mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
603 lines
23 KiB
603 lines
23 KiB
/* |
|
* Copyright (c) 2002 Dieter Shirley |
|
* |
|
* dct_unquantize_h263_altivec: |
|
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include "dsputil.h" |
|
#include "mpegvideo.h" |
|
|
|
#include "gcc_fixes.h" |
|
|
|
#include "dsputil_altivec.h" |
|
|
|
// Swaps two variables (used for altivec registers) |
|
#define SWAP(a,b) \ |
|
do { \ |
|
__typeof__(a) swap_temp=a; \ |
|
a=b; \ |
|
b=swap_temp; \ |
|
} while (0) |
|
|
|
// transposes a matrix consisting of four vectors with four elements each |
|
#define TRANSPOSE4(a,b,c,d) \ |
|
do { \ |
|
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ |
|
__typeof__(a) _trans_acl = vec_mergel(a, c); \ |
|
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ |
|
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ |
|
\ |
|
a = vec_mergeh(_trans_ach, _trans_bdh); \ |
|
b = vec_mergel(_trans_ach, _trans_bdh); \ |
|
c = vec_mergeh(_trans_acl, _trans_bdl); \ |
|
d = vec_mergel(_trans_acl, _trans_bdl); \ |
|
} while (0) |
|
|
|
|
|
// Loads a four-byte value (int or float) from the target address |
|
// into every element in the target vector. Only works if the |
|
// target address is four-byte aligned (which should be always). |
|
#define LOAD4(vec, address) \ |
|
{ \ |
|
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ |
|
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ |
|
vec = vec_ld(0, _load_addr); \ |
|
vec = vec_perm(vec, vec, _perm_vec); \ |
|
vec = vec_splat(vec, 0); \ |
|
} |
|
|
|
|
|
#ifdef __APPLE_CC__ |
|
#define FOUROF(a) (a) |
|
#else |
|
// slower, for dumb non-apple GCC |
|
#define FOUROF(a) {a,a,a,a} |
|
#endif |
|
int dct_quantize_altivec(MpegEncContext* s, |
|
DCTELEM* data, int n, |
|
int qscale, int* overflow) |
|
{ |
|
int lastNonZero; |
|
vector float row0, row1, row2, row3, row4, row5, row6, row7; |
|
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7; |
|
const vector float zero = (const vector float)FOUROF(0.); |
|
// used after quantise step |
|
int oldBaseValue = 0; |
|
|
|
// Load the data into the row/alt vectors |
|
{ |
|
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; |
|
|
|
data0 = vec_ld(0, data); |
|
data1 = vec_ld(16, data); |
|
data2 = vec_ld(32, data); |
|
data3 = vec_ld(48, data); |
|
data4 = vec_ld(64, data); |
|
data5 = vec_ld(80, data); |
|
data6 = vec_ld(96, data); |
|
data7 = vec_ld(112, data); |
|
|
|
// Transpose the data before we start |
|
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); |
|
|
|
// load the data into floating point vectors. We load |
|
// the high half of each row into the main row vectors |
|
// and the low half into the alt vectors. |
|
row0 = vec_ctf(vec_unpackh(data0), 0); |
|
alt0 = vec_ctf(vec_unpackl(data0), 0); |
|
row1 = vec_ctf(vec_unpackh(data1), 0); |
|
alt1 = vec_ctf(vec_unpackl(data1), 0); |
|
row2 = vec_ctf(vec_unpackh(data2), 0); |
|
alt2 = vec_ctf(vec_unpackl(data2), 0); |
|
row3 = vec_ctf(vec_unpackh(data3), 0); |
|
alt3 = vec_ctf(vec_unpackl(data3), 0); |
|
row4 = vec_ctf(vec_unpackh(data4), 0); |
|
alt4 = vec_ctf(vec_unpackl(data4), 0); |
|
row5 = vec_ctf(vec_unpackh(data5), 0); |
|
alt5 = vec_ctf(vec_unpackl(data5), 0); |
|
row6 = vec_ctf(vec_unpackh(data6), 0); |
|
alt6 = vec_ctf(vec_unpackl(data6), 0); |
|
row7 = vec_ctf(vec_unpackh(data7), 0); |
|
alt7 = vec_ctf(vec_unpackl(data7), 0); |
|
} |
|
|
|
// The following block could exist as a separate an altivec dct |
|
// function. However, if we put it inline, the DCT data can remain |
|
// in the vector local variables, as floats, which we'll use during the |
|
// quantize step... |
|
{ |
|
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); |
|
const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f); |
|
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); |
|
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); |
|
const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f); |
|
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); |
|
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); |
|
const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f); |
|
const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f); |
|
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); |
|
const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f); |
|
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); |
|
|
|
|
|
int whichPass, whichHalf; |
|
|
|
for(whichPass = 1; whichPass<=2; whichPass++) |
|
{ |
|
for(whichHalf = 1; whichHalf<=2; whichHalf++) |
|
{ |
|
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
|
vector float tmp10, tmp11, tmp12, tmp13; |
|
vector float z1, z2, z3, z4, z5; |
|
|
|
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7]; |
|
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7]; |
|
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4]; |
|
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4]; |
|
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6]; |
|
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6]; |
|
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5]; |
|
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5]; |
|
|
|
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3; |
|
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3; |
|
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2; |
|
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2; |
|
|
|
|
|
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); |
|
row0 = vec_add(tmp10, tmp11); |
|
|
|
// dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
|
row4 = vec_sub(tmp10, tmp11); |
|
|
|
|
|
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
|
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero); |
|
|
|
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
|
// CONST_BITS-PASS1_BITS); |
|
row2 = vec_madd(tmp13, vec_0_765366865, z1); |
|
|
|
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), |
|
// CONST_BITS-PASS1_BITS); |
|
row6 = vec_madd(tmp12, vec_1_847759065, z1); |
|
|
|
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7; |
|
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6; |
|
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6; |
|
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7; |
|
|
|
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
|
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero); |
|
|
|
// z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
|
z3 = vec_madd(z3, vec_1_961570560, z5); |
|
|
|
// z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
|
z4 = vec_madd(z4, vec_0_390180644, z5); |
|
|
|
// The following adds are rolled into the multiplies above |
|
// z3 = vec_add(z3, z5); // z3 += z5; |
|
// z4 = vec_add(z4, z5); // z4 += z5; |
|
|
|
// z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
|
// Wow! It's actually more effecient to roll this multiply |
|
// into the adds below, even thought the multiply gets done twice! |
|
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero); |
|
|
|
// z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
|
// Same with this one... |
|
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero); |
|
|
|
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
|
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); |
|
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); |
|
|
|
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
|
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); |
|
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); |
|
|
|
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
|
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); |
|
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); |
|
|
|
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
|
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); |
|
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); |
|
|
|
// Swap the row values with the alts. If this is the first half, |
|
// this sets up the low values to be acted on in the second half. |
|
// If this is the second half, it puts the high values back in |
|
// the row values where they are expected to be when we're done. |
|
SWAP(row0, alt0); |
|
SWAP(row1, alt1); |
|
SWAP(row2, alt2); |
|
SWAP(row3, alt3); |
|
SWAP(row4, alt4); |
|
SWAP(row5, alt5); |
|
SWAP(row6, alt6); |
|
SWAP(row7, alt7); |
|
} |
|
|
|
if (whichPass == 1) |
|
{ |
|
// transpose the data for the second pass |
|
|
|
// First, block transpose the upper right with lower left. |
|
SWAP(row4, alt0); |
|
SWAP(row5, alt1); |
|
SWAP(row6, alt2); |
|
SWAP(row7, alt3); |
|
|
|
// Now, transpose each block of four |
|
TRANSPOSE4(row0, row1, row2, row3); |
|
TRANSPOSE4(row4, row5, row6, row7); |
|
TRANSPOSE4(alt0, alt1, alt2, alt3); |
|
TRANSPOSE4(alt4, alt5, alt6, alt7); |
|
} |
|
} |
|
} |
|
|
|
// perform the quantise step, using the floating point data |
|
// still in the row/alt registers |
|
{ |
|
const int* biasAddr; |
|
const vector signed int* qmat; |
|
vector float bias, negBias; |
|
|
|
if (s->mb_intra) |
|
{ |
|
vector signed int baseVector; |
|
|
|
// We must cache element 0 in the intra case |
|
// (it needs special handling). |
|
baseVector = vec_cts(vec_splat(row0, 0), 0); |
|
vec_ste(baseVector, 0, &oldBaseValue); |
|
|
|
qmat = (vector signed int*)s->q_intra_matrix[qscale]; |
|
biasAddr = &(s->intra_quant_bias); |
|
} |
|
else |
|
{ |
|
qmat = (vector signed int*)s->q_inter_matrix[qscale]; |
|
biasAddr = &(s->inter_quant_bias); |
|
} |
|
|
|
// Load the bias vector (We add 0.5 to the bias so that we're |
|
// rounding when we convert to int, instead of flooring.) |
|
{ |
|
vector signed int biasInt; |
|
const vector float negOneFloat = (vector float)FOUROF(-1.0f); |
|
LOAD4(biasInt, biasAddr); |
|
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); |
|
negBias = vec_madd(bias, negOneFloat, zero); |
|
} |
|
|
|
{ |
|
vector float q0, q1, q2, q3, q4, q5, q6, q7; |
|
|
|
q0 = vec_ctf(qmat[0], QMAT_SHIFT); |
|
q1 = vec_ctf(qmat[2], QMAT_SHIFT); |
|
q2 = vec_ctf(qmat[4], QMAT_SHIFT); |
|
q3 = vec_ctf(qmat[6], QMAT_SHIFT); |
|
q4 = vec_ctf(qmat[8], QMAT_SHIFT); |
|
q5 = vec_ctf(qmat[10], QMAT_SHIFT); |
|
q6 = vec_ctf(qmat[12], QMAT_SHIFT); |
|
q7 = vec_ctf(qmat[14], QMAT_SHIFT); |
|
|
|
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), |
|
vec_cmpgt(row0, zero)); |
|
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), |
|
vec_cmpgt(row1, zero)); |
|
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), |
|
vec_cmpgt(row2, zero)); |
|
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), |
|
vec_cmpgt(row3, zero)); |
|
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), |
|
vec_cmpgt(row4, zero)); |
|
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), |
|
vec_cmpgt(row5, zero)); |
|
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), |
|
vec_cmpgt(row6, zero)); |
|
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), |
|
vec_cmpgt(row7, zero)); |
|
|
|
q0 = vec_ctf(qmat[1], QMAT_SHIFT); |
|
q1 = vec_ctf(qmat[3], QMAT_SHIFT); |
|
q2 = vec_ctf(qmat[5], QMAT_SHIFT); |
|
q3 = vec_ctf(qmat[7], QMAT_SHIFT); |
|
q4 = vec_ctf(qmat[9], QMAT_SHIFT); |
|
q5 = vec_ctf(qmat[11], QMAT_SHIFT); |
|
q6 = vec_ctf(qmat[13], QMAT_SHIFT); |
|
q7 = vec_ctf(qmat[15], QMAT_SHIFT); |
|
|
|
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), |
|
vec_cmpgt(alt0, zero)); |
|
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), |
|
vec_cmpgt(alt1, zero)); |
|
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), |
|
vec_cmpgt(alt2, zero)); |
|
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), |
|
vec_cmpgt(alt3, zero)); |
|
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), |
|
vec_cmpgt(alt4, zero)); |
|
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), |
|
vec_cmpgt(alt5, zero)); |
|
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), |
|
vec_cmpgt(alt6, zero)); |
|
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), |
|
vec_cmpgt(alt7, zero)); |
|
} |
|
|
|
|
|
} |
|
|
|
// Store the data back into the original block |
|
{ |
|
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; |
|
|
|
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); |
|
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); |
|
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); |
|
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); |
|
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); |
|
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); |
|
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); |
|
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); |
|
|
|
{ |
|
// Clamp for overflow |
|
vector signed int max_q_int, min_q_int; |
|
vector signed short max_q, min_q; |
|
|
|
LOAD4(max_q_int, &(s->max_qcoeff)); |
|
LOAD4(min_q_int, &(s->min_qcoeff)); |
|
|
|
max_q = vec_pack(max_q_int, max_q_int); |
|
min_q = vec_pack(min_q_int, min_q_int); |
|
|
|
data0 = vec_max(vec_min(data0, max_q), min_q); |
|
data1 = vec_max(vec_min(data1, max_q), min_q); |
|
data2 = vec_max(vec_min(data2, max_q), min_q); |
|
data4 = vec_max(vec_min(data4, max_q), min_q); |
|
data5 = vec_max(vec_min(data5, max_q), min_q); |
|
data6 = vec_max(vec_min(data6, max_q), min_q); |
|
data7 = vec_max(vec_min(data7, max_q), min_q); |
|
} |
|
|
|
{ |
|
vector bool char zero_01, zero_23, zero_45, zero_67; |
|
vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; |
|
vector signed char negOne = vec_splat_s8(-1); |
|
vector signed char* scanPtr = |
|
(vector signed char*)(s->intra_scantable.inverse); |
|
signed char lastNonZeroChar; |
|
|
|
// Determine the largest non-zero index. |
|
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), |
|
vec_cmpeq(data1, (vector signed short)zero)); |
|
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), |
|
vec_cmpeq(data3, (vector signed short)zero)); |
|
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), |
|
vec_cmpeq(data5, (vector signed short)zero)); |
|
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), |
|
vec_cmpeq(data7, (vector signed short)zero)); |
|
|
|
// 64 biggest values |
|
scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01); |
|
scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23); |
|
scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45); |
|
scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67); |
|
|
|
// 32 largest values |
|
scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); |
|
scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); |
|
|
|
// 16 largest values |
|
scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); |
|
|
|
// 8 largest values |
|
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), |
|
vec_mergel(scanIndices_01, negOne)); |
|
|
|
// 4 largest values |
|
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), |
|
vec_mergel(scanIndices_01, negOne)); |
|
|
|
// 2 largest values |
|
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), |
|
vec_mergel(scanIndices_01, negOne)); |
|
|
|
// largest value |
|
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), |
|
vec_mergel(scanIndices_01, negOne)); |
|
|
|
scanIndices_01 = vec_splat(scanIndices_01, 0); |
|
|
|
|
|
vec_ste(scanIndices_01, 0, &lastNonZeroChar); |
|
|
|
lastNonZero = lastNonZeroChar; |
|
|
|
// While the data is still in vectors we check for the transpose IDCT permute |
|
// and handle it using the vector unit if we can. This is the permute used |
|
// by the altivec idct, so it is common when using the altivec dct. |
|
|
|
if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) |
|
{ |
|
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); |
|
} |
|
|
|
vec_st(data0, 0, data); |
|
vec_st(data1, 16, data); |
|
vec_st(data2, 32, data); |
|
vec_st(data3, 48, data); |
|
vec_st(data4, 64, data); |
|
vec_st(data5, 80, data); |
|
vec_st(data6, 96, data); |
|
vec_st(data7, 112, data); |
|
} |
|
} |
|
|
|
// special handling of block[0] |
|
if (s->mb_intra) |
|
{ |
|
if (!s->h263_aic) |
|
{ |
|
if (n < 4) |
|
oldBaseValue /= s->y_dc_scale; |
|
else |
|
oldBaseValue /= s->c_dc_scale; |
|
} |
|
|
|
// Divide by 8, rounding the result |
|
data[0] = (oldBaseValue + 4) >> 3; |
|
} |
|
|
|
// We handled the tranpose permutation above and we don't |
|
// need to permute the "no" permutation case. |
|
if ((lastNonZero > 0) && |
|
(s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && |
|
(s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) |
|
{ |
|
ff_block_permute(data, s->dsp.idct_permutation, |
|
s->intra_scantable.scantable, lastNonZero); |
|
} |
|
|
|
return lastNonZero; |
|
} |
|
#undef FOUROF |
|
|
|
/* |
|
AltiVec version of dct_unquantize_h263 |
|
this code assumes `block' is 16 bytes-aligned |
|
*/ |
|
void dct_unquantize_h263_altivec(MpegEncContext *s, |
|
DCTELEM *block, int n, int qscale) |
|
{ |
|
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1); |
|
int i, level, qmul, qadd; |
|
int nCoeffs; |
|
|
|
assert(s->block_last_index[n]>=0); |
|
|
|
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1); |
|
|
|
qadd = (qscale - 1) | 1; |
|
qmul = qscale << 1; |
|
|
|
if (s->mb_intra) { |
|
if (!s->h263_aic) { |
|
if (n < 4) |
|
block[0] = block[0] * s->y_dc_scale; |
|
else |
|
block[0] = block[0] * s->c_dc_scale; |
|
}else |
|
qadd = 0; |
|
i = 1; |
|
nCoeffs= 63; //does not always use zigzag table |
|
} else { |
|
i = 0; |
|
nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ]; |
|
} |
|
|
|
{ |
|
register const vector signed short vczero = (const vector signed short)vec_splat_s16(0); |
|
DECLARE_ALIGNED_16(short, qmul8[]) = |
|
{ |
|
qmul, qmul, qmul, qmul, |
|
qmul, qmul, qmul, qmul |
|
}; |
|
DECLARE_ALIGNED_16(short, qadd8[]) = |
|
{ |
|
qadd, qadd, qadd, qadd, |
|
qadd, qadd, qadd, qadd |
|
}; |
|
DECLARE_ALIGNED_16(short, nqadd8[]) = |
|
{ |
|
-qadd, -qadd, -qadd, -qadd, |
|
-qadd, -qadd, -qadd, -qadd |
|
}; |
|
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; |
|
register vector bool short blockv_null, blockv_neg; |
|
register short backup_0 = block[0]; |
|
register int j = 0; |
|
|
|
qmulv = vec_ld(0, qmul8); |
|
qaddv = vec_ld(0, qadd8); |
|
nqaddv = vec_ld(0, nqadd8); |
|
|
|
#if 0 // block *is* 16 bytes-aligned, it seems. |
|
// first make sure block[j] is 16 bytes-aligned |
|
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) { |
|
level = block[j]; |
|
if (level) { |
|
if (level < 0) { |
|
level = level * qmul - qadd; |
|
} else { |
|
level = level * qmul + qadd; |
|
} |
|
block[j] = level; |
|
} |
|
} |
|
#endif |
|
|
|
// vectorize all the 16 bytes-aligned blocks |
|
// of 8 elements |
|
for(; (j + 7) <= nCoeffs ; j+=8) |
|
{ |
|
blockv = vec_ld(j << 1, block); |
|
blockv_neg = vec_cmplt(blockv, vczero); |
|
blockv_null = vec_cmpeq(blockv, vczero); |
|
// choose between +qadd or -qadd as the third operand |
|
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); |
|
// multiply & add (block{i,i+7} * qmul [+-] qadd) |
|
temp1 = vec_mladd(blockv, qmulv, temp1); |
|
// put 0 where block[{i,i+7} used to have 0 |
|
blockv = vec_sel(temp1, blockv, blockv_null); |
|
vec_st(blockv, j << 1, block); |
|
} |
|
|
|
// if nCoeffs isn't a multiple of 8, finish the job |
|
// using good old scalar units. |
|
// (we could do it using a truncated vector, |
|
// but I'm not sure it's worth the hassle) |
|
for(; j <= nCoeffs ; j++) { |
|
level = block[j]; |
|
if (level) { |
|
if (level < 0) { |
|
level = level * qmul - qadd; |
|
} else { |
|
level = level * qmul + qadd; |
|
} |
|
block[j] = level; |
|
} |
|
} |
|
|
|
if (i == 1) |
|
{ // cheat. this avoid special-casing the first iteration |
|
block[0] = backup_0; |
|
} |
|
} |
|
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63); |
|
}
|
|
|