mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
14 KiB
471 lines
14 KiB
/* |
|
* erf function: Copyright (c) 2006 John Maddock |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Replacements for frequently missing libm functions |
|
*/ |
|
|
|
#ifndef AVUTIL_LIBM_H |
|
#define AVUTIL_LIBM_H |
|
|
|
#include <math.h> |
|
#include "config.h" |
|
#include "attributes.h" |
|
#include "intfloat.h" |
|
#include "mathematics.h" |
|
|
|
#if HAVE_MIPSFPU && HAVE_INLINE_ASM |
|
#include "libavutil/mips/libm_mips.h" |
|
#endif /* HAVE_MIPSFPU && HAVE_INLINE_ASM*/ |
|
|
|
#if !HAVE_ATANF |
|
#undef atanf |
|
#define atanf(x) ((float)atan(x)) |
|
#endif /* HAVE_ATANF */ |
|
|
|
#if !HAVE_ATAN2F |
|
#undef atan2f |
|
#define atan2f(y, x) ((float)atan2(y, x)) |
|
#endif /* HAVE_ATAN2F */ |
|
|
|
#if !HAVE_POWF |
|
#undef powf |
|
#define powf(x, y) ((float)pow(x, y)) |
|
#endif /* HAVE_POWF */ |
|
|
|
#if !HAVE_CBRT |
|
static av_always_inline double cbrt(double x) |
|
{ |
|
return x < 0 ? -pow(-x, 1.0 / 3.0) : pow(x, 1.0 / 3.0); |
|
} |
|
#endif /* HAVE_CBRT */ |
|
|
|
#if !HAVE_CBRTF |
|
static av_always_inline float cbrtf(float x) |
|
{ |
|
return x < 0 ? -powf(-x, 1.0 / 3.0) : powf(x, 1.0 / 3.0); |
|
} |
|
#endif /* HAVE_CBRTF */ |
|
|
|
#if !HAVE_COPYSIGN |
|
static av_always_inline double copysign(double x, double y) |
|
{ |
|
uint64_t vx = av_double2int(x); |
|
uint64_t vy = av_double2int(y); |
|
return av_int2double((vx & UINT64_C(0x7fffffffffffffff)) | (vy & UINT64_C(0x8000000000000000))); |
|
} |
|
#endif /* HAVE_COPYSIGN */ |
|
|
|
#if !HAVE_COSF |
|
#undef cosf |
|
#define cosf(x) ((float)cos(x)) |
|
#endif /* HAVE_COSF */ |
|
|
|
#if !HAVE_ERF |
|
static inline double ff_eval_poly(const double *coeff, int size, double x) { |
|
double sum = coeff[size-1]; |
|
int i; |
|
for (i = size-2; i >= 0; --i) { |
|
sum *= x; |
|
sum += coeff[i]; |
|
} |
|
return sum; |
|
} |
|
|
|
/** |
|
* erf function |
|
* Algorithm taken from the Boost project, source: |
|
* http://www.boost.org/doc/libs/1_46_1/boost/math/special_functions/erf.hpp |
|
* Use, modification and distribution are subject to the |
|
* Boost Software License, Version 1.0 (see notice below). |
|
* Boost Software License - Version 1.0 - August 17th, 2003 |
|
Permission is hereby granted, free of charge, to any person or organization |
|
obtaining a copy of the software and accompanying documentation covered by |
|
this license (the "Software") to use, reproduce, display, distribute, |
|
execute, and transmit the Software, and to prepare derivative works of the |
|
Software, and to permit third-parties to whom the Software is furnished to |
|
do so, all subject to the following: |
|
|
|
The copyright notices in the Software and this entire statement, including |
|
the above license grant, this restriction and the following disclaimer, |
|
must be included in all copies of the Software, in whole or in part, and |
|
all derivative works of the Software, unless such copies or derivative |
|
works are solely in the form of machine-executable object code generated by |
|
a source language processor. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
|
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
|
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
|
DEALINGS IN THE SOFTWARE. |
|
*/ |
|
static inline double erf(double z) |
|
{ |
|
#ifndef FF_ARRAY_ELEMS |
|
#define FF_ARRAY_ELEMS(a) (sizeof(a) / sizeof((a)[0])) |
|
#endif |
|
double result; |
|
|
|
/* handle the symmetry: erf(-x) = -erf(x) */ |
|
if (z < 0) |
|
return -erf(-z); |
|
|
|
/* branch based on range of z, and pick appropriate approximation */ |
|
if (z == 0) |
|
return 0; |
|
else if (z < 1e-10) |
|
return z * 1.125 + z * 0.003379167095512573896158903121545171688; |
|
else if (z < 0.5) { |
|
// Maximum Deviation Found: 1.561e-17 |
|
// Expected Error Term: 1.561e-17 |
|
// Maximum Relative Change in Control Points: 1.155e-04 |
|
// Max Error found at double precision = 2.961182e-17 |
|
|
|
static const double y = 1.044948577880859375; |
|
static const double p[] = { |
|
0.0834305892146531832907, |
|
-0.338165134459360935041, |
|
-0.0509990735146777432841, |
|
-0.00772758345802133288487, |
|
-0.000322780120964605683831, |
|
}; |
|
static const double q[] = { |
|
1, |
|
0.455004033050794024546, |
|
0.0875222600142252549554, |
|
0.00858571925074406212772, |
|
0.000370900071787748000569, |
|
}; |
|
double zz = z * z; |
|
return z * (y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), zz) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), zz)); |
|
} |
|
/* here onwards compute erfc */ |
|
else if (z < 1.5) { |
|
// Maximum Deviation Found: 3.702e-17 |
|
// Expected Error Term: 3.702e-17 |
|
// Maximum Relative Change in Control Points: 2.845e-04 |
|
// Max Error found at double precision = 4.841816e-17 |
|
static const double y = 0.405935764312744140625; |
|
static const double p[] = { |
|
-0.098090592216281240205, |
|
0.178114665841120341155, |
|
0.191003695796775433986, |
|
0.0888900368967884466578, |
|
0.0195049001251218801359, |
|
0.00180424538297014223957, |
|
}; |
|
static const double q[] = { |
|
1, |
|
1.84759070983002217845, |
|
1.42628004845511324508, |
|
0.578052804889902404909, |
|
0.12385097467900864233, |
|
0.0113385233577001411017, |
|
0.337511472483094676155e-5, |
|
}; |
|
result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 0.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 0.5); |
|
result *= exp(-z * z) / z; |
|
return 1 - result; |
|
} |
|
else if (z < 2.5) { |
|
// Max Error found at double precision = 6.599585e-18 |
|
// Maximum Deviation Found: 3.909e-18 |
|
// Expected Error Term: 3.909e-18 |
|
// Maximum Relative Change in Control Points: 9.886e-05 |
|
static const double y = 0.50672817230224609375; |
|
static const double p[] = { |
|
-0.0243500476207698441272, |
|
0.0386540375035707201728, |
|
0.04394818964209516296, |
|
0.0175679436311802092299, |
|
0.00323962406290842133584, |
|
0.000235839115596880717416, |
|
}; |
|
static const double q[] = { |
|
1, |
|
1.53991494948552447182, |
|
0.982403709157920235114, |
|
0.325732924782444448493, |
|
0.0563921837420478160373, |
|
0.00410369723978904575884, |
|
}; |
|
result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 1.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 1.5); |
|
result *= exp(-z * z) / z; |
|
return 1 - result; |
|
} |
|
else if (z < 4.5) { |
|
// Maximum Deviation Found: 1.512e-17 |
|
// Expected Error Term: 1.512e-17 |
|
// Maximum Relative Change in Control Points: 2.222e-04 |
|
// Max Error found at double precision = 2.062515e-17 |
|
static const double y = 0.5405750274658203125; |
|
static const double p[] = { |
|
0.00295276716530971662634, |
|
0.0137384425896355332126, |
|
0.00840807615555585383007, |
|
0.00212825620914618649141, |
|
0.000250269961544794627958, |
|
0.113212406648847561139e-4, |
|
}; |
|
static const double q[] = { |
|
1, |
|
1.04217814166938418171, |
|
0.442597659481563127003, |
|
0.0958492726301061423444, |
|
0.0105982906484876531489, |
|
0.000479411269521714493907, |
|
}; |
|
result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), z - 3.5) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), z - 3.5); |
|
result *= exp(-z * z) / z; |
|
return 1 - result; |
|
} |
|
/* differ from Boost here, the claim of underflow of erfc(x) past 5.8 is |
|
* slightly incorrect, change to 5.92 |
|
* (really somewhere between 5.9125 and 5.925 is when it saturates) */ |
|
else if (z < 5.92) { |
|
// Max Error found at double precision = 2.997958e-17 |
|
// Maximum Deviation Found: 2.860e-17 |
|
// Expected Error Term: 2.859e-17 |
|
// Maximum Relative Change in Control Points: 1.357e-05 |
|
static const double y = 0.5579090118408203125; |
|
static const double p[] = { |
|
0.00628057170626964891937, |
|
0.0175389834052493308818, |
|
-0.212652252872804219852, |
|
-0.687717681153649930619, |
|
-2.5518551727311523996, |
|
-3.22729451764143718517, |
|
-2.8175401114513378771, |
|
}; |
|
static const double q[] = { |
|
1, |
|
2.79257750980575282228, |
|
11.0567237927800161565, |
|
15.930646027911794143, |
|
22.9367376522880577224, |
|
13.5064170191802889145, |
|
5.48409182238641741584, |
|
}; |
|
result = y + ff_eval_poly(p, FF_ARRAY_ELEMS(p), 1 / z) / ff_eval_poly(q, FF_ARRAY_ELEMS(q), 1 / z); |
|
result *= exp(-z * z) / z; |
|
return 1 - result; |
|
} |
|
/* handle the nan case, but don't use isnan for max portability */ |
|
else if (z != z) |
|
return z; |
|
/* finally return saturated result */ |
|
else |
|
return 1; |
|
} |
|
#endif /* HAVE_ERF */ |
|
|
|
#if !HAVE_EXPF |
|
#undef expf |
|
#define expf(x) ((float)exp(x)) |
|
#endif /* HAVE_EXPF */ |
|
|
|
#if !HAVE_EXP2 |
|
#undef exp2 |
|
#define exp2(x) exp((x) * M_LN2) |
|
#endif /* HAVE_EXP2 */ |
|
|
|
#if !HAVE_EXP2F |
|
#undef exp2f |
|
#define exp2f(x) ((float)exp2(x)) |
|
#endif /* HAVE_EXP2F */ |
|
|
|
#if !HAVE_ISINF |
|
#undef isinf |
|
/* Note: these do not follow the BSD/Apple/GNU convention of returning -1 for |
|
-Inf, +1 for Inf, 0 otherwise, but merely follow the POSIX/ISO mandated spec of |
|
returning a non-zero value for +/-Inf, 0 otherwise. */ |
|
static av_always_inline av_const int avpriv_isinff(float x) |
|
{ |
|
uint32_t v = av_float2int(x); |
|
if ((v & 0x7f800000) != 0x7f800000) |
|
return 0; |
|
return !(v & 0x007fffff); |
|
} |
|
|
|
static av_always_inline av_const int avpriv_isinf(double x) |
|
{ |
|
uint64_t v = av_double2int(x); |
|
if ((v & 0x7ff0000000000000) != 0x7ff0000000000000) |
|
return 0; |
|
return !(v & 0x000fffffffffffff); |
|
} |
|
|
|
#define isinf(x) \ |
|
(sizeof(x) == sizeof(float) \ |
|
? avpriv_isinff(x) \ |
|
: avpriv_isinf(x)) |
|
#endif /* HAVE_ISINF */ |
|
|
|
#if !HAVE_ISNAN |
|
static av_always_inline av_const int avpriv_isnanf(float x) |
|
{ |
|
uint32_t v = av_float2int(x); |
|
if ((v & 0x7f800000) != 0x7f800000) |
|
return 0; |
|
return v & 0x007fffff; |
|
} |
|
|
|
static av_always_inline av_const int avpriv_isnan(double x) |
|
{ |
|
uint64_t v = av_double2int(x); |
|
if ((v & 0x7ff0000000000000) != 0x7ff0000000000000) |
|
return 0; |
|
return (v & 0x000fffffffffffff) && 1; |
|
} |
|
|
|
#define isnan(x) \ |
|
(sizeof(x) == sizeof(float) \ |
|
? avpriv_isnanf(x) \ |
|
: avpriv_isnan(x)) |
|
#endif /* HAVE_ISNAN */ |
|
|
|
#if !HAVE_ISFINITE |
|
static av_always_inline av_const int avpriv_isfinitef(float x) |
|
{ |
|
uint32_t v = av_float2int(x); |
|
return (v & 0x7f800000) != 0x7f800000; |
|
} |
|
|
|
static av_always_inline av_const int avpriv_isfinite(double x) |
|
{ |
|
uint64_t v = av_double2int(x); |
|
return (v & 0x7ff0000000000000) != 0x7ff0000000000000; |
|
} |
|
|
|
#define isfinite(x) \ |
|
(sizeof(x) == sizeof(float) \ |
|
? avpriv_isfinitef(x) \ |
|
: avpriv_isfinite(x)) |
|
#endif /* HAVE_ISFINITE */ |
|
|
|
#if !HAVE_HYPOT |
|
static inline av_const double hypot(double x, double y) |
|
{ |
|
double ret, temp; |
|
x = fabs(x); |
|
y = fabs(y); |
|
|
|
if (isinf(x) || isinf(y)) |
|
return av_int2double(0x7ff0000000000000); |
|
if (x == 0 || y == 0) |
|
return x + y; |
|
if (x < y) { |
|
temp = x; |
|
x = y; |
|
y = temp; |
|
} |
|
|
|
y = y/x; |
|
return x*sqrt(1 + y*y); |
|
} |
|
#endif /* HAVE_HYPOT */ |
|
|
|
#if !HAVE_LDEXPF |
|
#undef ldexpf |
|
#define ldexpf(x, exp) ((float)ldexp(x, exp)) |
|
#endif /* HAVE_LDEXPF */ |
|
|
|
#if !HAVE_LLRINT |
|
#undef llrint |
|
#define llrint(x) ((long long)rint(x)) |
|
#endif /* HAVE_LLRINT */ |
|
|
|
#if !HAVE_LLRINTF |
|
#undef llrintf |
|
#define llrintf(x) ((long long)rint(x)) |
|
#endif /* HAVE_LLRINT */ |
|
|
|
#if !HAVE_LOG2 |
|
#undef log2 |
|
#define log2(x) (log(x) * 1.44269504088896340736) |
|
#endif /* HAVE_LOG2 */ |
|
|
|
#if !HAVE_LOG2F |
|
#undef log2f |
|
#define log2f(x) ((float)log2(x)) |
|
#endif /* HAVE_LOG2F */ |
|
|
|
#if !HAVE_LOG10F |
|
#undef log10f |
|
#define log10f(x) ((float)log10(x)) |
|
#endif /* HAVE_LOG10F */ |
|
|
|
#if !HAVE_SINF |
|
#undef sinf |
|
#define sinf(x) ((float)sin(x)) |
|
#endif /* HAVE_SINF */ |
|
|
|
#if !HAVE_RINT |
|
static inline double rint(double x) |
|
{ |
|
return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); |
|
} |
|
#endif /* HAVE_RINT */ |
|
|
|
#if !HAVE_LRINT |
|
static av_always_inline av_const long int lrint(double x) |
|
{ |
|
return rint(x); |
|
} |
|
#endif /* HAVE_LRINT */ |
|
|
|
#if !HAVE_LRINTF |
|
static av_always_inline av_const long int lrintf(float x) |
|
{ |
|
return (int)(rint(x)); |
|
} |
|
#endif /* HAVE_LRINTF */ |
|
|
|
#if !HAVE_ROUND |
|
static av_always_inline av_const double round(double x) |
|
{ |
|
return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5); |
|
} |
|
#endif /* HAVE_ROUND */ |
|
|
|
#if !HAVE_ROUNDF |
|
static av_always_inline av_const float roundf(float x) |
|
{ |
|
return (x > 0) ? floor(x + 0.5) : ceil(x - 0.5); |
|
} |
|
#endif /* HAVE_ROUNDF */ |
|
|
|
#if !HAVE_TRUNC |
|
static av_always_inline av_const double trunc(double x) |
|
{ |
|
return (x > 0) ? floor(x) : ceil(x); |
|
} |
|
#endif /* HAVE_TRUNC */ |
|
|
|
#if !HAVE_TRUNCF |
|
static av_always_inline av_const float truncf(float x) |
|
{ |
|
return (x > 0) ? floor(x) : ceil(x); |
|
} |
|
#endif /* HAVE_TRUNCF */ |
|
|
|
#endif /* AVUTIL_LIBM_H */
|
|
|