mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
946 lines
29 KiB
946 lines
29 KiB
/* |
|
* High quality image resampling with polyphase filters |
|
* Copyright (c) 2001 Fabrice Bellard. |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file imgresample.c |
|
* High quality image resampling with polyphase filters . |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "swscale.h" |
|
#include "dsputil.h" |
|
|
|
#define NB_COMPONENTS 3 |
|
|
|
#define PHASE_BITS 4 |
|
#define NB_PHASES (1 << PHASE_BITS) |
|
#define NB_TAPS 4 |
|
#define FCENTER 1 /* index of the center of the filter */ |
|
//#define TEST 1 /* Test it */ |
|
|
|
#define POS_FRAC_BITS 16 |
|
#define POS_FRAC (1 << POS_FRAC_BITS) |
|
/* 6 bits precision is needed for MMX */ |
|
#define FILTER_BITS 8 |
|
|
|
#define LINE_BUF_HEIGHT (NB_TAPS * 4) |
|
|
|
struct SwsContext { |
|
struct ImgReSampleContext *resampling_ctx; |
|
enum PixelFormat src_pix_fmt, dst_pix_fmt; |
|
}; |
|
|
|
struct ImgReSampleContext { |
|
int iwidth, iheight, owidth, oheight; |
|
int topBand, bottomBand, leftBand, rightBand; |
|
int padtop, padbottom, padleft, padright; |
|
int pad_owidth, pad_oheight; |
|
int h_incr, v_incr; |
|
DECLARE_ALIGNED_8(int16_t, h_filters[NB_PHASES][NB_TAPS]); /* horizontal filters */ |
|
DECLARE_ALIGNED_8(int16_t, v_filters[NB_PHASES][NB_TAPS]); /* vertical filters */ |
|
uint8_t *line_buf; |
|
}; |
|
|
|
void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type); |
|
|
|
static inline int get_phase(int pos) |
|
{ |
|
return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1); |
|
} |
|
|
|
/* This function must be optimized */ |
|
static void h_resample_fast(uint8_t *dst, int dst_width, const uint8_t *src, |
|
int src_width, int src_start, int src_incr, |
|
int16_t *filters) |
|
{ |
|
int src_pos, phase, sum, i; |
|
const uint8_t *s; |
|
int16_t *filter; |
|
|
|
src_pos = src_start; |
|
for(i=0;i<dst_width;i++) { |
|
#ifdef TEST |
|
/* test */ |
|
if ((src_pos >> POS_FRAC_BITS) < 0 || |
|
(src_pos >> POS_FRAC_BITS) > (src_width - NB_TAPS)) |
|
av_abort(); |
|
#endif |
|
s = src + (src_pos >> POS_FRAC_BITS); |
|
phase = get_phase(src_pos); |
|
filter = filters + phase * NB_TAPS; |
|
#if NB_TAPS == 4 |
|
sum = s[0] * filter[0] + |
|
s[1] * filter[1] + |
|
s[2] * filter[2] + |
|
s[3] * filter[3]; |
|
#else |
|
{ |
|
int j; |
|
sum = 0; |
|
for(j=0;j<NB_TAPS;j++) |
|
sum += s[j] * filter[j]; |
|
} |
|
#endif |
|
sum = sum >> FILTER_BITS; |
|
if (sum < 0) |
|
sum = 0; |
|
else if (sum > 255) |
|
sum = 255; |
|
dst[0] = sum; |
|
src_pos += src_incr; |
|
dst++; |
|
} |
|
} |
|
|
|
/* This function must be optimized */ |
|
static void v_resample(uint8_t *dst, int dst_width, const uint8_t *src, |
|
int wrap, int16_t *filter) |
|
{ |
|
int sum, i; |
|
const uint8_t *s; |
|
|
|
s = src; |
|
for(i=0;i<dst_width;i++) { |
|
#if NB_TAPS == 4 |
|
sum = s[0 * wrap] * filter[0] + |
|
s[1 * wrap] * filter[1] + |
|
s[2 * wrap] * filter[2] + |
|
s[3 * wrap] * filter[3]; |
|
#else |
|
{ |
|
int j; |
|
uint8_t *s1 = s; |
|
|
|
sum = 0; |
|
for(j=0;j<NB_TAPS;j++) { |
|
sum += s1[0] * filter[j]; |
|
s1 += wrap; |
|
} |
|
} |
|
#endif |
|
sum = sum >> FILTER_BITS; |
|
if (sum < 0) |
|
sum = 0; |
|
else if (sum > 255) |
|
sum = 255; |
|
dst[0] = sum; |
|
dst++; |
|
s++; |
|
} |
|
} |
|
|
|
#ifdef HAVE_MMX |
|
|
|
#include "i386/mmx.h" |
|
|
|
#define FILTER4(reg) \ |
|
{\ |
|
s = src + (src_pos >> POS_FRAC_BITS);\ |
|
phase = get_phase(src_pos);\ |
|
filter = filters + phase * NB_TAPS;\ |
|
movq_m2r(*s, reg);\ |
|
punpcklbw_r2r(mm7, reg);\ |
|
movq_m2r(*filter, mm6);\ |
|
pmaddwd_r2r(reg, mm6);\ |
|
movq_r2r(mm6, reg);\ |
|
psrlq_i2r(32, reg);\ |
|
paddd_r2r(mm6, reg);\ |
|
psrad_i2r(FILTER_BITS, reg);\ |
|
src_pos += src_incr;\ |
|
} |
|
|
|
#define DUMP(reg) movq_r2m(reg, tmp); printf(#reg "=%016"PRIx64"\n", tmp.uq); |
|
|
|
/* XXX: do four pixels at a time */ |
|
static void h_resample_fast4_mmx(uint8_t *dst, int dst_width, |
|
const uint8_t *src, int src_width, |
|
int src_start, int src_incr, int16_t *filters) |
|
{ |
|
int src_pos, phase; |
|
const uint8_t *s; |
|
int16_t *filter; |
|
mmx_t tmp; |
|
|
|
src_pos = src_start; |
|
pxor_r2r(mm7, mm7); |
|
|
|
while (dst_width >= 4) { |
|
|
|
FILTER4(mm0); |
|
FILTER4(mm1); |
|
FILTER4(mm2); |
|
FILTER4(mm3); |
|
|
|
packuswb_r2r(mm7, mm0); |
|
packuswb_r2r(mm7, mm1); |
|
packuswb_r2r(mm7, mm3); |
|
packuswb_r2r(mm7, mm2); |
|
movq_r2m(mm0, tmp); |
|
dst[0] = tmp.ub[0]; |
|
movq_r2m(mm1, tmp); |
|
dst[1] = tmp.ub[0]; |
|
movq_r2m(mm2, tmp); |
|
dst[2] = tmp.ub[0]; |
|
movq_r2m(mm3, tmp); |
|
dst[3] = tmp.ub[0]; |
|
dst += 4; |
|
dst_width -= 4; |
|
} |
|
while (dst_width > 0) { |
|
FILTER4(mm0); |
|
packuswb_r2r(mm7, mm0); |
|
movq_r2m(mm0, tmp); |
|
dst[0] = tmp.ub[0]; |
|
dst++; |
|
dst_width--; |
|
} |
|
emms(); |
|
} |
|
|
|
static void v_resample4_mmx(uint8_t *dst, int dst_width, const uint8_t *src, |
|
int wrap, int16_t *filter) |
|
{ |
|
int sum, i, v; |
|
const uint8_t *s; |
|
mmx_t tmp; |
|
mmx_t coefs[4]; |
|
|
|
for(i=0;i<4;i++) { |
|
v = filter[i]; |
|
coefs[i].uw[0] = v; |
|
coefs[i].uw[1] = v; |
|
coefs[i].uw[2] = v; |
|
coefs[i].uw[3] = v; |
|
} |
|
|
|
pxor_r2r(mm7, mm7); |
|
s = src; |
|
while (dst_width >= 4) { |
|
movq_m2r(s[0 * wrap], mm0); |
|
punpcklbw_r2r(mm7, mm0); |
|
movq_m2r(s[1 * wrap], mm1); |
|
punpcklbw_r2r(mm7, mm1); |
|
movq_m2r(s[2 * wrap], mm2); |
|
punpcklbw_r2r(mm7, mm2); |
|
movq_m2r(s[3 * wrap], mm3); |
|
punpcklbw_r2r(mm7, mm3); |
|
|
|
pmullw_m2r(coefs[0], mm0); |
|
pmullw_m2r(coefs[1], mm1); |
|
pmullw_m2r(coefs[2], mm2); |
|
pmullw_m2r(coefs[3], mm3); |
|
|
|
paddw_r2r(mm1, mm0); |
|
paddw_r2r(mm3, mm2); |
|
paddw_r2r(mm2, mm0); |
|
psraw_i2r(FILTER_BITS, mm0); |
|
|
|
packuswb_r2r(mm7, mm0); |
|
movq_r2m(mm0, tmp); |
|
|
|
*(uint32_t *)dst = tmp.ud[0]; |
|
dst += 4; |
|
s += 4; |
|
dst_width -= 4; |
|
} |
|
while (dst_width > 0) { |
|
sum = s[0 * wrap] * filter[0] + |
|
s[1 * wrap] * filter[1] + |
|
s[2 * wrap] * filter[2] + |
|
s[3 * wrap] * filter[3]; |
|
sum = sum >> FILTER_BITS; |
|
if (sum < 0) |
|
sum = 0; |
|
else if (sum > 255) |
|
sum = 255; |
|
dst[0] = sum; |
|
dst++; |
|
s++; |
|
dst_width--; |
|
} |
|
emms(); |
|
} |
|
#endif /* HAVE_MMX */ |
|
|
|
#ifdef HAVE_ALTIVEC |
|
typedef union { |
|
vector unsigned char v; |
|
unsigned char c[16]; |
|
} vec_uc_t; |
|
|
|
typedef union { |
|
vector signed short v; |
|
signed short s[8]; |
|
} vec_ss_t; |
|
|
|
void v_resample16_altivec(uint8_t *dst, int dst_width, const uint8_t *src, |
|
int wrap, int16_t *filter) |
|
{ |
|
int sum, i; |
|
const uint8_t *s; |
|
vector unsigned char *tv, tmp, dstv, zero; |
|
vec_ss_t srchv[4], srclv[4], fv[4]; |
|
vector signed short zeros, sumhv, sumlv; |
|
s = src; |
|
|
|
for(i=0;i<4;i++) |
|
{ |
|
/* |
|
The vec_madds later on does an implicit >>15 on the result. |
|
Since FILTER_BITS is 8, and we have 15 bits of magnitude in |
|
a signed short, we have just enough bits to pre-shift our |
|
filter constants <<7 to compensate for vec_madds. |
|
*/ |
|
fv[i].s[0] = filter[i] << (15-FILTER_BITS); |
|
fv[i].v = vec_splat(fv[i].v, 0); |
|
} |
|
|
|
zero = vec_splat_u8(0); |
|
zeros = vec_splat_s16(0); |
|
|
|
|
|
/* |
|
When we're resampling, we'd ideally like both our input buffers, |
|
and output buffers to be 16-byte aligned, so we can do both aligned |
|
reads and writes. Sadly we can't always have this at the moment, so |
|
we opt for aligned writes, as unaligned writes have a huge overhead. |
|
To do this, do enough scalar resamples to get dst 16-byte aligned. |
|
*/ |
|
i = (-(int)dst) & 0xf; |
|
while(i>0) { |
|
sum = s[0 * wrap] * filter[0] + |
|
s[1 * wrap] * filter[1] + |
|
s[2 * wrap] * filter[2] + |
|
s[3 * wrap] * filter[3]; |
|
sum = sum >> FILTER_BITS; |
|
if (sum<0) sum = 0; else if (sum>255) sum=255; |
|
dst[0] = sum; |
|
dst++; |
|
s++; |
|
dst_width--; |
|
i--; |
|
} |
|
|
|
/* Do our altivec resampling on 16 pixels at once. */ |
|
while(dst_width>=16) { |
|
/* |
|
Read 16 (potentially unaligned) bytes from each of |
|
4 lines into 4 vectors, and split them into shorts. |
|
Interleave the multipy/accumulate for the resample |
|
filter with the loads to hide the 3 cycle latency |
|
the vec_madds have. |
|
*/ |
|
tv = (vector unsigned char *) &s[0 * wrap]; |
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[i * wrap])); |
|
srchv[0].v = (vector signed short) vec_mergeh(zero, tmp); |
|
srclv[0].v = (vector signed short) vec_mergel(zero, tmp); |
|
sumhv = vec_madds(srchv[0].v, fv[0].v, zeros); |
|
sumlv = vec_madds(srclv[0].v, fv[0].v, zeros); |
|
|
|
tv = (vector unsigned char *) &s[1 * wrap]; |
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[1 * wrap])); |
|
srchv[1].v = (vector signed short) vec_mergeh(zero, tmp); |
|
srclv[1].v = (vector signed short) vec_mergel(zero, tmp); |
|
sumhv = vec_madds(srchv[1].v, fv[1].v, sumhv); |
|
sumlv = vec_madds(srclv[1].v, fv[1].v, sumlv); |
|
|
|
tv = (vector unsigned char *) &s[2 * wrap]; |
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[2 * wrap])); |
|
srchv[2].v = (vector signed short) vec_mergeh(zero, tmp); |
|
srclv[2].v = (vector signed short) vec_mergel(zero, tmp); |
|
sumhv = vec_madds(srchv[2].v, fv[2].v, sumhv); |
|
sumlv = vec_madds(srclv[2].v, fv[2].v, sumlv); |
|
|
|
tv = (vector unsigned char *) &s[3 * wrap]; |
|
tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[3 * wrap])); |
|
srchv[3].v = (vector signed short) vec_mergeh(zero, tmp); |
|
srclv[3].v = (vector signed short) vec_mergel(zero, tmp); |
|
sumhv = vec_madds(srchv[3].v, fv[3].v, sumhv); |
|
sumlv = vec_madds(srclv[3].v, fv[3].v, sumlv); |
|
|
|
/* |
|
Pack the results into our destination vector, |
|
and do an aligned write of that back to memory. |
|
*/ |
|
dstv = vec_packsu(sumhv, sumlv) ; |
|
vec_st(dstv, 0, (vector unsigned char *) dst); |
|
|
|
dst+=16; |
|
s+=16; |
|
dst_width-=16; |
|
} |
|
|
|
/* |
|
If there are any leftover pixels, resample them |
|
with the slow scalar method. |
|
*/ |
|
while(dst_width>0) { |
|
sum = s[0 * wrap] * filter[0] + |
|
s[1 * wrap] * filter[1] + |
|
s[2 * wrap] * filter[2] + |
|
s[3 * wrap] * filter[3]; |
|
sum = sum >> FILTER_BITS; |
|
if (sum<0) sum = 0; else if (sum>255) sum=255; |
|
dst[0] = sum; |
|
dst++; |
|
s++; |
|
dst_width--; |
|
} |
|
} |
|
#endif /* HAVE_ALTIVEC */ |
|
|
|
/* slow version to handle limit cases. Does not need optimisation */ |
|
static void h_resample_slow(uint8_t *dst, int dst_width, |
|
const uint8_t *src, int src_width, |
|
int src_start, int src_incr, int16_t *filters) |
|
{ |
|
int src_pos, phase, sum, j, v, i; |
|
const uint8_t *s, *src_end; |
|
int16_t *filter; |
|
|
|
src_end = src + src_width; |
|
src_pos = src_start; |
|
for(i=0;i<dst_width;i++) { |
|
s = src + (src_pos >> POS_FRAC_BITS); |
|
phase = get_phase(src_pos); |
|
filter = filters + phase * NB_TAPS; |
|
sum = 0; |
|
for(j=0;j<NB_TAPS;j++) { |
|
if (s < src) |
|
v = src[0]; |
|
else if (s >= src_end) |
|
v = src_end[-1]; |
|
else |
|
v = s[0]; |
|
sum += v * filter[j]; |
|
s++; |
|
} |
|
sum = sum >> FILTER_BITS; |
|
if (sum < 0) |
|
sum = 0; |
|
else if (sum > 255) |
|
sum = 255; |
|
dst[0] = sum; |
|
src_pos += src_incr; |
|
dst++; |
|
} |
|
} |
|
|
|
static void h_resample(uint8_t *dst, int dst_width, const uint8_t *src, |
|
int src_width, int src_start, int src_incr, |
|
int16_t *filters) |
|
{ |
|
int n, src_end; |
|
|
|
if (src_start < 0) { |
|
n = (0 - src_start + src_incr - 1) / src_incr; |
|
h_resample_slow(dst, n, src, src_width, src_start, src_incr, filters); |
|
dst += n; |
|
dst_width -= n; |
|
src_start += n * src_incr; |
|
} |
|
src_end = src_start + dst_width * src_incr; |
|
if (src_end > ((src_width - NB_TAPS) << POS_FRAC_BITS)) { |
|
n = (((src_width - NB_TAPS + 1) << POS_FRAC_BITS) - 1 - src_start) / |
|
src_incr; |
|
} else { |
|
n = dst_width; |
|
} |
|
#ifdef HAVE_MMX |
|
if ((mm_flags & MM_MMX) && NB_TAPS == 4) |
|
h_resample_fast4_mmx(dst, n, |
|
src, src_width, src_start, src_incr, filters); |
|
else |
|
#endif |
|
h_resample_fast(dst, n, |
|
src, src_width, src_start, src_incr, filters); |
|
if (n < dst_width) { |
|
dst += n; |
|
dst_width -= n; |
|
src_start += n * src_incr; |
|
h_resample_slow(dst, dst_width, |
|
src, src_width, src_start, src_incr, filters); |
|
} |
|
} |
|
|
|
static void component_resample(ImgReSampleContext *s, |
|
uint8_t *output, int owrap, int owidth, int oheight, |
|
uint8_t *input, int iwrap, int iwidth, int iheight) |
|
{ |
|
int src_y, src_y1, last_src_y, ring_y, phase_y, y1, y; |
|
uint8_t *new_line, *src_line; |
|
|
|
last_src_y = - FCENTER - 1; |
|
/* position of the bottom of the filter in the source image */ |
|
src_y = (last_src_y + NB_TAPS) * POS_FRAC; |
|
ring_y = NB_TAPS; /* position in ring buffer */ |
|
for(y=0;y<oheight;y++) { |
|
/* apply horizontal filter on new lines from input if needed */ |
|
src_y1 = src_y >> POS_FRAC_BITS; |
|
while (last_src_y < src_y1) { |
|
if (++ring_y >= LINE_BUF_HEIGHT + NB_TAPS) |
|
ring_y = NB_TAPS; |
|
last_src_y++; |
|
/* handle limit conditions : replicate line (slightly |
|
inefficient because we filter multiple times) */ |
|
y1 = last_src_y; |
|
if (y1 < 0) { |
|
y1 = 0; |
|
} else if (y1 >= iheight) { |
|
y1 = iheight - 1; |
|
} |
|
src_line = input + y1 * iwrap; |
|
new_line = s->line_buf + ring_y * owidth; |
|
/* apply filter and handle limit cases correctly */ |
|
h_resample(new_line, owidth, |
|
src_line, iwidth, - FCENTER * POS_FRAC, s->h_incr, |
|
&s->h_filters[0][0]); |
|
/* handle ring buffer wraping */ |
|
if (ring_y >= LINE_BUF_HEIGHT) { |
|
memcpy(s->line_buf + (ring_y - LINE_BUF_HEIGHT) * owidth, |
|
new_line, owidth); |
|
} |
|
} |
|
/* apply vertical filter */ |
|
phase_y = get_phase(src_y); |
|
#ifdef HAVE_MMX |
|
/* desactivated MMX because loss of precision */ |
|
if ((mm_flags & MM_MMX) && NB_TAPS == 4 && 0) |
|
v_resample4_mmx(output, owidth, |
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth, |
|
&s->v_filters[phase_y][0]); |
|
else |
|
#endif |
|
#ifdef HAVE_ALTIVEC |
|
if ((mm_flags & MM_ALTIVEC) && NB_TAPS == 4 && FILTER_BITS <= 6) |
|
v_resample16_altivec(output, owidth, |
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth, |
|
&s->v_filters[phase_y][0]); |
|
else |
|
#endif |
|
v_resample(output, owidth, |
|
s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth, |
|
&s->v_filters[phase_y][0]); |
|
|
|
src_y += s->v_incr; |
|
|
|
output += owrap; |
|
} |
|
} |
|
|
|
ImgReSampleContext *img_resample_init(int owidth, int oheight, |
|
int iwidth, int iheight) |
|
{ |
|
return img_resample_full_init(owidth, oheight, iwidth, iheight, |
|
0, 0, 0, 0, 0, 0, 0, 0); |
|
} |
|
|
|
ImgReSampleContext *img_resample_full_init(int owidth, int oheight, |
|
int iwidth, int iheight, |
|
int topBand, int bottomBand, |
|
int leftBand, int rightBand, |
|
int padtop, int padbottom, |
|
int padleft, int padright) |
|
{ |
|
ImgReSampleContext *s; |
|
|
|
if (!owidth || !oheight || !iwidth || !iheight) |
|
return NULL; |
|
|
|
s = av_mallocz(sizeof(ImgReSampleContext)); |
|
if (!s) |
|
return NULL; |
|
if((unsigned)owidth >= UINT_MAX / (LINE_BUF_HEIGHT + NB_TAPS)) |
|
return NULL; |
|
s->line_buf = av_mallocz(owidth * (LINE_BUF_HEIGHT + NB_TAPS)); |
|
if (!s->line_buf) |
|
goto fail; |
|
|
|
s->owidth = owidth; |
|
s->oheight = oheight; |
|
s->iwidth = iwidth; |
|
s->iheight = iheight; |
|
|
|
s->topBand = topBand; |
|
s->bottomBand = bottomBand; |
|
s->leftBand = leftBand; |
|
s->rightBand = rightBand; |
|
|
|
s->padtop = padtop; |
|
s->padbottom = padbottom; |
|
s->padleft = padleft; |
|
s->padright = padright; |
|
|
|
s->pad_owidth = owidth - (padleft + padright); |
|
s->pad_oheight = oheight - (padtop + padbottom); |
|
|
|
s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / s->pad_owidth; |
|
s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / s->pad_oheight; |
|
|
|
av_build_filter(&s->h_filters[0][0], (float) s->pad_owidth / |
|
(float) (iwidth - leftBand - rightBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); |
|
av_build_filter(&s->v_filters[0][0], (float) s->pad_oheight / |
|
(float) (iheight - topBand - bottomBand), NB_TAPS, NB_PHASES, 1<<FILTER_BITS, 0); |
|
|
|
return s; |
|
fail: |
|
av_free(s); |
|
return NULL; |
|
} |
|
|
|
void img_resample(ImgReSampleContext *s, |
|
AVPicture *output, const AVPicture *input) |
|
{ |
|
int i, shift; |
|
uint8_t* optr; |
|
|
|
for (i=0;i<3;i++) { |
|
shift = (i == 0) ? 0 : 1; |
|
|
|
optr = output->data[i] + (((output->linesize[i] * |
|
s->padtop) + s->padleft) >> shift); |
|
|
|
component_resample(s, optr, output->linesize[i], |
|
s->pad_owidth >> shift, s->pad_oheight >> shift, |
|
input->data[i] + (input->linesize[i] * |
|
(s->topBand >> shift)) + (s->leftBand >> shift), |
|
input->linesize[i], ((s->iwidth - s->leftBand - |
|
s->rightBand) >> shift), |
|
(s->iheight - s->topBand - s->bottomBand) >> shift); |
|
} |
|
} |
|
|
|
void img_resample_close(ImgReSampleContext *s) |
|
{ |
|
av_free(s->line_buf); |
|
av_free(s); |
|
} |
|
|
|
struct SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, |
|
int dstW, int dstH, int dstFormat, |
|
int flags, SwsFilter *srcFilter, |
|
SwsFilter *dstFilter, double *param) |
|
{ |
|
struct SwsContext *ctx; |
|
|
|
ctx = av_malloc(sizeof(struct SwsContext)); |
|
if (ctx == NULL) { |
|
av_log(NULL, AV_LOG_ERROR, "Cannot allocate a resampling context!\n"); |
|
|
|
return NULL; |
|
} |
|
|
|
if ((srcH != dstH) || (srcW != dstW)) { |
|
if ((srcFormat != PIX_FMT_YUV420P) || (dstFormat != PIX_FMT_YUV420P)) { |
|
av_log(NULL, AV_LOG_INFO, "PIX_FMT_YUV420P will be used as an intermediate format for rescaling\n"); |
|
} |
|
ctx->resampling_ctx = img_resample_init(dstW, dstH, srcW, srcH); |
|
} else { |
|
ctx->resampling_ctx = av_malloc(sizeof(ImgReSampleContext)); |
|
ctx->resampling_ctx->iheight = srcH; |
|
ctx->resampling_ctx->iwidth = srcW; |
|
ctx->resampling_ctx->oheight = dstH; |
|
ctx->resampling_ctx->owidth = dstW; |
|
} |
|
ctx->src_pix_fmt = srcFormat; |
|
ctx->dst_pix_fmt = dstFormat; |
|
|
|
return ctx; |
|
} |
|
|
|
void sws_freeContext(struct SwsContext *ctx) |
|
{ |
|
if (!ctx) |
|
return; |
|
if ((ctx->resampling_ctx->iwidth != ctx->resampling_ctx->owidth) || |
|
(ctx->resampling_ctx->iheight != ctx->resampling_ctx->oheight)) { |
|
img_resample_close(ctx->resampling_ctx); |
|
} else { |
|
av_free(ctx->resampling_ctx); |
|
} |
|
av_free(ctx); |
|
} |
|
|
|
|
|
/** |
|
* Checks if context is valid or reallocs a new one instead. |
|
* If context is NULL, just calls sws_getContext() to get a new one. |
|
* Otherwise, checks if the parameters are the same already saved in context. |
|
* If that is the case, returns the current context. |
|
* Otherwise, frees context and gets a new one. |
|
* |
|
* Be warned that srcFilter, dstFilter are not checked, they are |
|
* asumed to remain valid. |
|
*/ |
|
struct SwsContext *sws_getCachedContext(struct SwsContext *ctx, |
|
int srcW, int srcH, int srcFormat, |
|
int dstW, int dstH, int dstFormat, int flags, |
|
SwsFilter *srcFilter, SwsFilter *dstFilter, double *param) |
|
{ |
|
if (ctx != NULL) { |
|
if ((ctx->resampling_ctx->iwidth != srcW) || |
|
(ctx->resampling_ctx->iheight != srcH) || |
|
(ctx->src_pix_fmt != srcFormat) || |
|
(ctx->resampling_ctx->owidth != dstW) || |
|
(ctx->resampling_ctx->oheight != dstH) || |
|
(ctx->dst_pix_fmt != dstFormat)) |
|
{ |
|
sws_freeContext(ctx); |
|
ctx = NULL; |
|
} |
|
} |
|
if (ctx == NULL) { |
|
return sws_getContext(srcW, srcH, srcFormat, |
|
dstW, dstH, dstFormat, flags, |
|
srcFilter, dstFilter, param); |
|
} |
|
return ctx; |
|
} |
|
|
|
int sws_scale(struct SwsContext *ctx, uint8_t* src[], int srcStride[], |
|
int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) |
|
{ |
|
AVPicture src_pict, dst_pict; |
|
int i, res = 0; |
|
AVPicture picture_format_temp; |
|
AVPicture picture_resample_temp, *formatted_picture, *resampled_picture; |
|
uint8_t *buf1 = NULL, *buf2 = NULL; |
|
enum PixelFormat current_pix_fmt; |
|
|
|
for (i = 0; i < 4; i++) { |
|
src_pict.data[i] = src[i]; |
|
src_pict.linesize[i] = srcStride[i]; |
|
dst_pict.data[i] = dst[i]; |
|
dst_pict.linesize[i] = dstStride[i]; |
|
} |
|
if ((ctx->resampling_ctx->iwidth != ctx->resampling_ctx->owidth) || |
|
(ctx->resampling_ctx->iheight != ctx->resampling_ctx->oheight)) { |
|
/* We have to rescale the picture, but only YUV420P rescaling is supported... */ |
|
|
|
if (ctx->src_pix_fmt != PIX_FMT_YUV420P) { |
|
int size; |
|
|
|
/* create temporary picture for rescaling input*/ |
|
size = avpicture_get_size(PIX_FMT_YUV420P, ctx->resampling_ctx->iwidth, ctx->resampling_ctx->iheight); |
|
buf1 = av_malloc(size); |
|
if (!buf1) { |
|
res = -1; |
|
goto the_end; |
|
} |
|
formatted_picture = &picture_format_temp; |
|
avpicture_fill((AVPicture*)formatted_picture, buf1, |
|
PIX_FMT_YUV420P, ctx->resampling_ctx->iwidth, ctx->resampling_ctx->iheight); |
|
|
|
if (img_convert((AVPicture*)formatted_picture, PIX_FMT_YUV420P, |
|
&src_pict, ctx->src_pix_fmt, |
|
ctx->resampling_ctx->iwidth, ctx->resampling_ctx->iheight) < 0) { |
|
|
|
av_log(NULL, AV_LOG_ERROR, "pixel format conversion not handled\n"); |
|
res = -1; |
|
goto the_end; |
|
} |
|
} else { |
|
formatted_picture = &src_pict; |
|
} |
|
|
|
if (ctx->dst_pix_fmt != PIX_FMT_YUV420P) { |
|
int size; |
|
|
|
/* create temporary picture for rescaling output*/ |
|
size = avpicture_get_size(PIX_FMT_YUV420P, ctx->resampling_ctx->owidth, ctx->resampling_ctx->oheight); |
|
buf2 = av_malloc(size); |
|
if (!buf2) { |
|
res = -1; |
|
goto the_end; |
|
} |
|
resampled_picture = &picture_resample_temp; |
|
avpicture_fill((AVPicture*)resampled_picture, buf2, |
|
PIX_FMT_YUV420P, ctx->resampling_ctx->owidth, ctx->resampling_ctx->oheight); |
|
|
|
} else { |
|
resampled_picture = &dst_pict; |
|
} |
|
|
|
/* ...and finally rescale!!! */ |
|
img_resample(ctx->resampling_ctx, resampled_picture, formatted_picture); |
|
current_pix_fmt = PIX_FMT_YUV420P; |
|
} else { |
|
resampled_picture = &src_pict; |
|
current_pix_fmt = ctx->src_pix_fmt; |
|
} |
|
|
|
if (current_pix_fmt != ctx->dst_pix_fmt) { |
|
if (img_convert(&dst_pict, ctx->dst_pix_fmt, |
|
resampled_picture, current_pix_fmt, |
|
ctx->resampling_ctx->owidth, ctx->resampling_ctx->oheight) < 0) { |
|
|
|
av_log(NULL, AV_LOG_ERROR, "pixel format conversion not handled\n"); |
|
|
|
res = -1; |
|
goto the_end; |
|
} |
|
} else if (resampled_picture != &dst_pict) { |
|
av_picture_copy(&dst_pict, resampled_picture, current_pix_fmt, |
|
ctx->resampling_ctx->owidth, ctx->resampling_ctx->oheight); |
|
} |
|
|
|
the_end: |
|
av_free(buf1); |
|
av_free(buf2); |
|
return res; |
|
} |
|
|
|
|
|
#ifdef TEST |
|
#include <stdio.h> |
|
#undef exit |
|
|
|
/* input */ |
|
#define XSIZE 256 |
|
#define YSIZE 256 |
|
uint8_t img[XSIZE * YSIZE]; |
|
|
|
/* output */ |
|
#define XSIZE1 512 |
|
#define YSIZE1 512 |
|
uint8_t img1[XSIZE1 * YSIZE1]; |
|
uint8_t img2[XSIZE1 * YSIZE1]; |
|
|
|
void save_pgm(const char *filename, uint8_t *img, int xsize, int ysize) |
|
{ |
|
#undef fprintf |
|
FILE *f; |
|
f=fopen(filename,"w"); |
|
fprintf(f,"P5\n%d %d\n%d\n", xsize, ysize, 255); |
|
fwrite(img,1, xsize * ysize,f); |
|
fclose(f); |
|
#define fprintf please_use_av_log |
|
} |
|
|
|
static void dump_filter(int16_t *filter) |
|
{ |
|
int i, ph; |
|
|
|
for(ph=0;ph<NB_PHASES;ph++) { |
|
av_log(NULL, AV_LOG_INFO, "%2d: ", ph); |
|
for(i=0;i<NB_TAPS;i++) { |
|
av_log(NULL, AV_LOG_INFO, " %5.2f", filter[ph * NB_TAPS + i] / 256.0); |
|
} |
|
av_log(NULL, AV_LOG_INFO, "\n"); |
|
} |
|
} |
|
|
|
#ifdef HAVE_MMX |
|
int mm_flags; |
|
#endif |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
int x, y, v, i, xsize, ysize; |
|
ImgReSampleContext *s; |
|
float fact, factors[] = { 1/2.0, 3.0/4.0, 1.0, 4.0/3.0, 16.0/9.0, 2.0 }; |
|
char buf[256]; |
|
|
|
/* build test image */ |
|
for(y=0;y<YSIZE;y++) { |
|
for(x=0;x<XSIZE;x++) { |
|
if (x < XSIZE/2 && y < YSIZE/2) { |
|
if (x < XSIZE/4 && y < YSIZE/4) { |
|
if ((x % 10) <= 6 && |
|
(y % 10) <= 6) |
|
v = 0xff; |
|
else |
|
v = 0x00; |
|
} else if (x < XSIZE/4) { |
|
if (x & 1) |
|
v = 0xff; |
|
else |
|
v = 0; |
|
} else if (y < XSIZE/4) { |
|
if (y & 1) |
|
v = 0xff; |
|
else |
|
v = 0; |
|
} else { |
|
if (y < YSIZE*3/8) { |
|
if ((y+x) & 1) |
|
v = 0xff; |
|
else |
|
v = 0; |
|
} else { |
|
if (((x+3) % 4) <= 1 && |
|
((y+3) % 4) <= 1) |
|
v = 0xff; |
|
else |
|
v = 0x00; |
|
} |
|
} |
|
} else if (x < XSIZE/2) { |
|
v = ((x - (XSIZE/2)) * 255) / (XSIZE/2); |
|
} else if (y < XSIZE/2) { |
|
v = ((y - (XSIZE/2)) * 255) / (XSIZE/2); |
|
} else { |
|
v = ((x + y - XSIZE) * 255) / XSIZE; |
|
} |
|
img[(YSIZE - y) * XSIZE + (XSIZE - x)] = v; |
|
} |
|
} |
|
save_pgm("/tmp/in.pgm", img, XSIZE, YSIZE); |
|
for(i=0;i<sizeof(factors)/sizeof(float);i++) { |
|
fact = factors[i]; |
|
xsize = (int)(XSIZE * fact); |
|
ysize = (int)((YSIZE - 100) * fact); |
|
s = img_resample_full_init(xsize, ysize, XSIZE, YSIZE, 50 ,50, 0, 0, 0, 0, 0, 0); |
|
av_log(NULL, AV_LOG_INFO, "Factor=%0.2f\n", fact); |
|
dump_filter(&s->h_filters[0][0]); |
|
component_resample(s, img1, xsize, xsize, ysize, |
|
img + 50 * XSIZE, XSIZE, XSIZE, YSIZE - 100); |
|
img_resample_close(s); |
|
|
|
snprintf(buf, sizeof(buf), "/tmp/out%d.pgm", i); |
|
save_pgm(buf, img1, xsize, ysize); |
|
} |
|
|
|
/* mmx test */ |
|
#ifdef HAVE_MMX |
|
av_log(NULL, AV_LOG_INFO, "MMX test\n"); |
|
fact = 0.72; |
|
xsize = (int)(XSIZE * fact); |
|
ysize = (int)(YSIZE * fact); |
|
mm_flags = MM_MMX; |
|
s = img_resample_init(xsize, ysize, XSIZE, YSIZE); |
|
component_resample(s, img1, xsize, xsize, ysize, |
|
img, XSIZE, XSIZE, YSIZE); |
|
|
|
mm_flags = 0; |
|
s = img_resample_init(xsize, ysize, XSIZE, YSIZE); |
|
component_resample(s, img2, xsize, xsize, ysize, |
|
img, XSIZE, XSIZE, YSIZE); |
|
if (memcmp(img1, img2, xsize * ysize) != 0) { |
|
av_log(NULL, AV_LOG_ERROR, "mmx error\n"); |
|
exit(1); |
|
} |
|
av_log(NULL, AV_LOG_INFO, "MMX OK\n"); |
|
#endif /* HAVE_MMX */ |
|
return 0; |
|
} |
|
|
|
#endif /* TEST */
|
|
|