mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1852 lines
58 KiB
1852 lines
58 KiB
/* |
|
* The simplest AC-3 encoder |
|
* Copyright (c) 2000 Fabrice Bellard |
|
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> |
|
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* The simplest AC-3 encoder. |
|
*/ |
|
|
|
//#define DEBUG |
|
//#define ASSERT_LEVEL 2 |
|
|
|
#include "libavutil/audioconvert.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/crc.h" |
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "dsputil.h" |
|
#include "ac3dsp.h" |
|
#include "ac3.h" |
|
#include "audioconvert.h" |
|
|
|
|
|
#ifndef CONFIG_AC3ENC_FLOAT |
|
#define CONFIG_AC3ENC_FLOAT 0 |
|
#endif |
|
|
|
|
|
/** Maximum number of exponent groups. +1 for separate DC exponent. */ |
|
#define AC3_MAX_EXP_GROUPS 85 |
|
|
|
/* stereo rematrixing algorithms */ |
|
#define AC3_REMATRIXING_IS_STATIC 0x1 |
|
#define AC3_REMATRIXING_SUMS 0 |
|
#define AC3_REMATRIXING_NONE 1 |
|
#define AC3_REMATRIXING_ALWAYS 3 |
|
|
|
/** Scale a float value by 2^bits and convert to an integer. */ |
|
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) |
|
|
|
|
|
#if CONFIG_AC3ENC_FLOAT |
|
#include "ac3enc_float.h" |
|
#else |
|
#include "ac3enc_fixed.h" |
|
#endif |
|
|
|
|
|
/** |
|
* Data for a single audio block. |
|
*/ |
|
typedef struct AC3Block { |
|
uint8_t **bap; ///< bit allocation pointers (bap) |
|
CoefType **mdct_coef; ///< MDCT coefficients |
|
int32_t **fixed_coef; ///< fixed-point MDCT coefficients |
|
uint8_t **exp; ///< original exponents |
|
uint8_t **grouped_exp; ///< grouped exponents |
|
int16_t **psd; ///< psd per frequency bin |
|
int16_t **band_psd; ///< psd per critical band |
|
int16_t **mask; ///< masking curve |
|
uint16_t **qmant; ///< quantized mantissas |
|
uint8_t coeff_shift[AC3_MAX_CHANNELS]; ///< fixed-point coefficient shift values |
|
uint8_t new_rematrixing_strategy; ///< send new rematrixing flags in this block |
|
uint8_t rematrixing_flags[4]; ///< rematrixing flags |
|
} AC3Block; |
|
|
|
/** |
|
* AC-3 encoder private context. |
|
*/ |
|
typedef struct AC3EncodeContext { |
|
PutBitContext pb; ///< bitstream writer context |
|
DSPContext dsp; |
|
AC3DSPContext ac3dsp; ///< AC-3 optimized functions |
|
AC3MDCTContext mdct; ///< MDCT context |
|
|
|
AC3Block blocks[AC3_MAX_BLOCKS]; ///< per-block info |
|
|
|
int bitstream_id; ///< bitstream id (bsid) |
|
int bitstream_mode; ///< bitstream mode (bsmod) |
|
|
|
int bit_rate; ///< target bit rate, in bits-per-second |
|
int sample_rate; ///< sampling frequency, in Hz |
|
|
|
int frame_size_min; ///< minimum frame size in case rounding is necessary |
|
int frame_size; ///< current frame size in bytes |
|
int frame_size_code; ///< frame size code (frmsizecod) |
|
uint16_t crc_inv[2]; |
|
int bits_written; ///< bit count (used to avg. bitrate) |
|
int samples_written; ///< sample count (used to avg. bitrate) |
|
|
|
int fbw_channels; ///< number of full-bandwidth channels (nfchans) |
|
int channels; ///< total number of channels (nchans) |
|
int lfe_on; ///< indicates if there is an LFE channel (lfeon) |
|
int lfe_channel; ///< channel index of the LFE channel |
|
int channel_mode; ///< channel mode (acmod) |
|
const uint8_t *channel_map; ///< channel map used to reorder channels |
|
|
|
int cutoff; ///< user-specified cutoff frequency, in Hz |
|
int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod) |
|
int nb_coefs[AC3_MAX_CHANNELS]; |
|
|
|
int rematrixing; ///< determines how rematrixing strategy is calculated |
|
int num_rematrixing_bands; ///< number of rematrixing bands |
|
|
|
/* bitrate allocation control */ |
|
int slow_gain_code; ///< slow gain code (sgaincod) |
|
int slow_decay_code; ///< slow decay code (sdcycod) |
|
int fast_decay_code; ///< fast decay code (fdcycod) |
|
int db_per_bit_code; ///< dB/bit code (dbpbcod) |
|
int floor_code; ///< floor code (floorcod) |
|
AC3BitAllocParameters bit_alloc; ///< bit allocation parameters |
|
int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) |
|
int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) |
|
int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) |
|
int frame_bits_fixed; ///< number of non-coefficient bits for fixed parameters |
|
int frame_bits; ///< all frame bits except exponents and mantissas |
|
int exponent_bits; ///< number of bits used for exponents |
|
|
|
/* mantissa encoding */ |
|
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
|
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4 |
|
|
|
SampleType **planar_samples; |
|
uint8_t *bap_buffer; |
|
uint8_t *bap1_buffer; |
|
CoefType *mdct_coef_buffer; |
|
int32_t *fixed_coef_buffer; |
|
uint8_t *exp_buffer; |
|
uint8_t *grouped_exp_buffer; |
|
int16_t *psd_buffer; |
|
int16_t *band_psd_buffer; |
|
int16_t *mask_buffer; |
|
uint16_t *qmant_buffer; |
|
|
|
uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; ///< exponent strategies |
|
|
|
DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE]; |
|
} AC3EncodeContext; |
|
|
|
|
|
/* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */ |
|
|
|
static av_cold void mdct_end(AC3MDCTContext *mdct); |
|
|
|
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, |
|
int nbits); |
|
|
|
static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in); |
|
|
|
static void apply_window(DSPContext *dsp, SampleType *output, const SampleType *input, |
|
const SampleType *window, int n); |
|
|
|
static int normalize_samples(AC3EncodeContext *s); |
|
|
|
static void scale_coefficients(AC3EncodeContext *s); |
|
|
|
|
|
/** |
|
* LUT for number of exponent groups. |
|
* exponent_group_tab[exponent strategy-1][number of coefficients] |
|
*/ |
|
static uint8_t exponent_group_tab[3][256]; |
|
|
|
|
|
/** |
|
* List of supported channel layouts. |
|
*/ |
|
static const int64_t ac3_channel_layouts[] = { |
|
AV_CH_LAYOUT_MONO, |
|
AV_CH_LAYOUT_STEREO, |
|
AV_CH_LAYOUT_2_1, |
|
AV_CH_LAYOUT_SURROUND, |
|
AV_CH_LAYOUT_2_2, |
|
AV_CH_LAYOUT_QUAD, |
|
AV_CH_LAYOUT_4POINT0, |
|
AV_CH_LAYOUT_5POINT0, |
|
AV_CH_LAYOUT_5POINT0_BACK, |
|
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
|
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
|
AV_CH_LAYOUT_5POINT1, |
|
AV_CH_LAYOUT_5POINT1_BACK, |
|
0 |
|
}; |
|
|
|
|
|
/** |
|
* Adjust the frame size to make the average bit rate match the target bit rate. |
|
* This is only needed for 11025, 22050, and 44100 sample rates. |
|
*/ |
|
static void adjust_frame_size(AC3EncodeContext *s) |
|
{ |
|
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) { |
|
s->bits_written -= s->bit_rate; |
|
s->samples_written -= s->sample_rate; |
|
} |
|
s->frame_size = s->frame_size_min + |
|
2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); |
|
s->bits_written += s->frame_size * 8; |
|
s->samples_written += AC3_FRAME_SIZE; |
|
} |
|
|
|
|
|
/** |
|
* Deinterleave input samples. |
|
* Channels are reordered from Libav's default order to AC-3 order. |
|
*/ |
|
static void deinterleave_input_samples(AC3EncodeContext *s, |
|
const SampleType *samples) |
|
{ |
|
int ch, i; |
|
|
|
/* deinterleave and remap input samples */ |
|
for (ch = 0; ch < s->channels; ch++) { |
|
const SampleType *sptr; |
|
int sinc; |
|
|
|
/* copy last 256 samples of previous frame to the start of the current frame */ |
|
memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE], |
|
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
|
|
|
/* deinterleave */ |
|
sinc = s->channels; |
|
sptr = samples + s->channel_map[ch]; |
|
for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) { |
|
s->planar_samples[ch][i] = *sptr; |
|
sptr += sinc; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply the MDCT to input samples to generate frequency coefficients. |
|
* This applies the KBD window and normalizes the input to reduce precision |
|
* loss due to fixed-point calculations. |
|
*/ |
|
static void apply_mdct(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE]; |
|
|
|
apply_window(&s->dsp, s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE); |
|
|
|
block->coeff_shift[ch] = normalize_samples(s); |
|
|
|
mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Initialize stereo rematrixing. |
|
* If the strategy does not change for each frame, set the rematrixing flags. |
|
*/ |
|
static void rematrixing_init(AC3EncodeContext *s) |
|
{ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
s->rematrixing = AC3_REMATRIXING_SUMS; |
|
else |
|
s->rematrixing = AC3_REMATRIXING_NONE; |
|
/* NOTE: AC3_REMATRIXING_ALWAYS might be used in |
|
the future in conjunction with channel coupling. */ |
|
|
|
if (s->rematrixing & AC3_REMATRIXING_IS_STATIC) { |
|
int flag = (s->rematrixing == AC3_REMATRIXING_ALWAYS); |
|
s->blocks[0].new_rematrixing_strategy = 1; |
|
memset(s->blocks[0].rematrixing_flags, flag, |
|
sizeof(s->blocks[0].rematrixing_flags)); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Determine rematrixing flags for each block and band. |
|
*/ |
|
static void compute_rematrixing_strategy(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
AC3Block *block, *block0; |
|
|
|
s->num_rematrixing_bands = 4; |
|
|
|
if (s->rematrixing & AC3_REMATRIXING_IS_STATIC) |
|
return; |
|
|
|
nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]); |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
block = &s->blocks[blk]; |
|
block->new_rematrixing_strategy = !blk; |
|
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) { |
|
/* calculate calculate sum of squared coeffs for one band in one block */ |
|
int start = ff_ac3_rematrix_band_tab[bnd]; |
|
int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
CoefSumType sum[4] = {0,}; |
|
for (i = start; i < end; i++) { |
|
CoefType lt = block->mdct_coef[0][i]; |
|
CoefType rt = block->mdct_coef[1][i]; |
|
CoefType md = lt + rt; |
|
CoefType sd = lt - rt; |
|
MAC_COEF(sum[0], lt, lt); |
|
MAC_COEF(sum[1], rt, rt); |
|
MAC_COEF(sum[2], md, md); |
|
MAC_COEF(sum[3], sd, sd); |
|
} |
|
|
|
/* compare sums to determine if rematrixing will be used for this band */ |
|
if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1])) |
|
block->rematrixing_flags[bnd] = 1; |
|
else |
|
block->rematrixing_flags[bnd] = 0; |
|
|
|
/* determine if new rematrixing flags will be sent */ |
|
if (blk && |
|
block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) { |
|
block->new_rematrixing_strategy = 1; |
|
} |
|
} |
|
block0 = block; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Apply stereo rematrixing to coefficients based on rematrixing flags. |
|
*/ |
|
static void apply_rematrixing(AC3EncodeContext *s) |
|
{ |
|
int nb_coefs; |
|
int blk, bnd, i; |
|
int start, end; |
|
uint8_t *flags; |
|
|
|
if (s->rematrixing == AC3_REMATRIXING_NONE) |
|
return; |
|
|
|
nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]); |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
if (block->new_rematrixing_strategy) |
|
flags = block->rematrixing_flags; |
|
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) { |
|
if (flags[bnd]) { |
|
start = ff_ac3_rematrix_band_tab[bnd]; |
|
end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); |
|
for (i = start; i < end; i++) { |
|
int32_t lt = block->fixed_coef[0][i]; |
|
int32_t rt = block->fixed_coef[1][i]; |
|
block->fixed_coef[0][i] = (lt + rt) >> 1; |
|
block->fixed_coef[1][i] = (lt - rt) >> 1; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Initialize exponent tables. |
|
*/ |
|
static av_cold void exponent_init(AC3EncodeContext *s) |
|
{ |
|
int i; |
|
for (i = 73; i < 256; i++) { |
|
exponent_group_tab[0][i] = (i - 1) / 3; |
|
exponent_group_tab[1][i] = (i + 2) / 6; |
|
exponent_group_tab[2][i] = (i + 8) / 12; |
|
} |
|
/* LFE */ |
|
exponent_group_tab[0][7] = 2; |
|
} |
|
|
|
|
|
/** |
|
* Extract exponents from the MDCT coefficients. |
|
* This takes into account the normalization that was done to the input samples |
|
* by adjusting the exponents by the exponent shift values. |
|
*/ |
|
static void extract_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, i; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
uint8_t *exp = block->exp[ch]; |
|
int32_t *coef = block->fixed_coef[ch]; |
|
for (i = 0; i < AC3_MAX_COEFS; i++) { |
|
int e; |
|
int v = abs(coef[i]); |
|
if (v == 0) |
|
e = 24; |
|
else { |
|
e = 23 - av_log2(v); |
|
if (e >= 24) { |
|
e = 24; |
|
coef[i] = 0; |
|
} |
|
av_assert2(e >= 0); |
|
} |
|
exp[i] = e; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Exponent Difference Threshold. |
|
* New exponents are sent if their SAD exceed this number. |
|
*/ |
|
#define EXP_DIFF_THRESHOLD 500 |
|
|
|
|
|
/** |
|
* Calculate exponent strategies for all blocks in a single channel. |
|
*/ |
|
static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy, |
|
uint8_t *exp) |
|
{ |
|
int blk, blk1; |
|
int exp_diff; |
|
|
|
/* estimate if the exponent variation & decide if they should be |
|
reused in the next frame */ |
|
exp_strategy[0] = EXP_NEW; |
|
exp += AC3_MAX_COEFS; |
|
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) { |
|
exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16); |
|
if (exp_diff > EXP_DIFF_THRESHOLD) |
|
exp_strategy[blk] = EXP_NEW; |
|
else |
|
exp_strategy[blk] = EXP_REUSE; |
|
exp += AC3_MAX_COEFS; |
|
} |
|
|
|
/* now select the encoding strategy type : if exponents are often |
|
recoded, we use a coarse encoding */ |
|
blk = 0; |
|
while (blk < AC3_MAX_BLOCKS) { |
|
blk1 = blk + 1; |
|
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) |
|
blk1++; |
|
switch (blk1 - blk) { |
|
case 1: exp_strategy[blk] = EXP_D45; break; |
|
case 2: |
|
case 3: exp_strategy[blk] = EXP_D25; break; |
|
default: exp_strategy[blk] = EXP_D15; break; |
|
} |
|
blk = blk1; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Calculate exponent strategies for all channels. |
|
* Array arrangement is reversed to simplify the per-channel calculation. |
|
*/ |
|
static void compute_exp_strategy(AC3EncodeContext *s) |
|
{ |
|
int ch, blk; |
|
|
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
compute_exp_strategy_ch(s, s->exp_strategy[ch], s->blocks[0].exp[ch]); |
|
} |
|
if (s->lfe_on) { |
|
ch = s->lfe_channel; |
|
s->exp_strategy[ch][0] = EXP_D15; |
|
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) |
|
s->exp_strategy[ch][blk] = EXP_REUSE; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Update the exponents so that they are the ones the decoder will decode. |
|
*/ |
|
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) |
|
{ |
|
int nb_groups, i, k; |
|
|
|
nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3; |
|
|
|
/* for each group, compute the minimum exponent */ |
|
switch(exp_strategy) { |
|
case EXP_D25: |
|
for (i = 1, k = 1; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
exp[i] = exp_min; |
|
k += 2; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = 1, k = 1; i <= nb_groups; i++) { |
|
uint8_t exp_min = exp[k]; |
|
if (exp[k+1] < exp_min) |
|
exp_min = exp[k+1]; |
|
if (exp[k+2] < exp_min) |
|
exp_min = exp[k+2]; |
|
if (exp[k+3] < exp_min) |
|
exp_min = exp[k+3]; |
|
exp[i] = exp_min; |
|
k += 4; |
|
} |
|
break; |
|
} |
|
|
|
/* constraint for DC exponent */ |
|
if (exp[0] > 15) |
|
exp[0] = 15; |
|
|
|
/* decrease the delta between each groups to within 2 so that they can be |
|
differentially encoded */ |
|
for (i = 1; i <= nb_groups; i++) |
|
exp[i] = FFMIN(exp[i], exp[i-1] + 2); |
|
i--; |
|
while (--i >= 0) |
|
exp[i] = FFMIN(exp[i], exp[i+1] + 2); |
|
|
|
/* now we have the exponent values the decoder will see */ |
|
switch (exp_strategy) { |
|
case EXP_D25: |
|
for (i = nb_groups, k = nb_groups * 2; i > 0; i--) { |
|
uint8_t exp1 = exp[i]; |
|
exp[k--] = exp1; |
|
exp[k--] = exp1; |
|
} |
|
break; |
|
case EXP_D45: |
|
for (i = nb_groups, k = nb_groups * 4; i > 0; i--) { |
|
exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i]; |
|
k -= 4; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Encode exponents from original extracted form to what the decoder will see. |
|
* This copies and groups exponents based on exponent strategy and reduces |
|
* deltas between adjacent exponent groups so that they can be differentially |
|
* encoded. |
|
*/ |
|
static void encode_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, blk1, ch; |
|
uint8_t *exp, *exp1, *exp_strategy; |
|
int nb_coefs, num_reuse_blocks; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
exp = s->blocks[0].exp[ch]; |
|
exp_strategy = s->exp_strategy[ch]; |
|
nb_coefs = s->nb_coefs[ch]; |
|
|
|
blk = 0; |
|
while (blk < AC3_MAX_BLOCKS) { |
|
blk1 = blk + 1; |
|
|
|
/* count the number of EXP_REUSE blocks after the current block */ |
|
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) |
|
blk1++; |
|
num_reuse_blocks = blk1 - blk - 1; |
|
|
|
/* for the EXP_REUSE case we select the min of the exponents */ |
|
s->ac3dsp.ac3_exponent_min(exp, num_reuse_blocks, nb_coefs); |
|
|
|
encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk]); |
|
|
|
/* copy encoded exponents for reuse case */ |
|
exp1 = exp + AC3_MAX_COEFS; |
|
while (blk < blk1-1) { |
|
memcpy(exp1, exp, nb_coefs * sizeof(*exp)); |
|
exp1 += AC3_MAX_COEFS; |
|
blk++; |
|
} |
|
blk = blk1; |
|
exp = exp1; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Group exponents. |
|
* 3 delta-encoded exponents are in each 7-bit group. The number of groups |
|
* varies depending on exponent strategy and bandwidth. |
|
*/ |
|
static void group_exponents(AC3EncodeContext *s) |
|
{ |
|
int blk, ch, i; |
|
int group_size, nb_groups, bit_count; |
|
uint8_t *p; |
|
int delta0, delta1, delta2; |
|
int exp0, exp1; |
|
|
|
bit_count = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 0; ch < s->channels; ch++) { |
|
int exp_strategy = s->exp_strategy[ch][blk]; |
|
if (exp_strategy == EXP_REUSE) |
|
continue; |
|
group_size = exp_strategy + (exp_strategy == EXP_D45); |
|
nb_groups = exponent_group_tab[exp_strategy-1][s->nb_coefs[ch]]; |
|
bit_count += 4 + (nb_groups * 7); |
|
p = block->exp[ch]; |
|
|
|
/* DC exponent */ |
|
exp1 = *p++; |
|
block->grouped_exp[ch][0] = exp1; |
|
|
|
/* remaining exponents are delta encoded */ |
|
for (i = 1; i <= nb_groups; i++) { |
|
/* merge three delta in one code */ |
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta0 = exp1 - exp0 + 2; |
|
av_assert2(delta0 >= 0 && delta0 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta1 = exp1 - exp0 + 2; |
|
av_assert2(delta1 >= 0 && delta1 <= 4); |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta2 = exp1 - exp0 + 2; |
|
av_assert2(delta2 >= 0 && delta2 <= 4); |
|
|
|
block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; |
|
} |
|
} |
|
} |
|
|
|
s->exponent_bits = bit_count; |
|
} |
|
|
|
|
|
/** |
|
* Calculate final exponents from the supplied MDCT coefficients and exponent shift. |
|
* Extract exponents from MDCT coefficients, calculate exponent strategies, |
|
* and encode final exponents. |
|
*/ |
|
static void process_exponents(AC3EncodeContext *s) |
|
{ |
|
extract_exponents(s); |
|
|
|
compute_exp_strategy(s); |
|
|
|
encode_exponents(s); |
|
|
|
group_exponents(s); |
|
|
|
emms_c(); |
|
} |
|
|
|
|
|
/** |
|
* Count frame bits that are based solely on fixed parameters. |
|
* This only has to be run once when the encoder is initialized. |
|
*/ |
|
static void count_frame_bits_fixed(AC3EncodeContext *s) |
|
{ |
|
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
|
int blk; |
|
int frame_bits; |
|
|
|
/* assumptions: |
|
* no dynamic range codes |
|
* no channel coupling |
|
* bit allocation parameters do not change between blocks |
|
* SNR offsets do not change between blocks |
|
* no delta bit allocation |
|
* no skipped data |
|
* no auxilliary data |
|
*/ |
|
|
|
/* header size */ |
|
frame_bits = 65; |
|
frame_bits += frame_bits_inc[s->channel_mode]; |
|
|
|
/* audio blocks */ |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
frame_bits++; /* rematstr */ |
|
} |
|
frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */ |
|
if (s->lfe_on) |
|
frame_bits++; /* lfeexpstr */ |
|
frame_bits++; /* baie */ |
|
frame_bits++; /* snr */ |
|
frame_bits += 2; /* delta / skip */ |
|
} |
|
frame_bits++; /* cplinu for block 0 */ |
|
/* bit alloc info */ |
|
/* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */ |
|
/* csnroffset[6] */ |
|
/* (fsnoffset[4] + fgaincod[4]) * c */ |
|
frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3); |
|
|
|
/* auxdatae, crcrsv */ |
|
frame_bits += 2; |
|
|
|
/* CRC */ |
|
frame_bits += 16; |
|
|
|
s->frame_bits_fixed = frame_bits; |
|
} |
|
|
|
|
|
/** |
|
* Initialize bit allocation. |
|
* Set default parameter codes and calculate parameter values. |
|
*/ |
|
static void bit_alloc_init(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
|
|
/* init default parameters */ |
|
s->slow_decay_code = 2; |
|
s->fast_decay_code = 1; |
|
s->slow_gain_code = 1; |
|
s->db_per_bit_code = 3; |
|
s->floor_code = 7; |
|
for (ch = 0; ch < s->channels; ch++) |
|
s->fast_gain_code[ch] = 4; |
|
|
|
/* initial snr offset */ |
|
s->coarse_snr_offset = 40; |
|
|
|
/* compute real values */ |
|
/* currently none of these values change during encoding, so we can just |
|
set them once at initialization */ |
|
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
|
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
|
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
|
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
|
|
|
count_frame_bits_fixed(s); |
|
} |
|
|
|
|
|
/** |
|
* Count the bits used to encode the frame, minus exponents and mantissas. |
|
* Bits based on fixed parameters have already been counted, so now we just |
|
* have to add the bits based on parameters that change during encoding. |
|
*/ |
|
static void count_frame_bits(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
int frame_bits = 0; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO && |
|
s->blocks[blk].new_rematrixing_strategy) { |
|
frame_bits += s->num_rematrixing_bands; |
|
} |
|
|
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) |
|
frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
|
} |
|
} |
|
s->frame_bits = s->frame_bits_fixed + frame_bits; |
|
} |
|
|
|
|
|
/** |
|
* Calculate the number of bits needed to encode a set of mantissas. |
|
*/ |
|
static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs) |
|
{ |
|
int bits, b, i; |
|
|
|
bits = 0; |
|
for (i = 0; i < nb_coefs; i++) { |
|
b = bap[i]; |
|
if (b <= 4) { |
|
// bap=1 to bap=4 will be counted in compute_mantissa_size_final |
|
mant_cnt[b]++; |
|
} else if (b <= 13) { |
|
// bap=5 to bap=13 use (bap-1) bits |
|
bits += b - 1; |
|
} else { |
|
// bap=14 uses 14 bits and bap=15 uses 16 bits |
|
bits += (b == 14) ? 14 : 16; |
|
} |
|
} |
|
return bits; |
|
} |
|
|
|
|
|
/** |
|
* Finalize the mantissa bit count by adding in the grouped mantissas. |
|
*/ |
|
static int compute_mantissa_size_final(int mant_cnt[5]) |
|
{ |
|
// bap=1 : 3 mantissas in 5 bits |
|
int bits = (mant_cnt[1] / 3) * 5; |
|
// bap=2 : 3 mantissas in 7 bits |
|
// bap=4 : 2 mantissas in 7 bits |
|
bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7; |
|
// bap=3 : each mantissa is 3 bits |
|
bits += mant_cnt[3] * 3; |
|
return bits; |
|
} |
|
|
|
|
|
/** |
|
* Calculate masking curve based on the final exponents. |
|
* Also calculate the power spectral densities to use in future calculations. |
|
*/ |
|
static void bit_alloc_masking(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
for (ch = 0; ch < s->channels; ch++) { |
|
/* We only need psd and mask for calculating bap. |
|
Since we currently do not calculate bap when exponent |
|
strategy is EXP_REUSE we do not need to calculate psd or mask. */ |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) { |
|
ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0, |
|
s->nb_coefs[ch], |
|
block->psd[ch], block->band_psd[ch]); |
|
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch], |
|
0, s->nb_coefs[ch], |
|
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
|
ch == s->lfe_channel, |
|
DBA_NONE, 0, NULL, NULL, NULL, |
|
block->mask[ch]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Ensure that bap for each block and channel point to the current bap_buffer. |
|
* They may have been switched during the bit allocation search. |
|
*/ |
|
static void reset_block_bap(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
if (s->blocks[0].bap[0] == s->bap_buffer) |
|
return; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
for (ch = 0; ch < s->channels; ch++) { |
|
s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Run the bit allocation with a given SNR offset. |
|
* This calculates the bit allocation pointers that will be used to determine |
|
* the quantization of each mantissa. |
|
* @return the number of bits needed for mantissas if the given SNR offset is |
|
* is used. |
|
*/ |
|
static int bit_alloc(AC3EncodeContext *s, int snr_offset) |
|
{ |
|
int blk, ch; |
|
int mantissa_bits; |
|
int mant_cnt[5]; |
|
|
|
snr_offset = (snr_offset - 240) << 2; |
|
|
|
reset_block_bap(s); |
|
mantissa_bits = 0; |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
// initialize grouped mantissa counts. these are set so that they are |
|
// padded to the next whole group size when bits are counted in |
|
// compute_mantissa_size_final |
|
mant_cnt[0] = mant_cnt[3] = 0; |
|
mant_cnt[1] = mant_cnt[2] = 2; |
|
mant_cnt[4] = 1; |
|
for (ch = 0; ch < s->channels; ch++) { |
|
/* Currently the only bit allocation parameters which vary across |
|
blocks within a frame are the exponent values. We can take |
|
advantage of that by reusing the bit allocation pointers |
|
whenever we reuse exponents. */ |
|
if (s->exp_strategy[ch][blk] == EXP_REUSE) { |
|
memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS); |
|
} else { |
|
ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0, |
|
s->nb_coefs[ch], snr_offset, |
|
s->bit_alloc.floor, ff_ac3_bap_tab, |
|
block->bap[ch]); |
|
} |
|
mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]); |
|
} |
|
mantissa_bits += compute_mantissa_size_final(mant_cnt); |
|
} |
|
return mantissa_bits; |
|
} |
|
|
|
|
|
/** |
|
* Constant bitrate bit allocation search. |
|
* Find the largest SNR offset that will allow data to fit in the frame. |
|
*/ |
|
static int cbr_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
int ch; |
|
int bits_left; |
|
int snr_offset, snr_incr; |
|
|
|
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits); |
|
av_assert2(bits_left >= 0); |
|
|
|
snr_offset = s->coarse_snr_offset << 4; |
|
|
|
/* if previous frame SNR offset was 1023, check if current frame can also |
|
use SNR offset of 1023. if so, skip the search. */ |
|
if ((snr_offset | s->fine_snr_offset[0]) == 1023) { |
|
if (bit_alloc(s, 1023) <= bits_left) |
|
return 0; |
|
} |
|
|
|
while (snr_offset >= 0 && |
|
bit_alloc(s, snr_offset) > bits_left) { |
|
snr_offset -= 64; |
|
} |
|
if (snr_offset < 0) |
|
return AVERROR(EINVAL); |
|
|
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) { |
|
while (snr_offset + snr_incr <= 1023 && |
|
bit_alloc(s, snr_offset + snr_incr) <= bits_left) { |
|
snr_offset += snr_incr; |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
} |
|
} |
|
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
|
reset_block_bap(s); |
|
|
|
s->coarse_snr_offset = snr_offset >> 4; |
|
for (ch = 0; ch < s->channels; ch++) |
|
s->fine_snr_offset[ch] = snr_offset & 0xF; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Downgrade exponent strategies to reduce the bits used by the exponents. |
|
* This is a fallback for when bit allocation fails with the normal exponent |
|
* strategies. Each time this function is run it only downgrades the |
|
* strategy in 1 channel of 1 block. |
|
* @return non-zero if downgrade was unsuccessful |
|
*/ |
|
static int downgrade_exponents(AC3EncodeContext *s) |
|
{ |
|
int ch, blk; |
|
|
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { |
|
if (s->exp_strategy[ch][blk] == EXP_D15) { |
|
s->exp_strategy[ch][blk] = EXP_D25; |
|
return 0; |
|
} |
|
} |
|
} |
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { |
|
if (s->exp_strategy[ch][blk] == EXP_D25) { |
|
s->exp_strategy[ch][blk] = EXP_D45; |
|
return 0; |
|
} |
|
} |
|
} |
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
/* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if |
|
the block number > 0 */ |
|
for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) { |
|
if (s->exp_strategy[ch][blk] > EXP_REUSE) { |
|
s->exp_strategy[ch][blk] = EXP_REUSE; |
|
return 0; |
|
} |
|
} |
|
} |
|
return -1; |
|
} |
|
|
|
|
|
/** |
|
* Reduce the bandwidth to reduce the number of bits used for a given SNR offset. |
|
* This is a second fallback for when bit allocation still fails after exponents |
|
* have been downgraded. |
|
* @return non-zero if bandwidth reduction was unsuccessful |
|
*/ |
|
static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code) |
|
{ |
|
int ch; |
|
|
|
if (s->bandwidth_code[0] > min_bw_code) { |
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
s->bandwidth_code[ch]--; |
|
s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73; |
|
} |
|
return 0; |
|
} |
|
return -1; |
|
} |
|
|
|
|
|
/** |
|
* Perform bit allocation search. |
|
* Finds the SNR offset value that maximizes quality and fits in the specified |
|
* frame size. Output is the SNR offset and a set of bit allocation pointers |
|
* used to quantize the mantissas. |
|
*/ |
|
static int compute_bit_allocation(AC3EncodeContext *s) |
|
{ |
|
int ret; |
|
|
|
count_frame_bits(s); |
|
|
|
bit_alloc_masking(s); |
|
|
|
ret = cbr_bit_allocation(s); |
|
while (ret) { |
|
/* fallback 1: downgrade exponents */ |
|
if (!downgrade_exponents(s)) { |
|
extract_exponents(s); |
|
encode_exponents(s); |
|
group_exponents(s); |
|
ret = compute_bit_allocation(s); |
|
continue; |
|
} |
|
|
|
/* fallback 2: reduce bandwidth */ |
|
/* only do this if the user has not specified a specific cutoff |
|
frequency */ |
|
if (!s->cutoff && !reduce_bandwidth(s, 0)) { |
|
process_exponents(s); |
|
ret = compute_bit_allocation(s); |
|
continue; |
|
} |
|
|
|
/* fallbacks were not enough... */ |
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
|
|
/** |
|
* Symmetric quantization on 'levels' levels. |
|
*/ |
|
static inline int sym_quant(int c, int e, int levels) |
|
{ |
|
int v; |
|
|
|
if (c >= 0) { |
|
v = (levels * (c << e)) >> 24; |
|
v = (v + 1) >> 1; |
|
v = (levels >> 1) + v; |
|
} else { |
|
v = (levels * ((-c) << e)) >> 24; |
|
v = (v + 1) >> 1; |
|
v = (levels >> 1) - v; |
|
} |
|
av_assert2(v >= 0 && v < levels); |
|
return v; |
|
} |
|
|
|
|
|
/** |
|
* Asymmetric quantization on 2^qbits levels. |
|
*/ |
|
static inline int asym_quant(int c, int e, int qbits) |
|
{ |
|
int lshift, m, v; |
|
|
|
lshift = e + qbits - 24; |
|
if (lshift >= 0) |
|
v = c << lshift; |
|
else |
|
v = c >> (-lshift); |
|
/* rounding */ |
|
v = (v + 1) >> 1; |
|
m = (1 << (qbits-1)); |
|
if (v >= m) |
|
v = m - 1; |
|
av_assert2(v >= -m); |
|
return v & ((1 << qbits)-1); |
|
} |
|
|
|
|
|
/** |
|
* Quantize a set of mantissas for a single channel in a single block. |
|
*/ |
|
static void quantize_mantissas_blk_ch(AC3EncodeContext *s, int32_t *fixed_coef, |
|
uint8_t *exp, |
|
uint8_t *bap, uint16_t *qmant, int n) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < n; i++) { |
|
int v; |
|
int c = fixed_coef[i]; |
|
int e = exp[i]; |
|
int b = bap[i]; |
|
switch (b) { |
|
case 0: |
|
v = 0; |
|
break; |
|
case 1: |
|
v = sym_quant(c, e, 3); |
|
switch (s->mant1_cnt) { |
|
case 0: |
|
s->qmant1_ptr = &qmant[i]; |
|
v = 9 * v; |
|
s->mant1_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant1_ptr += 3 * v; |
|
s->mant1_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant1_ptr += v; |
|
s->mant1_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 2: |
|
v = sym_quant(c, e, 5); |
|
switch (s->mant2_cnt) { |
|
case 0: |
|
s->qmant2_ptr = &qmant[i]; |
|
v = 25 * v; |
|
s->mant2_cnt = 1; |
|
break; |
|
case 1: |
|
*s->qmant2_ptr += 5 * v; |
|
s->mant2_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*s->qmant2_ptr += v; |
|
s->mant2_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 3: |
|
v = sym_quant(c, e, 7); |
|
break; |
|
case 4: |
|
v = sym_quant(c, e, 11); |
|
switch (s->mant4_cnt) { |
|
case 0: |
|
s->qmant4_ptr = &qmant[i]; |
|
v = 11 * v; |
|
s->mant4_cnt = 1; |
|
break; |
|
default: |
|
*s->qmant4_ptr += v; |
|
s->mant4_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 5: |
|
v = sym_quant(c, e, 15); |
|
break; |
|
case 14: |
|
v = asym_quant(c, e, 14); |
|
break; |
|
case 15: |
|
v = asym_quant(c, e, 16); |
|
break; |
|
default: |
|
v = asym_quant(c, e, b - 1); |
|
break; |
|
} |
|
qmant[i] = v; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Quantize mantissas using coefficients, exponents, and bit allocation pointers. |
|
*/ |
|
static void quantize_mantissas(AC3EncodeContext *s) |
|
{ |
|
int blk, ch; |
|
|
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0; |
|
s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL; |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
quantize_mantissas_blk_ch(s, block->fixed_coef[ch], |
|
block->exp[ch], block->bap[ch], |
|
block->qmant[ch], s->nb_coefs[ch]); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Write the AC-3 frame header to the output bitstream. |
|
*/ |
|
static void output_frame_header(AC3EncodeContext *s) |
|
{ |
|
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
|
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
|
put_bits(&s->pb, 2, s->bit_alloc.sr_code); |
|
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
|
put_bits(&s->pb, 5, s->bitstream_id); |
|
put_bits(&s->pb, 3, s->bitstream_mode); |
|
put_bits(&s->pb, 3, s->channel_mode); |
|
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
|
put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
|
if (s->channel_mode & 0x04) |
|
put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) |
|
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
|
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
|
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
|
put_bits(&s->pb, 1, 0); /* no compression control word */ |
|
put_bits(&s->pb, 1, 0); /* no lang code */ |
|
put_bits(&s->pb, 1, 0); /* no audio production info */ |
|
put_bits(&s->pb, 1, 0); /* no copyright */ |
|
put_bits(&s->pb, 1, 1); /* original bitstream */ |
|
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
|
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
|
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
|
} |
|
|
|
|
|
/** |
|
* Write one audio block to the output bitstream. |
|
*/ |
|
static void output_audio_block(AC3EncodeContext *s, int blk) |
|
{ |
|
int ch, i, baie, rbnd; |
|
AC3Block *block = &s->blocks[blk]; |
|
|
|
/* block switching */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* dither flags */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 1, 1); |
|
|
|
/* dynamic range codes */ |
|
put_bits(&s->pb, 1, 0); |
|
|
|
/* channel coupling */ |
|
if (!blk) { |
|
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
|
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
|
} else { |
|
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
|
} |
|
|
|
/* stereo rematrixing */ |
|
if (s->channel_mode == AC3_CHMODE_STEREO) { |
|
put_bits(&s->pb, 1, block->new_rematrixing_strategy); |
|
if (block->new_rematrixing_strategy) { |
|
/* rematrixing flags */ |
|
for (rbnd = 0; rbnd < s->num_rematrixing_bands; rbnd++) |
|
put_bits(&s->pb, 1, block->rematrixing_flags[rbnd]); |
|
} |
|
} |
|
|
|
/* exponent strategy */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) |
|
put_bits(&s->pb, 2, s->exp_strategy[ch][blk]); |
|
if (s->lfe_on) |
|
put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]); |
|
|
|
/* bandwidth */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
if (s->exp_strategy[ch][blk] != EXP_REUSE) |
|
put_bits(&s->pb, 6, s->bandwidth_code[ch]); |
|
} |
|
|
|
/* exponents */ |
|
for (ch = 0; ch < s->channels; ch++) { |
|
int nb_groups; |
|
|
|
if (s->exp_strategy[ch][blk] == EXP_REUSE) |
|
continue; |
|
|
|
/* DC exponent */ |
|
put_bits(&s->pb, 4, block->grouped_exp[ch][0]); |
|
|
|
/* exponent groups */ |
|
nb_groups = exponent_group_tab[s->exp_strategy[ch][blk]-1][s->nb_coefs[ch]]; |
|
for (i = 1; i <= nb_groups; i++) |
|
put_bits(&s->pb, 7, block->grouped_exp[ch][i]); |
|
|
|
/* gain range info */ |
|
if (ch != s->lfe_channel) |
|
put_bits(&s->pb, 2, 0); |
|
} |
|
|
|
/* bit allocation info */ |
|
baie = (blk == 0); |
|
put_bits(&s->pb, 1, baie); |
|
if (baie) { |
|
put_bits(&s->pb, 2, s->slow_decay_code); |
|
put_bits(&s->pb, 2, s->fast_decay_code); |
|
put_bits(&s->pb, 2, s->slow_gain_code); |
|
put_bits(&s->pb, 2, s->db_per_bit_code); |
|
put_bits(&s->pb, 3, s->floor_code); |
|
} |
|
|
|
/* snr offset */ |
|
put_bits(&s->pb, 1, baie); |
|
if (baie) { |
|
put_bits(&s->pb, 6, s->coarse_snr_offset); |
|
for (ch = 0; ch < s->channels; ch++) { |
|
put_bits(&s->pb, 4, s->fine_snr_offset[ch]); |
|
put_bits(&s->pb, 3, s->fast_gain_code[ch]); |
|
} |
|
} |
|
|
|
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
|
put_bits(&s->pb, 1, 0); /* no data to skip */ |
|
|
|
/* mantissas */ |
|
for (ch = 0; ch < s->channels; ch++) { |
|
int b, q; |
|
for (i = 0; i < s->nb_coefs[ch]; i++) { |
|
q = block->qmant[ch][i]; |
|
b = block->bap[ch][i]; |
|
switch (b) { |
|
case 0: break; |
|
case 1: if (q != 128) put_bits(&s->pb, 5, q); break; |
|
case 2: if (q != 128) put_bits(&s->pb, 7, q); break; |
|
case 3: put_bits(&s->pb, 3, q); break; |
|
case 4: if (q != 128) put_bits(&s->pb, 7, q); break; |
|
case 14: put_bits(&s->pb, 14, q); break; |
|
case 15: put_bits(&s->pb, 16, q); break; |
|
default: put_bits(&s->pb, b-1, q); break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** CRC-16 Polynomial */ |
|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
|
|
|
|
|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
|
{ |
|
unsigned int c; |
|
|
|
c = 0; |
|
while (a) { |
|
if (a & 1) |
|
c ^= b; |
|
a = a >> 1; |
|
b = b << 1; |
|
if (b & (1 << 16)) |
|
b ^= poly; |
|
} |
|
return c; |
|
} |
|
|
|
|
|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
|
{ |
|
unsigned int r; |
|
r = 1; |
|
while (n) { |
|
if (n & 1) |
|
r = mul_poly(r, a, poly); |
|
a = mul_poly(a, a, poly); |
|
n >>= 1; |
|
} |
|
return r; |
|
} |
|
|
|
|
|
/** |
|
* Fill the end of the frame with 0's and compute the two CRCs. |
|
*/ |
|
static void output_frame_end(AC3EncodeContext *s) |
|
{ |
|
const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI); |
|
int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv; |
|
uint8_t *frame; |
|
|
|
frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1; |
|
|
|
/* pad the remainder of the frame with zeros */ |
|
av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18); |
|
flush_put_bits(&s->pb); |
|
frame = s->pb.buf; |
|
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2; |
|
av_assert2(pad_bytes >= 0); |
|
if (pad_bytes > 0) |
|
memset(put_bits_ptr(&s->pb), 0, pad_bytes); |
|
|
|
/* compute crc1 */ |
|
/* this is not so easy because it is at the beginning of the data... */ |
|
crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4)); |
|
crc_inv = s->crc_inv[s->frame_size > s->frame_size_min]; |
|
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
|
AV_WB16(frame + 2, crc1); |
|
|
|
/* compute crc2 */ |
|
crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58, |
|
s->frame_size - frame_size_58 - 3); |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
/* ensure crc2 does not match sync word by flipping crcrsv bit if needed */ |
|
if (crc2 == 0x770B) { |
|
frame[s->frame_size - 3] ^= 0x1; |
|
crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); |
|
} |
|
crc2 = av_bswap16(crc2); |
|
AV_WB16(frame + s->frame_size - 2, crc2); |
|
} |
|
|
|
|
|
/** |
|
* Write the frame to the output bitstream. |
|
*/ |
|
static void output_frame(AC3EncodeContext *s, unsigned char *frame) |
|
{ |
|
int blk; |
|
|
|
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
|
|
|
output_frame_header(s); |
|
|
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
|
output_audio_block(s, blk); |
|
|
|
output_frame_end(s); |
|
} |
|
|
|
|
|
/** |
|
* Encode a single AC-3 frame. |
|
*/ |
|
static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame, |
|
int buf_size, void *data) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
const SampleType *samples = data; |
|
int ret; |
|
|
|
if (s->bit_alloc.sr_code == 1) |
|
adjust_frame_size(s); |
|
|
|
deinterleave_input_samples(s, samples); |
|
|
|
apply_mdct(s); |
|
|
|
scale_coefficients(s); |
|
|
|
compute_rematrixing_strategy(s); |
|
|
|
apply_rematrixing(s); |
|
|
|
process_exponents(s); |
|
|
|
ret = compute_bit_allocation(s); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
|
return ret; |
|
} |
|
|
|
quantize_mantissas(s); |
|
|
|
output_frame(s, frame); |
|
|
|
return s->frame_size; |
|
} |
|
|
|
|
|
/** |
|
* Finalize encoding and free any memory allocated by the encoder. |
|
*/ |
|
static av_cold int ac3_encode_close(AVCodecContext *avctx) |
|
{ |
|
int blk, ch; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
|
|
for (ch = 0; ch < s->channels; ch++) |
|
av_freep(&s->planar_samples[ch]); |
|
av_freep(&s->planar_samples); |
|
av_freep(&s->bap_buffer); |
|
av_freep(&s->bap1_buffer); |
|
av_freep(&s->mdct_coef_buffer); |
|
av_freep(&s->fixed_coef_buffer); |
|
av_freep(&s->exp_buffer); |
|
av_freep(&s->grouped_exp_buffer); |
|
av_freep(&s->psd_buffer); |
|
av_freep(&s->band_psd_buffer); |
|
av_freep(&s->mask_buffer); |
|
av_freep(&s->qmant_buffer); |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
av_freep(&block->bap); |
|
av_freep(&block->mdct_coef); |
|
av_freep(&block->fixed_coef); |
|
av_freep(&block->exp); |
|
av_freep(&block->grouped_exp); |
|
av_freep(&block->psd); |
|
av_freep(&block->band_psd); |
|
av_freep(&block->mask); |
|
av_freep(&block->qmant); |
|
} |
|
|
|
mdct_end(&s->mdct); |
|
|
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Set channel information during initialization. |
|
*/ |
|
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
|
int64_t *channel_layout) |
|
{ |
|
int ch_layout; |
|
|
|
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
|
return AVERROR(EINVAL); |
|
if ((uint64_t)*channel_layout > 0x7FF) |
|
return AVERROR(EINVAL); |
|
ch_layout = *channel_layout; |
|
if (!ch_layout) |
|
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL); |
|
if (av_get_channel_layout_nb_channels(ch_layout) != channels) |
|
return AVERROR(EINVAL); |
|
|
|
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
|
s->channels = channels; |
|
s->fbw_channels = channels - s->lfe_on; |
|
s->lfe_channel = s->lfe_on ? s->fbw_channels : -1; |
|
if (s->lfe_on) |
|
ch_layout -= AV_CH_LOW_FREQUENCY; |
|
|
|
switch (ch_layout) { |
|
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
|
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
|
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
|
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
|
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
|
case AV_CH_LAYOUT_QUAD: |
|
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
|
case AV_CH_LAYOUT_5POINT0: |
|
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
|
*channel_layout = ch_layout; |
|
if (s->lfe_on) |
|
*channel_layout |= AV_CH_LOW_FREQUENCY; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) |
|
{ |
|
int i, ret; |
|
|
|
/* validate channel layout */ |
|
if (!avctx->channel_layout) { |
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " |
|
"encoder will guess the layout, but it " |
|
"might be incorrect.\n"); |
|
} |
|
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n"); |
|
return ret; |
|
} |
|
|
|
/* validate sample rate */ |
|
for (i = 0; i < 9; i++) { |
|
if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) |
|
break; |
|
} |
|
if (i == 9) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->sample_rate = avctx->sample_rate; |
|
s->bit_alloc.sr_shift = i % 3; |
|
s->bit_alloc.sr_code = i / 3; |
|
|
|
/* validate bit rate */ |
|
for (i = 0; i < 19; i++) { |
|
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
|
break; |
|
} |
|
if (i == 19) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->bit_rate = avctx->bit_rate; |
|
s->frame_size_code = i << 1; |
|
|
|
/* validate cutoff */ |
|
if (avctx->cutoff < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->cutoff = avctx->cutoff; |
|
if (s->cutoff > (s->sample_rate >> 1)) |
|
s->cutoff = s->sample_rate >> 1; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Set bandwidth for all channels. |
|
* The user can optionally supply a cutoff frequency. Otherwise an appropriate |
|
* default value will be used. |
|
*/ |
|
static av_cold void set_bandwidth(AC3EncodeContext *s) |
|
{ |
|
int ch, bw_code; |
|
|
|
if (s->cutoff) { |
|
/* calculate bandwidth based on user-specified cutoff frequency */ |
|
int fbw_coeffs; |
|
fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate; |
|
bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
|
} else { |
|
/* use default bandwidth setting */ |
|
/* XXX: should compute the bandwidth according to the frame |
|
size, so that we avoid annoying high frequency artifacts */ |
|
bw_code = 50; |
|
} |
|
|
|
/* set number of coefficients for each channel */ |
|
for (ch = 0; ch < s->fbw_channels; ch++) { |
|
s->bandwidth_code[ch] = bw_code; |
|
s->nb_coefs[ch] = bw_code * 3 + 73; |
|
} |
|
if (s->lfe_on) |
|
s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */ |
|
} |
|
|
|
|
|
static av_cold int allocate_buffers(AVCodecContext *avctx) |
|
{ |
|
int blk, ch; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
|
|
FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples), |
|
alloc_fail); |
|
for (ch = 0; ch < s->channels; ch++) { |
|
FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch], |
|
(AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples), |
|
alloc_fail); |
|
} |
|
FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->bap_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels * |
|
128 * sizeof(*s->grouped_exp_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels * |
|
64 * sizeof(*s->band_psd_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels * |
|
64 * sizeof(*s->mask_buffer), alloc_fail); |
|
FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail); |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask), |
|
alloc_fail); |
|
FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant), |
|
alloc_fail); |
|
|
|
for (ch = 0; ch < s->channels; ch++) { |
|
/* arrangement: block, channel, coeff */ |
|
block->bap[ch] = &s->bap_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * s->channels + ch)]; |
|
block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * s->channels + ch)]; |
|
block->mask[ch] = &s->mask_buffer [64 * (blk * s->channels + ch)]; |
|
block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
|
|
/* arrangement: channel, block, coeff */ |
|
block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)]; |
|
} |
|
} |
|
|
|
if (CONFIG_AC3ENC_FLOAT) { |
|
FF_ALLOC_OR_GOTO(avctx, s->fixed_coef_buffer, AC3_MAX_BLOCKS * s->channels * |
|
AC3_MAX_COEFS * sizeof(*s->fixed_coef_buffer), alloc_fail); |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < s->channels; ch++) |
|
block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)]; |
|
} |
|
} else { |
|
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
|
AC3Block *block = &s->blocks[blk]; |
|
FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels * |
|
sizeof(*block->fixed_coef), alloc_fail); |
|
for (ch = 0; ch < s->channels; ch++) |
|
block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch]; |
|
} |
|
} |
|
|
|
return 0; |
|
alloc_fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
|
|
/** |
|
* Initialize the encoder. |
|
*/ |
|
static av_cold int ac3_encode_init(AVCodecContext *avctx) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
int ret, frame_size_58; |
|
|
|
avctx->frame_size = AC3_FRAME_SIZE; |
|
|
|
ff_ac3_common_init(); |
|
|
|
ret = validate_options(avctx, s); |
|
if (ret) |
|
return ret; |
|
|
|
s->bitstream_id = 8 + s->bit_alloc.sr_shift; |
|
s->bitstream_mode = 0; /* complete main audio service */ |
|
|
|
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code]; |
|
s->bits_written = 0; |
|
s->samples_written = 0; |
|
s->frame_size = s->frame_size_min; |
|
|
|
/* calculate crc_inv for both possible frame sizes */ |
|
frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1; |
|
s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
if (s->bit_alloc.sr_code == 1) { |
|
frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1; |
|
s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
|
} |
|
|
|
set_bandwidth(s); |
|
|
|
rematrixing_init(s); |
|
|
|
exponent_init(s); |
|
|
|
bit_alloc_init(s); |
|
|
|
ret = mdct_init(avctx, &s->mdct, 9); |
|
if (ret) |
|
goto init_fail; |
|
|
|
ret = allocate_buffers(avctx); |
|
if (ret) |
|
goto init_fail; |
|
|
|
avctx->coded_frame= avcodec_alloc_frame(); |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT); |
|
|
|
return 0; |
|
init_fail: |
|
ac3_encode_close(avctx); |
|
return ret; |
|
}
|
|
|