt_encode_pulses(rc, y, N, K); |
|
celt_normalize_residual(y, X, N, gain); |
|
celt_exp_rotation(X, N, blocks, K, spread, 0); |
|
return celt_extract_collapse_mask(y, N, blocks); |
|
} |
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce |
|
the final normalised signal in the current band. */ |
|
static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, |
|
enum CeltSpread spread, uint32_t blocks, float gain, |
|
CeltPVQ *pvq) |
|
{ |
|
int *y = pvq->qcoeff; |
|
|
|
gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); |
|
celt_normalize_residual(y, X, N, gain); |
|
celt_exp_rotation(X, N, blocks, K, spread, 0); |
|
return celt_extract_collapse_mask(y, N, blocks); |
|
} |
|
|
|
static int celt_calc_theta(const float *X, const float *Y, int coupling, int N) |
|
{ |
|
int i; |
|
float e[2] = { 0.0f, 0.0f }; |
|
if (coupling) { /* Coupling case */ |
|
for (i = 0; i < N; i++) { |
|
e[0] += (X[i] + Y[i])*(X[i] + Y[i]); |
|
e[1] += (X[i] - Y[i])*(X[i] - Y[i]); |
|
} |
|
} else { |
|
for (i = 0; i < N; i++) { |
|
e[0] += X[i]*X[i]; |
|
e[1] += Y[i]*Y[i]; |
|
} |
|
} |
|
return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI); |
|
} |
|
|
|
static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N) |
|
{ |
|
int i; |
|
const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON); |
|
e_l *= energy_n; |
|
e_r *= energy_n; |
|
for (i = 0; i < N; i++) |
|
X[i] = e_l*X[i] + e_r*Y[i]; |
|
} |
|
|
|
static void celt_stereo_ms_decouple(float *X, float *Y, int N) |
|
{ |
|
int i; |
|
for (i = 0; i < N; i++) { |
|
const float Xret = X[i]; |
|
X[i] = (X[i] + Y[i])*M_SQRT1_2; |
|
Y[i] = (Y[i] - Xret)*M_SQRT1_2; |
|
} |
|
} |
|
|
|
static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f, |
|
OpusRangeCoder *rc, |
|
const int band, float *X, |
|
float *Y, int N, int b, |
|
uint32_t blocks, float *lowband, |
|
int duration, float *lowband_out, |
|
int level, float gain, |
|
float *lowband_scratch, |
|
int fill, int quant) |
|
{ |
|
int i; |
|
const uint8_t *cache; |
|
int stereo = !!Y, split = stereo; |
|
int imid = 0, iside = 0; |
|
uint32_t N0 = N; |
|
int N_B = N / blocks; |
|
int N_B0 = N_B; |
|
int B0 = blocks; |
|
int time_divide = 0; |
|
int recombine = 0; |
|
int inv = 0; |
|
float mid = 0, side = 0; |
|
int longblocks = (B0 == 1); |
|
uint32_t cm = 0; |
|
|
|
if (N == 1) { |
|
float *x = X; |
|
for (i = 0; i <= stereo; i++) { |
|
int sign = 0; |
|
if (f->remaining2 >= 1 << 3) { |
|
if (quant) { |
|
sign = x[0] < 0; |
|
ff_opus_rc_put_raw(rc, sign, 1); |
|
} else { |
|
sign = ff_opus_rc_get_raw(rc, 1); |
|
} |
|
f->remaining2 -= 1 << 3; |
|
} |
|
x[0] = 1.0f - 2.0f*sign; |
|
x = Y; |
|
} |
|
if (lowband_out) |
|
lowband_out[0] = X[0]; |
|
return 1; |
|
} |
|
|
|
if (!stereo && level == 0) { |
|
int tf_change = f->tf_change[band]; |
|
int k; |
|
if (tf_change > 0) |
|
recombine = tf_change; |
|
/* Band recombining to increase frequency resolution */ |
|
|
|
if (lowband && |
|
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { |
|
for (i = 0; i < N; i++) |
|
lowband_scratch[i] = lowband[i]; |
|
lowband = lowband_scratch; |
|
} |
|
|
|
for (k = 0; k < recombine; k++) { |
|
if (quant || lowband) |
|
celt_haar1(quant ? X : lowband, N >> k, 1 << k); |
|
fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; |
|
} |
|
blocks >>= recombine; |
|
N_B <<= recombine; |
|
|
|
/* Increasing the time resolution */ |
|
while ((N_B & 1) == 0 && tf_change < 0) { |
|
if (quant || lowband) |
|
celt_haar1(quant ? X : lowband, N_B, blocks); |
|
fill |= fill << blocks; |
|
blocks <<= 1; |
|
N_B >>= 1; |
|
time_divide++; |
|
tf_change++; |
|
} |
|
B0 = blocks; |
|
N_B0 = N_B; |
|
|
|
/* Reorganize the samples in time order instead of frequency order */ |
|
if (B0 > 1 && (quant || lowband)) |
|
celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband, |
|
N_B >> recombine, B0 << recombine, |
|
longblocks); |
|
} |
|
|
|
/* If we need 1.5 more bit than we can produce, split the band in two. */ |
|
cache = ff_celt_cache_bits + |
|
ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; |
|
if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { |
|
N >>= 1; |
|
Y = X + N; |
|
split = 1; |
|
duration -= 1; |
|
if (blocks == 1) |
|
fill = (fill & 1) | (fill << 1); |
|
blocks = (blocks + 1) >> 1; |
|
} |
|
|
|
if (split) { |
|
int qn; |
|
int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0; |
|
int mbits, sbits, delta; |
|
int qalloc; |
|
int pulse_cap; |
|
int offset; |
|
int orig_fill; |
|
int tell; |
|
|
|
/* Decide on the resolution to give to the split parameter theta */ |
|
pulse_cap = ff_celt_log_freq_range[band] + duration * 8; |
|
offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : |
|
CELT_QTHETA_OFFSET); |
|
qn = (stereo && band >= f->intensity_stereo) ? 1 : |
|
celt_compute_qn(N, b, offset, pulse_cap, stereo); |
|
tell = opus_rc_tell_frac(rc); |
|
if (qn != 1) { |
|
if (quant) |
|
itheta = (itheta*qn + 8192) >> 14; |
|
/* Entropy coding of the angle. We use a uniform pdf for the |
|
* time split, a step for stereo, and a triangular one for the rest. */ |
|
if (quant) { |
|
if (stereo && N > 2) |
|
ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); |
|
else if (stereo || B0 > 1) |
|
ff_opus_rc_enc_uint(rc, itheta, qn + 1); |
|
else |
|
ff_opus_rc_enc_uint_tri(rc, itheta, qn); |
|
itheta = itheta * 16384 / qn; |
|
if (stereo) { |
|
if (itheta == 0) |
|
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
|
f->block[1].lin_energy[band], N); |
|
else |
|
celt_stereo_ms_decouple(X, Y, N); |
|
} |
|
} else { |
|
if (stereo && N > 2) |
|
itheta = ff_opus_rc_dec_uint_step(rc, qn / 2); |
|
else if (stereo || B0 > 1) |
|
itheta = ff_opus_rc_dec_uint(rc, qn+1); |
|
else |
|
itheta = ff_opus_rc_dec_uint_tri(rc, qn); |
|
itheta = itheta * 16384 / qn; |
|
} |
|
} else if (stereo) { |
|
if (quant) { |
|
inv = f->apply_phase_inv ? itheta > 8192 : 0; |
|
if (inv) { |
|
for (i = 0; i < N; i++) |
|
Y[i] *= -1; |
|
} |
|
celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], |
|
f->block[1].lin_energy[band], N); |
|
|
|
if (b > 2 << 3 && f->remaining2 > 2 << 3) { |
|
ff_opus_rc_enc_log(rc, inv, 2); |
|
} else { |
|
inv = 0; |
|
} |
|
} else { |
|
inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; |
|
inv = f->apply_phase_inv ? inv : 0; |
|
} |
|
itheta = 0; |
|
} |
|
qalloc = opus_rc_tell_frac(rc) - tell; |
|
b -= qalloc; |
|
|
|
orig_fill = fill; |
|
if (itheta == 0) { |
|
imid = 32767; |
|
iside = 0; |
|
fill = av_zero_extend(fill, blocks); |
|
delta = -16384; |
|
} else if (itheta == 16384) { |
|
imid = 0; |
|
iside = 32767; |
|
fill &= ((1 << blocks) - 1) << blocks; |
|
delta = 16384; |
|
} else { |
|
imid = celt_cos(itheta); |
|
iside = celt_cos(16384-itheta); |
|
/* This is the mid vs side allocation that minimizes squared error |
|
in that band. */ |
|
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); |
|
} |
|
|
|
mid = imid / 32768.0f; |
|
side = iside / 32768.0f; |
|
|
|
/* This is a special case for N=2 that only works for stereo and takes |
|
advantage of the fact that mid and side are orthogonal to encode |
|
the side with just one bit. */ |
|
if (N == 2 && stereo) { |
|
int c; |
|
int sign = 0; |
|
float tmp; |
|
float *x2, *y2; |
|
mbits = b; |
|
/* Only need one bit for the side */ |
|
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; |
|
mbits -= sbits; |
|
c = (itheta > 8192); |
|
f->remaining2 -= qalloc+sbits; |
|
|
|
x2 = c ? Y : X; |
|
y2 = c ? X : Y; |
|
if (sbits) { |
|
if (quant) { |
|
sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
|
ff_opus_rc_put_raw(rc, sign, 1); |
|
} else { |
|
sign = ff_opus_rc_get_raw(rc, 1); |
|
} |
|
} |
|
sign = 1 - 2 * sign; |
|
/* We use orig_fill here because we want to fold the side, but if |
|
itheta==16384, we'll have cleared the low bits of fill. */ |
|
cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, |
|
lowband_out, level, gain, lowband_scratch, orig_fill); |
|
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
|
and there's no need to worry about mixing with the other channel. */ |
|
y2[0] = -sign * x2[1]; |
|
y2[1] = sign * x2[0]; |
|
X[0] *= mid; |
|
X[1] *= mid; |
|
Y[0] *= side; |
|
Y[1] *= side; |
|
tmp = X[0]; |
|
X[0] = tmp - Y[0]; |
|
Y[0] = tmp + Y[0]; |
|
tmp = X[1]; |
|
X[1] = tmp - Y[1]; |
|
Y[1] = tmp + Y[1]; |
|
} else { |
|
/* "Normal" split code */ |
|
float *next_lowband2 = NULL; |
|
float *next_lowband_out1 = NULL; |
|
int next_level = 0; |
|
int rebalance; |
|
uint32_t cmt; |
|
|
|
/* Give more bits to low-energy MDCTs than they would |
|
* otherwise deserve */ |
|
if (B0 > 1 && !stereo && (itheta & 0x3fff)) { |
|
if (itheta > 8192) |
|
/* Rough approximation for pre-echo masking */ |
|
delta -= delta >> (4 - duration); |
|
else |
|
/* Corresponds to a forward-masking slope of |
|
* 1.5 dB per 10 ms */ |
|
delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); |
|
} |
|
mbits = av_clip((b - delta) / 2, 0, b); |
|
sbits = b - mbits; |
|
f->remaining2 -= qalloc; |
|
|
|
if (lowband && !stereo) |
|
next_lowband2 = lowband + N; /* >32-bit split case */ |
|
|
|
/* Only stereo needs to pass on lowband_out. |
|
* Otherwise, it's handled at the end */ |
|
if (stereo) |
|
next_lowband_out1 = lowband_out; |
|
else |
|
next_level = level + 1; |
|
|
|
rebalance = f->remaining2; |
|
if (mbits >= sbits) { |
|
/* In stereo mode, we do not apply a scaling to the mid |
|
* because we need the normalized mid for folding later */ |
|
cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
|
lowband, duration, next_lowband_out1, next_level, |
|
stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
|
rebalance = mbits - (rebalance - f->remaining2); |
|
if (rebalance > 3 << 3 && itheta != 0) |
|
sbits += rebalance - (3 << 3); |
|
|
|
/* For a stereo split, the high bits of fill are always zero, |
|
* so no folding will be done to the side. */ |
|
cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
|
next_lowband2, duration, NULL, next_level, |
|
gain * side, NULL, fill >> blocks); |
|
cm |= cmt << ((B0 >> 1) & (stereo - 1)); |
|
} else { |
|
/* For a stereo split, the high bits of fill are always zero, |
|
* so no folding will be done to the side. */ |
|
cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks, |
|
next_lowband2, duration, NULL, next_level, |
|
gain * side, NULL, fill >> blocks); |
|
cm <<= ((B0 >> 1) & (stereo - 1)); |
|
rebalance = sbits - (rebalance - f->remaining2); |
|
if (rebalance > 3 << 3 && itheta != 16384) |
|
mbits += rebalance - (3 << 3); |
|
|
|
/* In stereo mode, we do not apply a scaling to the mid because |
|
* we need the normalized mid for folding later */ |
|
cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks, |
|
lowband, duration, next_lowband_out1, next_level, |
|
stereo ? 1.0f : (gain * mid), lowband_scratch, fill); |
|
} |
|
} |
|
} else { |
|
/* This is the basic no-split case */ |
|
uint32_t q = celt_bits2pulses(cache, b); |
|
uint32_t curr_bits = celt_pulses2bits(cache, q); |
|
f->remaining2 -= curr_bits; |
|
|
|
/* Ensures we can never bust the budget */ |
|
while (f->remaining2 < 0 && q > 0) { |
|
f->remaining2 += curr_bits; |
|
curr_bits = celt_pulses2bits(cache, --q); |
|
f->remaining2 -= curr_bits; |
|
} |
|
|
|
if (q != 0) { |
|
/* Finally do the actual (de)quantization */ |
|
if (quant) { |
|
cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
|
f->spread, blocks, gain, pvq); |
|
} else { |
|
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), |
|
f->spread, blocks, gain, pvq); |
|
} |
|
} else { |
|
/* If there's no pulse, fill the band anyway */ |
|
uint32_t cm_mask = (1 << blocks) - 1; |
|
fill &= cm_mask; |
|
if (fill) { |
|
if (!lowband) { |
|
/* Noise */ |
|
for (i = 0; i < N; i++) |
|
X[i] = (((int32_t)celt_rng(f)) >> 20); |
|
cm = cm_mask; |
|
} else { |
|
/* Folded spectrum */ |
|
for (i = 0; i < N; i++) { |
|
/* About 48 dB below the "normal" folding level */ |
|
X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); |
|
} |
|
cm = fill; |
|
} |
|
celt_renormalize_vector(X, N, gain); |
|
} else { |
|
memset(X, 0, N*sizeof(float)); |
|
} |
|
} |
|
} |
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */ |
|
if (stereo) { |
|
if (N > 2) |
|
celt_stereo_merge(X, Y, mid, N); |
|
if (inv) { |
|
for (i = 0; i < N; i++) |
|
Y[i] *= -1; |
|
} |
|
} else if (level == 0) { |
|
int k; |
|
|
|
/* Undo the sample reorganization going from time order to frequency order */ |
|
if (B0 > 1) |
|
celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine, |
|
B0 << recombine, longblocks); |
|
|
|
/* Undo time-freq changes that we did earlier */ |
|
N_B = N_B0; |
|
blocks = B0; |
|
for (k = 0; k < time_divide; k++) { |
|
blocks >>= 1; |
|
N_B <<= 1; |
|
cm |= cm >> blocks; |
|
celt_haar1(X, N_B, blocks); |
|
} |
|
|
|
for (k = 0; k < recombine; k++) { |
|
cm = ff_celt_bit_deinterleave[cm]; |
|
celt_haar1(X, N0>>k, 1<<k); |
|
} |
|
blocks <<= recombine; |
|
|
|
/* Scale output for later folding */ |
|
if (lowband_out) { |
|
float n = sqrtf(N0); |
|
for (i = 0; i < N0; i++) |
|
lowband_out[i] = n * X[i]; |
|
} |
|
cm = av_zero_extend(cm, blocks); |
|
} |
|
|
|
return cm; |
|
} |
|
|
|
static QUANT_FN(pvq_decode_band) |
|
{ |
|
#if CONFIG_OPUS_DECODER |
|
return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
|
lowband_out, level, gain, lowband_scratch, fill, 0); |
|
#else |
|
return 0; |
|
#endif |
|
} |
|
|
|
static QUANT_FN(pvq_encode_band) |
|
{ |
|
#if CONFIG_OPUS_ENCODER |
|
return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration, |
|
lowband_out, level, gain, lowband_scratch, fill, 1); |
|
#else |
|
return 0; |
|
#endif |
|
} |
|
|
|
int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode) |
|
{ |
|
CeltPVQ *s = av_malloc(sizeof(CeltPVQ)); |
|
if (!s) |
|
return AVERROR(ENOMEM); |
|
|
|
s->quant_band = encode ? pvq_encode_band : pvq_decode_band; |
|
|
|
#if CONFIG_OPUS_ENCODER |
|
s->pvq_search = ppp_pvq_search_c; |
|
#if ARCH_X86 |
|
ff_celt_pvq_init_x86(s); |
|
#endif |
|
#endif |
|
|
|
*pvq = s; |
|
|
|
return 0; |
|
} |
|
|
|
void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq) |
|
{ |
|
av_freep(pvq); |
|
}
|
|
|