mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1275 lines
42 KiB
1275 lines
42 KiB
/* |
|
* DCA encoder |
|
* Copyright (C) 2008-2012 Alexander E. Patrakov |
|
* 2010 Benjamin Larsson |
|
* 2011 Xiang Wang |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#define FFT_FLOAT 0 |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/ffmath.h" |
|
#include "libavutil/mem_internal.h" |
|
#include "libavutil/opt.h" |
|
#include "avcodec.h" |
|
#include "codec_internal.h" |
|
#include "dca.h" |
|
#include "dcaadpcm.h" |
|
#include "dcamath.h" |
|
#include "dca_core.h" |
|
#include "dcadata.h" |
|
#include "dcaenc.h" |
|
#include "encode.h" |
|
#include "fft.h" |
|
#include "internal.h" |
|
#include "mathops.h" |
|
#include "put_bits.h" |
|
|
|
#define MAX_CHANNELS 6 |
|
#define DCA_MAX_FRAME_SIZE 16384 |
|
#define DCA_HEADER_SIZE 13 |
|
#define DCA_LFE_SAMPLES 8 |
|
|
|
#define DCAENC_SUBBANDS 32 |
|
#define SUBFRAMES 1 |
|
#define SUBSUBFRAMES 2 |
|
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8) |
|
#define AUBANDS 25 |
|
|
|
#define COS_T(x) (c->cos_table[(x) & 2047]) |
|
|
|
typedef struct CompressionOptions { |
|
int adpcm_mode; |
|
} CompressionOptions; |
|
|
|
typedef struct DCAEncContext { |
|
AVClass *class; |
|
PutBitContext pb; |
|
DCAADPCMEncContext adpcm_ctx; |
|
FFTContext mdct; |
|
CompressionOptions options; |
|
int frame_size; |
|
int frame_bits; |
|
int fullband_channels; |
|
int channels; |
|
int lfe_channel; |
|
int samplerate_index; |
|
int bitrate_index; |
|
int channel_config; |
|
const int32_t *band_interpolation; |
|
const int32_t *band_spectrum; |
|
int lfe_scale_factor; |
|
softfloat lfe_quant; |
|
int32_t lfe_peak_cb; |
|
const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe |
|
|
|
int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2]; |
|
int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */ |
|
int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]; |
|
int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal |
|
int32_t downsampled_lfe[DCA_LFE_SAMPLES]; |
|
int32_t masking_curve_cb[SUBSUBFRAMES][256]; |
|
int32_t bit_allocation_sel[MAX_CHANNELS]; |
|
int abits[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS]; |
|
int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS]; |
|
int32_t eff_masking_curve_cb[256]; |
|
int32_t band_masking_cb[32]; |
|
int32_t worst_quantization_noise; |
|
int32_t worst_noise_ever; |
|
int consumed_bits; |
|
int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info |
|
|
|
int32_t cos_table[2048]; |
|
int32_t band_interpolation_tab[2][512]; |
|
int32_t band_spectrum_tab[2][8]; |
|
int32_t auf[9][AUBANDS][256]; |
|
int32_t cb_to_add[256]; |
|
int32_t cb_to_level[2048]; |
|
int32_t lfe_fir_64i[512]; |
|
} DCAEncContext; |
|
|
|
/* Transfer function of outer and middle ear, Hz -> dB */ |
|
static double hom(double f) |
|
{ |
|
double f1 = f / 1000; |
|
|
|
return -3.64 * pow(f1, -0.8) |
|
+ 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4)) |
|
- 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7)) |
|
- 0.0006 * (f1 * f1) * (f1 * f1); |
|
} |
|
|
|
static double gammafilter(int i, double f) |
|
{ |
|
double h = (f - fc[i]) / erb[i]; |
|
|
|
h = 1 + h * h; |
|
h = 1 / (h * h); |
|
return 20 * log10(h); |
|
} |
|
|
|
static int subband_bufer_alloc(DCAEncContext *c) |
|
{ |
|
int ch, band; |
|
int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS * |
|
(SUBBAND_SAMPLES + DCA_ADPCM_COEFFS), |
|
sizeof(int32_t)); |
|
if (!bufer) |
|
return AVERROR(ENOMEM); |
|
|
|
/* we need a place for DCA_ADPCM_COEFF samples from previous frame |
|
* to calc prediction coefficients for each subband */ |
|
for (ch = 0; ch < MAX_CHANNELS; ch++) { |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) { |
|
c->subband[ch][band] = bufer + |
|
ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + |
|
band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static void subband_bufer_free(DCAEncContext *c) |
|
{ |
|
if (c->subband[0][0]) { |
|
int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS; |
|
av_free(bufer); |
|
c->subband[0][0] = NULL; |
|
} |
|
} |
|
|
|
static int encode_init(AVCodecContext *avctx) |
|
{ |
|
DCAEncContext *c = avctx->priv_data; |
|
AVChannelLayout layout = avctx->ch_layout; |
|
int i, j, k, min_frame_bits; |
|
int ret; |
|
|
|
if ((ret = subband_bufer_alloc(c)) < 0) |
|
return ret; |
|
|
|
c->fullband_channels = c->channels = layout.nb_channels; |
|
c->lfe_channel = (c->channels == 3 || c->channels == 6); |
|
c->band_interpolation = c->band_interpolation_tab[1]; |
|
c->band_spectrum = c->band_spectrum_tab[1]; |
|
c->worst_quantization_noise = -2047; |
|
c->worst_noise_ever = -2047; |
|
c->consumed_adpcm_bits = 0; |
|
|
|
if (ff_dcaadpcm_init(&c->adpcm_ctx)) |
|
return AVERROR(ENOMEM); |
|
|
|
if (layout.order == AV_CHANNEL_ORDER_UNSPEC) { |
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " |
|
"encoder will guess the layout, but it " |
|
"might be incorrect.\n"); |
|
av_channel_layout_default(&layout, layout.nb_channels); |
|
} |
|
|
|
if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_MONO)) |
|
c->channel_config = 0; |
|
else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO)) |
|
c->channel_config = 2; |
|
else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2)) |
|
c->channel_config = 8; |
|
else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0)) |
|
c->channel_config = 9; |
|
else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1)) |
|
c->channel_config = 9; |
|
else { |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (c->lfe_channel) { |
|
c->fullband_channels--; |
|
c->channel_order_tab = channel_reorder_lfe[c->channel_config]; |
|
} else { |
|
c->channel_order_tab = channel_reorder_nolfe[c->channel_config]; |
|
} |
|
|
|
for (i = 0; i < MAX_CHANNELS; i++) { |
|
for (j = 0; j < DCA_CODE_BOOKS; j++) { |
|
c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j]; |
|
} |
|
/* 6 - no Huffman */ |
|
c->bit_allocation_sel[i] = 6; |
|
|
|
for (j = 0; j < DCAENC_SUBBANDS; j++) { |
|
/* -1 - no ADPCM */ |
|
c->prediction_mode[i][j] = -1; |
|
memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS); |
|
} |
|
} |
|
|
|
for (i = 0; i < 9; i++) { |
|
if (sample_rates[i] == avctx->sample_rate) |
|
break; |
|
} |
|
if (i == 9) |
|
return AVERROR(EINVAL); |
|
c->samplerate_index = i; |
|
|
|
if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) { |
|
av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate); |
|
return AVERROR(EINVAL); |
|
} |
|
for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++) |
|
; |
|
c->bitrate_index = i; |
|
c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32); |
|
min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72; |
|
if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3)) |
|
return AVERROR(EINVAL); |
|
|
|
c->frame_size = (c->frame_bits + 7) / 8; |
|
|
|
avctx->frame_size = 32 * SUBBAND_SAMPLES; |
|
|
|
if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0) |
|
return ret; |
|
|
|
/* Init all tables */ |
|
c->cos_table[0] = 0x7fffffff; |
|
c->cos_table[512] = 0; |
|
c->cos_table[1024] = -c->cos_table[0]; |
|
for (i = 1; i < 512; i++) { |
|
c->cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024)); |
|
c->cos_table[1024-i] = -c->cos_table[i]; |
|
c->cos_table[1024+i] = -c->cos_table[i]; |
|
c->cos_table[2048-i] = +c->cos_table[i]; |
|
} |
|
|
|
for (i = 0; i < 2048; i++) |
|
c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i)); |
|
|
|
for (k = 0; k < 32; k++) { |
|
for (j = 0; j < 8; j++) { |
|
c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); |
|
c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); |
|
} |
|
} |
|
|
|
for (i = 0; i < 512; i++) { |
|
c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]); |
|
c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]); |
|
} |
|
|
|
for (i = 0; i < 9; i++) { |
|
for (j = 0; j < AUBANDS; j++) { |
|
for (k = 0; k < 256; k++) { |
|
double freq = sample_rates[i] * (k + 0.5) / 512; |
|
|
|
c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq))); |
|
} |
|
} |
|
} |
|
|
|
for (i = 0; i < 256; i++) { |
|
double add = 1 + ff_exp10(-0.01 * i); |
|
c->cb_to_add[i] = (int32_t)(100 * log10(add)); |
|
} |
|
for (j = 0; j < 8; j++) { |
|
double accum = 0; |
|
for (i = 0; i < 512; i++) { |
|
double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1); |
|
accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); |
|
} |
|
c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum)); |
|
} |
|
for (j = 0; j < 8; j++) { |
|
double accum = 0; |
|
for (i = 0; i < 512; i++) { |
|
double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1); |
|
accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); |
|
} |
|
c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum)); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int encode_close(AVCodecContext *avctx) |
|
{ |
|
DCAEncContext *c = avctx->priv_data; |
|
ff_mdct_end(&c->mdct); |
|
subband_bufer_free(c); |
|
ff_dcaadpcm_free(&c->adpcm_ctx); |
|
|
|
return 0; |
|
} |
|
|
|
static void subband_transform(DCAEncContext *c, const int32_t *input) |
|
{ |
|
int ch, subs, i, k, j; |
|
|
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
/* History is copied because it is also needed for PSY */ |
|
int32_t hist[512]; |
|
int hist_start = 0; |
|
const int chi = c->channel_order_tab[ch]; |
|
|
|
memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t)); |
|
|
|
for (subs = 0; subs < SUBBAND_SAMPLES; subs++) { |
|
int32_t accum[64]; |
|
int32_t resp; |
|
int band; |
|
|
|
/* Calculate the convolutions at once */ |
|
memset(accum, 0, 64 * sizeof(int32_t)); |
|
|
|
for (k = 0, i = hist_start, j = 0; |
|
i < 512; k = (k + 1) & 63, i++, j++) |
|
accum[k] += mul32(hist[i], c->band_interpolation[j]); |
|
for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++) |
|
accum[k] += mul32(hist[i], c->band_interpolation[j]); |
|
|
|
for (k = 16; k < 32; k++) |
|
accum[k] = accum[k] - accum[31 - k]; |
|
for (k = 32; k < 48; k++) |
|
accum[k] = accum[k] + accum[95 - k]; |
|
|
|
for (band = 0; band < 32; band++) { |
|
resp = 0; |
|
for (i = 16; i < 48; i++) { |
|
int s = (2 * band + 1) * (2 * (i + 16) + 1); |
|
resp += mul32(accum[i], COS_T(s << 3)) >> 3; |
|
} |
|
|
|
c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp; |
|
} |
|
|
|
/* Copy in 32 new samples from input */ |
|
for (i = 0; i < 32; i++) |
|
hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi]; |
|
|
|
hist_start = (hist_start + 32) & 511; |
|
} |
|
} |
|
} |
|
|
|
static void lfe_downsample(DCAEncContext *c, const int32_t *input) |
|
{ |
|
/* FIXME: make 128x LFE downsampling possible */ |
|
const int lfech = lfe_index[c->channel_config]; |
|
int i, j, lfes; |
|
int32_t hist[512]; |
|
int32_t accum; |
|
int hist_start = 0; |
|
|
|
memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t)); |
|
|
|
for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) { |
|
/* Calculate the convolution */ |
|
accum = 0; |
|
|
|
for (i = hist_start, j = 0; i < 512; i++, j++) |
|
accum += mul32(hist[i], c->lfe_fir_64i[j]); |
|
for (i = 0; i < hist_start; i++, j++) |
|
accum += mul32(hist[i], c->lfe_fir_64i[j]); |
|
|
|
c->downsampled_lfe[lfes] = accum; |
|
|
|
/* Copy in 64 new samples from input */ |
|
for (i = 0; i < 64; i++) |
|
hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech]; |
|
|
|
hist_start = (hist_start + 64) & 511; |
|
} |
|
} |
|
|
|
static int32_t get_cb(DCAEncContext *c, int32_t in) |
|
{ |
|
int i, res = 0; |
|
in = FFABS(in); |
|
|
|
for (i = 1024; i > 0; i >>= 1) { |
|
if (c->cb_to_level[i + res] >= in) |
|
res += i; |
|
} |
|
return -res; |
|
} |
|
|
|
static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b) |
|
{ |
|
if (a < b) |
|
FFSWAP(int32_t, a, b); |
|
|
|
if (a - b >= 256) |
|
return a; |
|
return a + c->cb_to_add[a - b]; |
|
} |
|
|
|
static void calc_power(DCAEncContext *c, |
|
const int32_t in[2 * 256], int32_t power[256]) |
|
{ |
|
int i; |
|
LOCAL_ALIGNED_32(int32_t, data, [512]); |
|
LOCAL_ALIGNED_32(int32_t, coeff, [256]); |
|
|
|
for (i = 0; i < 512; i++) |
|
data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4); |
|
|
|
c->mdct.mdct_calc(&c->mdct, coeff, data); |
|
for (i = 0; i < 256; i++) { |
|
const int32_t cb = get_cb(c, coeff[i]); |
|
power[i] = add_cb(c, cb, cb); |
|
} |
|
} |
|
|
|
static void adjust_jnd(DCAEncContext *c, |
|
const int32_t in[512], int32_t out_cb[256]) |
|
{ |
|
int32_t power[256]; |
|
int32_t out_cb_unnorm[256]; |
|
int32_t denom; |
|
const int32_t ca_cb = -1114; |
|
const int32_t cs_cb = 928; |
|
const int samplerate_index = c->samplerate_index; |
|
int i, j; |
|
|
|
calc_power(c, in, power); |
|
|
|
for (j = 0; j < 256; j++) |
|
out_cb_unnorm[j] = -2047; /* and can only grow */ |
|
|
|
for (i = 0; i < AUBANDS; i++) { |
|
denom = ca_cb; /* and can only grow */ |
|
for (j = 0; j < 256; j++) |
|
denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]); |
|
for (j = 0; j < 256; j++) |
|
out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j], |
|
-denom + c->auf[samplerate_index][i][j]); |
|
} |
|
|
|
for (j = 0; j < 256; j++) |
|
out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb); |
|
} |
|
|
|
typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f, |
|
int32_t spectrum1, int32_t spectrum2, int channel, |
|
int32_t * arg); |
|
|
|
static void walk_band_low(DCAEncContext *c, int band, int channel, |
|
walk_band_t walk, int32_t *arg) |
|
{ |
|
int f; |
|
|
|
if (band == 0) { |
|
for (f = 0; f < 4; f++) |
|
walk(c, 0, 0, f, 0, -2047, channel, arg); |
|
} else { |
|
for (f = 0; f < 8; f++) |
|
walk(c, band, band - 1, 8 * band - 4 + f, |
|
c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg); |
|
} |
|
} |
|
|
|
static void walk_band_high(DCAEncContext *c, int band, int channel, |
|
walk_band_t walk, int32_t *arg) |
|
{ |
|
int f; |
|
|
|
if (band == 31) { |
|
for (f = 0; f < 4; f++) |
|
walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg); |
|
} else { |
|
for (f = 0; f < 8; f++) |
|
walk(c, band, band + 1, 8 * band + 4 + f, |
|
c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg); |
|
} |
|
} |
|
|
|
static void update_band_masking(DCAEncContext *c, int band1, int band2, |
|
int f, int32_t spectrum1, int32_t spectrum2, |
|
int channel, int32_t * arg) |
|
{ |
|
int32_t value = c->eff_masking_curve_cb[f] - spectrum1; |
|
|
|
if (value < c->band_masking_cb[band1]) |
|
c->band_masking_cb[band1] = value; |
|
} |
|
|
|
static void calc_masking(DCAEncContext *c, const int32_t *input) |
|
{ |
|
int i, k, band, ch, ssf; |
|
int32_t data[512]; |
|
|
|
for (i = 0; i < 256; i++) |
|
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
|
c->masking_curve_cb[ssf][i] = -2047; |
|
|
|
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
const int chi = c->channel_order_tab[ch]; |
|
|
|
for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++) |
|
data[i] = c->history[ch][k]; |
|
for (k -= 512; i < 512; i++, k++) |
|
data[i] = input[k * c->channels + chi]; |
|
adjust_jnd(c, data, c->masking_curve_cb[ssf]); |
|
} |
|
for (i = 0; i < 256; i++) { |
|
int32_t m = 2048; |
|
|
|
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
|
if (c->masking_curve_cb[ssf][i] < m) |
|
m = c->masking_curve_cb[ssf][i]; |
|
c->eff_masking_curve_cb[i] = m; |
|
} |
|
|
|
for (band = 0; band < 32; band++) { |
|
c->band_masking_cb[band] = 2048; |
|
walk_band_low(c, band, 0, update_band_masking, NULL); |
|
walk_band_high(c, band, 0, update_band_masking, NULL); |
|
} |
|
} |
|
|
|
static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len) |
|
{ |
|
int sample; |
|
int32_t m = 0; |
|
for (sample = 0; sample < len; sample++) { |
|
int32_t s = abs(in[sample]); |
|
if (m < s) |
|
m = s; |
|
} |
|
return get_cb(c, m); |
|
} |
|
|
|
static void find_peaks(DCAEncContext *c) |
|
{ |
|
int band, ch; |
|
|
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) |
|
c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band], |
|
SUBBAND_SAMPLES); |
|
} |
|
|
|
if (c->lfe_channel) |
|
c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES); |
|
} |
|
|
|
static void adpcm_analysis(DCAEncContext *c) |
|
{ |
|
int ch, band; |
|
int pred_vq_id; |
|
int32_t *samples; |
|
int32_t estimated_diff[SUBBAND_SAMPLES]; |
|
|
|
c->consumed_adpcm_bits = 0; |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; |
|
pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, |
|
SUBBAND_SAMPLES, estimated_diff); |
|
if (pred_vq_id >= 0) { |
|
c->prediction_mode[ch][band] = pred_vq_id; |
|
c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index |
|
c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16); |
|
} else { |
|
c->prediction_mode[ch][band] = -1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static const int snr_fudge = 128; |
|
#define USED_1ABITS 1 |
|
#define USED_26ABITS 4 |
|
|
|
static inline int32_t get_step_size(DCAEncContext *c, int ch, int band) |
|
{ |
|
int32_t step_size; |
|
|
|
if (c->bitrate_index == 3) |
|
step_size = ff_dca_lossless_quant[c->abits[ch][band]]; |
|
else |
|
step_size = ff_dca_lossy_quant[c->abits[ch][band]]; |
|
|
|
return step_size; |
|
} |
|
|
|
static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits, |
|
softfloat *quant) |
|
{ |
|
int32_t peak; |
|
int our_nscale, try_remove; |
|
softfloat our_quant; |
|
|
|
av_assert0(peak_cb <= 0); |
|
av_assert0(peak_cb >= -2047); |
|
|
|
our_nscale = 127; |
|
peak = c->cb_to_level[-peak_cb]; |
|
|
|
for (try_remove = 64; try_remove > 0; try_remove >>= 1) { |
|
if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17) |
|
continue; |
|
our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m); |
|
our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17; |
|
if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant)) |
|
continue; |
|
our_nscale -= try_remove; |
|
} |
|
|
|
if (our_nscale >= 125) |
|
our_nscale = 124; |
|
|
|
quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m); |
|
quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17; |
|
av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant)); |
|
|
|
return our_nscale; |
|
} |
|
|
|
static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band) |
|
{ |
|
int32_t step_size; |
|
int32_t diff_peak_cb = c->diff_peak_cb[ch][band]; |
|
c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb, |
|
c->abits[ch][band], |
|
&c->quant[ch][band]); |
|
|
|
step_size = get_step_size(c, ch, band); |
|
ff_dcaadpcm_do_real(c->prediction_mode[ch][band], |
|
c->quant[ch][band], |
|
ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], |
|
step_size, c->adpcm_history[ch][band], c->subband[ch][band], |
|
c->adpcm_history[ch][band] + 4, c->quantized[ch][band], |
|
SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]); |
|
} |
|
|
|
static void quantize_adpcm(DCAEncContext *c) |
|
{ |
|
int band, ch; |
|
|
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < 32; band++) |
|
if (c->prediction_mode[ch][band] >= 0) |
|
quantize_adpcm_subband(c, ch, band); |
|
} |
|
|
|
static void quantize_pcm(DCAEncContext *c) |
|
{ |
|
int sample, band, ch; |
|
|
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
if (c->prediction_mode[ch][band] == -1) { |
|
for (sample = 0; sample < SUBBAND_SAMPLES; sample++) { |
|
int32_t val = quantize_value(c->subband[ch][band][sample], |
|
c->quant[ch][band]); |
|
c->quantized[ch][band][sample] = val; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, |
|
uint32_t *result) |
|
{ |
|
uint8_t sel, id = abits - 1; |
|
for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++) |
|
result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES, |
|
sel, id); |
|
} |
|
|
|
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], |
|
uint32_t clc_bits[DCA_CODE_BOOKS], |
|
int32_t res[DCA_CODE_BOOKS]) |
|
{ |
|
uint8_t i, sel; |
|
uint32_t best_sel_bits[DCA_CODE_BOOKS]; |
|
int32_t best_sel_id[DCA_CODE_BOOKS]; |
|
uint32_t t, bits = 0; |
|
|
|
for (i = 0; i < DCA_CODE_BOOKS; i++) { |
|
|
|
av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i]))); |
|
if (vlc_bits[i][0] == 0) { |
|
/* do not transmit adjustment index for empty codebooks */ |
|
res[i] = ff_dca_quant_index_group_size[i]; |
|
/* and skip it */ |
|
continue; |
|
} |
|
|
|
best_sel_bits[i] = vlc_bits[i][0]; |
|
best_sel_id[i] = 0; |
|
for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) { |
|
if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) { |
|
best_sel_bits[i] = vlc_bits[i][sel]; |
|
best_sel_id[i] = sel; |
|
} |
|
} |
|
|
|
/* 2 bits to transmit scale factor adjustment index */ |
|
t = best_sel_bits[i] + 2; |
|
if (t < clc_bits[i]) { |
|
res[i] = best_sel_id[i]; |
|
bits += t; |
|
} else { |
|
res[i] = ff_dca_quant_index_group_size[i]; |
|
bits += clc_bits[i]; |
|
} |
|
} |
|
return bits; |
|
} |
|
|
|
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, |
|
int32_t *res) |
|
{ |
|
uint8_t i; |
|
uint32_t t; |
|
int32_t best_sel = 6; |
|
int32_t best_bits = bands * 5; |
|
|
|
/* Check do we have subband which cannot be encoded by Huffman tables */ |
|
for (i = 0; i < bands; i++) { |
|
if (abits[i] > 12 || abits[i] == 0) { |
|
*res = best_sel; |
|
return best_bits; |
|
} |
|
} |
|
|
|
for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) { |
|
t = ff_dca_vlc_calc_alloc_bits(abits, bands, i); |
|
if (t < best_bits) { |
|
best_bits = t; |
|
best_sel = i; |
|
} |
|
} |
|
|
|
*res = best_sel; |
|
return best_bits; |
|
} |
|
|
|
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero) |
|
{ |
|
int ch, band, ret = USED_26ABITS | USED_1ABITS; |
|
uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7]; |
|
uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS]; |
|
uint32_t bits_counter = 0; |
|
|
|
c->consumed_bits = 132 + 333 * c->fullband_channels; |
|
c->consumed_bits += c->consumed_adpcm_bits; |
|
if (c->lfe_channel) |
|
c->consumed_bits += 72; |
|
|
|
/* attempt to guess the bit distribution based on the prevoius frame */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise; |
|
|
|
if (snr_cb >= 1312) { |
|
c->abits[ch][band] = 26; |
|
ret &= ~USED_1ABITS; |
|
} else if (snr_cb >= 222) { |
|
c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000); |
|
ret &= ~(USED_26ABITS | USED_1ABITS); |
|
} else if (snr_cb >= 0) { |
|
c->abits[ch][band] = 2 + mul32(snr_cb, 106000000); |
|
ret &= ~(USED_26ABITS | USED_1ABITS); |
|
} else if (forbid_zero || snr_cb >= -140) { |
|
c->abits[ch][band] = 1; |
|
ret &= ~USED_26ABITS; |
|
} else { |
|
c->abits[ch][band] = 0; |
|
ret &= ~(USED_26ABITS | USED_1ABITS); |
|
} |
|
} |
|
c->consumed_bits += set_best_abits_code(c->abits[ch], 32, |
|
&c->bit_allocation_sel[ch]); |
|
} |
|
|
|
/* Recalc scale_factor each time to get bits consumption in case of Huffman coding. |
|
It is suboptimal solution */ |
|
/* TODO: May be cache scaled values */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
if (c->prediction_mode[ch][band] == -1) { |
|
c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band], |
|
c->abits[ch][band], |
|
&c->quant[ch][band]); |
|
} |
|
} |
|
} |
|
quantize_adpcm(c); |
|
quantize_pcm(c); |
|
|
|
memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t)); |
|
memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t)); |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) { |
|
accumulate_huff_bit_consumption(c->abits[ch][band], |
|
c->quantized[ch][band], |
|
huff_bit_count_accum[ch][c->abits[ch][band] - 1]); |
|
clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]]; |
|
} else { |
|
bits_counter += bit_consumption[c->abits[ch][band]]; |
|
} |
|
} |
|
} |
|
|
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
bits_counter += set_best_code(huff_bit_count_accum[ch], |
|
clc_bit_count_accum[ch], |
|
c->quant_index_sel[ch]); |
|
} |
|
|
|
c->consumed_bits += bits_counter; |
|
|
|
return ret; |
|
} |
|
|
|
static void assign_bits(DCAEncContext *c) |
|
{ |
|
/* Find the bounds where the binary search should work */ |
|
int low, high, down; |
|
int used_abits = 0; |
|
int forbid_zero = 1; |
|
restart: |
|
init_quantization_noise(c, c->worst_quantization_noise, forbid_zero); |
|
low = high = c->worst_quantization_noise; |
|
if (c->consumed_bits > c->frame_bits) { |
|
while (c->consumed_bits > c->frame_bits) { |
|
if (used_abits == USED_1ABITS && forbid_zero) { |
|
forbid_zero = 0; |
|
goto restart; |
|
} |
|
low = high; |
|
high += snr_fudge; |
|
used_abits = init_quantization_noise(c, high, forbid_zero); |
|
} |
|
} else { |
|
while (c->consumed_bits <= c->frame_bits) { |
|
high = low; |
|
if (used_abits == USED_26ABITS) |
|
goto out; /* The requested bitrate is too high, pad with zeros */ |
|
low -= snr_fudge; |
|
used_abits = init_quantization_noise(c, low, forbid_zero); |
|
} |
|
} |
|
|
|
/* Now do a binary search between low and high to see what fits */ |
|
for (down = snr_fudge >> 1; down; down >>= 1) { |
|
init_quantization_noise(c, high - down, forbid_zero); |
|
if (c->consumed_bits <= c->frame_bits) |
|
high -= down; |
|
} |
|
init_quantization_noise(c, high, forbid_zero); |
|
out: |
|
c->worst_quantization_noise = high; |
|
if (high > c->worst_noise_ever) |
|
c->worst_noise_ever = high; |
|
} |
|
|
|
static void shift_history(DCAEncContext *c, const int32_t *input) |
|
{ |
|
int k, ch; |
|
|
|
for (k = 0; k < 512; k++) |
|
for (ch = 0; ch < c->channels; ch++) { |
|
const int chi = c->channel_order_tab[ch]; |
|
|
|
c->history[ch][k] = input[k * c->channels + chi]; |
|
} |
|
} |
|
|
|
static void fill_in_adpcm_bufer(DCAEncContext *c) |
|
{ |
|
int ch, band; |
|
int32_t step_size; |
|
/* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded |
|
* in current frame - we need this data if subband of next frame is |
|
* ADPCM |
|
*/ |
|
for (ch = 0; ch < c->channels; ch++) { |
|
for (band = 0; band < 32; band++) { |
|
int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; |
|
if (c->prediction_mode[ch][band] == -1) { |
|
step_size = get_step_size(c, ch, band); |
|
|
|
ff_dca_core_dequantize(c->adpcm_history[ch][band], |
|
c->quantized[ch][band]+12, step_size, |
|
ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4); |
|
} else { |
|
AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4); |
|
} |
|
/* Copy dequantized values for LPC analysis. |
|
* It reduces artifacts in case of extreme quantization, |
|
* example: in current frame abits is 1 and has no prediction flag, |
|
* but end of this frame is sine like signal. In this case, if LPC analysis uses |
|
* original values, likely LPC analysis returns good prediction gain, and sets prediction flag. |
|
* But there are no proper value in decoder history, so likely result will be no good. |
|
* Bitstream has "Predictor history flag switch", but this flag disables history for all subbands |
|
*/ |
|
samples[0] = c->adpcm_history[ch][band][0] * (1 << 7); |
|
samples[1] = c->adpcm_history[ch][band][1] * (1 << 7); |
|
samples[2] = c->adpcm_history[ch][band][2] * (1 << 7); |
|
samples[3] = c->adpcm_history[ch][band][3] * (1 << 7); |
|
} |
|
} |
|
} |
|
|
|
static void calc_lfe_scales(DCAEncContext *c) |
|
{ |
|
if (c->lfe_channel) |
|
c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant); |
|
} |
|
|
|
static void put_frame_header(DCAEncContext *c) |
|
{ |
|
/* SYNC */ |
|
put_bits(&c->pb, 16, 0x7ffe); |
|
put_bits(&c->pb, 16, 0x8001); |
|
|
|
/* Frame type: normal */ |
|
put_bits(&c->pb, 1, 1); |
|
|
|
/* Deficit sample count: none */ |
|
put_bits(&c->pb, 5, 31); |
|
|
|
/* CRC is not present */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Number of PCM sample blocks */ |
|
put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1); |
|
|
|
/* Primary frame byte size */ |
|
put_bits(&c->pb, 14, c->frame_size - 1); |
|
|
|
/* Audio channel arrangement */ |
|
put_bits(&c->pb, 6, c->channel_config); |
|
|
|
/* Core audio sampling frequency */ |
|
put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]); |
|
|
|
/* Transmission bit rate */ |
|
put_bits(&c->pb, 5, c->bitrate_index); |
|
|
|
/* Embedded down mix: disabled */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Embedded dynamic range flag: not present */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Embedded time stamp flag: not present */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Auxiliary data flag: not present */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* HDCD source: no */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Extension audio ID: N/A */ |
|
put_bits(&c->pb, 3, 0); |
|
|
|
/* Extended audio data: not present */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Audio sync word insertion flag: after each sub-frame */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Low frequency effects flag: not present or 64x subsampling */ |
|
put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0); |
|
|
|
/* Predictor history switch flag: on */ |
|
put_bits(&c->pb, 1, 1); |
|
|
|
/* No CRC */ |
|
/* Multirate interpolator switch: non-perfect reconstruction */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Encoder software revision: 7 */ |
|
put_bits(&c->pb, 4, 7); |
|
|
|
/* Copy history: 0 */ |
|
put_bits(&c->pb, 2, 0); |
|
|
|
/* Source PCM resolution: 16 bits, not DTS ES */ |
|
put_bits(&c->pb, 3, 0); |
|
|
|
/* Front sum/difference coding: no */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Surrounds sum/difference coding: no */ |
|
put_bits(&c->pb, 1, 0); |
|
|
|
/* Dialog normalization: 0 dB */ |
|
put_bits(&c->pb, 4, 0); |
|
} |
|
|
|
static void put_primary_audio_header(DCAEncContext *c) |
|
{ |
|
int ch, i; |
|
/* Number of subframes */ |
|
put_bits(&c->pb, 4, SUBFRAMES - 1); |
|
|
|
/* Number of primary audio channels */ |
|
put_bits(&c->pb, 3, c->fullband_channels - 1); |
|
|
|
/* Subband activity count */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2); |
|
|
|
/* High frequency VQ start subband */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1); |
|
|
|
/* Joint intensity coding index: 0, 0 */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 3, 0); |
|
|
|
/* Transient mode codebook: A4, A4 (arbitrary) */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 2, 0); |
|
|
|
/* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 3, 6); |
|
|
|
/* Bit allocation quantizer select: linear 5-bit */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, 3, c->bit_allocation_sel[ch]); |
|
|
|
/* Quantization index codebook select */ |
|
for (i = 0; i < DCA_CODE_BOOKS; i++) |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]); |
|
|
|
/* Scale factor adjustment index: transmitted in case of Huffman coding */ |
|
for (i = 0; i < DCA_CODE_BOOKS; i++) |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i]) |
|
put_bits(&c->pb, 2, 0); |
|
|
|
/* Audio header CRC check word: not transmitted */ |
|
} |
|
|
|
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch) |
|
{ |
|
int i, j, sum, bits, sel; |
|
if (c->abits[ch][band] <= DCA_CODE_BOOKS) { |
|
av_assert0(c->abits[ch][band] > 0); |
|
sel = c->quant_index_sel[ch][c->abits[ch][band] - 1]; |
|
// Huffman codes |
|
if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) { |
|
ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8, |
|
sel, c->abits[ch][band] - 1); |
|
return; |
|
} |
|
|
|
// Block codes |
|
if (c->abits[ch][band] <= 7) { |
|
for (i = 0; i < 8; i += 4) { |
|
sum = 0; |
|
for (j = 3; j >= 0; j--) { |
|
sum *= ff_dca_quant_levels[c->abits[ch][band]]; |
|
sum += c->quantized[ch][band][ss * 8 + i + j]; |
|
sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2; |
|
} |
|
put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
for (i = 0; i < 8; i++) { |
|
bits = bit_consumption[c->abits[ch][band]] / 16; |
|
put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]); |
|
} |
|
} |
|
|
|
static void put_subframe(DCAEncContext *c, int subframe) |
|
{ |
|
int i, band, ss, ch; |
|
|
|
/* Subsubframes count */ |
|
put_bits(&c->pb, 2, SUBSUBFRAMES -1); |
|
|
|
/* Partial subsubframe sample count: dummy */ |
|
put_bits(&c->pb, 3, 0); |
|
|
|
/* Prediction mode: no ADPCM, in each channel and subband */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) |
|
put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1)); |
|
|
|
/* Prediction VQ address */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) |
|
if (c->prediction_mode[ch][band] >= 0) |
|
put_bits(&c->pb, 12, c->prediction_mode[ch][band]); |
|
|
|
/* Bit allocation index */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
|
if (c->bit_allocation_sel[ch] == 6) { |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) { |
|
put_bits(&c->pb, 5, c->abits[ch][band]); |
|
} |
|
} else { |
|
ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS, |
|
c->bit_allocation_sel[ch]); |
|
} |
|
} |
|
|
|
if (SUBSUBFRAMES > 1) { |
|
/* Transition mode: none for each channel and subband */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) |
|
if (c->abits[ch][band]) |
|
put_bits(&c->pb, 1, 0); /* codebook A4 */ |
|
} |
|
|
|
/* Scale factors */ |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) |
|
if (c->abits[ch][band]) |
|
put_bits(&c->pb, 7, c->scale_factor[ch][band]); |
|
|
|
/* Joint subband scale factor codebook select: not transmitted */ |
|
/* Scale factors for joint subband coding: not transmitted */ |
|
/* Stereo down-mix coefficients: not transmitted */ |
|
/* Dynamic range coefficient: not transmitted */ |
|
/* Stde information CRC check word: not transmitted */ |
|
/* VQ encoded high frequency subbands: not transmitted */ |
|
|
|
/* LFE data: 8 samples and scalefactor */ |
|
if (c->lfe_channel) { |
|
for (i = 0; i < DCA_LFE_SAMPLES; i++) |
|
put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff); |
|
put_bits(&c->pb, 8, c->lfe_scale_factor); |
|
} |
|
|
|
/* Audio data (subsubframes) */ |
|
for (ss = 0; ss < SUBSUBFRAMES ; ss++) |
|
for (ch = 0; ch < c->fullband_channels; ch++) |
|
for (band = 0; band < DCAENC_SUBBANDS; band++) |
|
if (c->abits[ch][band]) |
|
put_subframe_samples(c, ss, band, ch); |
|
|
|
/* DSYNC */ |
|
put_bits(&c->pb, 16, 0xffff); |
|
} |
|
|
|
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
DCAEncContext *c = avctx->priv_data; |
|
const int32_t *samples; |
|
int ret, i; |
|
|
|
if ((ret = ff_get_encode_buffer(avctx, avpkt, c->frame_size, 0)) < 0) |
|
return ret; |
|
|
|
samples = (const int32_t *)frame->data[0]; |
|
|
|
subband_transform(c, samples); |
|
if (c->lfe_channel) |
|
lfe_downsample(c, samples); |
|
|
|
calc_masking(c, samples); |
|
if (c->options.adpcm_mode) |
|
adpcm_analysis(c); |
|
find_peaks(c); |
|
assign_bits(c); |
|
calc_lfe_scales(c); |
|
shift_history(c, samples); |
|
|
|
init_put_bits(&c->pb, avpkt->data, avpkt->size); |
|
fill_in_adpcm_bufer(c); |
|
put_frame_header(c); |
|
put_primary_audio_header(c); |
|
for (i = 0; i < SUBFRAMES; i++) |
|
put_subframe(c, i); |
|
|
|
flush_put_bits(&c->pb); |
|
memset(put_bits_ptr(&c->pb), 0, put_bytes_left(&c->pb, 0)); |
|
|
|
avpkt->pts = frame->pts; |
|
avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); |
|
*got_packet_ptr = 1; |
|
return 0; |
|
} |
|
|
|
#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
|
|
|
static const AVOption options[] = { |
|
{ "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass dcaenc_class = { |
|
.class_name = "DCA (DTS Coherent Acoustics)", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static const FFCodecDefault defaults[] = { |
|
{ "b", "1411200" }, |
|
{ NULL }, |
|
}; |
|
|
|
const FFCodec ff_dca_encoder = { |
|
.p.name = "dca", |
|
.p.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_DTS, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL, |
|
.priv_data_size = sizeof(DCAEncContext), |
|
.init = encode_init, |
|
.close = encode_close, |
|
FF_CODEC_ENCODE_CB(encode_frame), |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, |
|
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32, |
|
AV_SAMPLE_FMT_NONE }, |
|
.p.supported_samplerates = sample_rates, |
|
#if FF_API_OLD_CHANNEL_LAYOUT |
|
.p.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, |
|
AV_CH_LAYOUT_STEREO, |
|
AV_CH_LAYOUT_2_2, |
|
AV_CH_LAYOUT_5POINT0, |
|
AV_CH_LAYOUT_5POINT1, |
|
0 }, |
|
#endif |
|
.p.ch_layouts = (const AVChannelLayout[]){ |
|
AV_CHANNEL_LAYOUT_MONO, |
|
AV_CHANNEL_LAYOUT_STEREO, |
|
AV_CHANNEL_LAYOUT_2_2, |
|
AV_CHANNEL_LAYOUT_5POINT0, |
|
AV_CHANNEL_LAYOUT_5POINT1, |
|
{ 0 }, |
|
}, |
|
.defaults = defaults, |
|
.p.priv_class = &dcaenc_class, |
|
};
|
|
|