mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1230 lines
48 KiB
1230 lines
48 KiB
/* |
|
* Cinepak encoder (c) 2011 Tomas Härdin |
|
* http://titan.codemill.se/~tomhar/cinepakenc.patch |
|
* |
|
* Fixes and improvements, vintage decoders compatibility |
|
* (c) 2013, 2014 Rl, Aetey Global Technologies AB |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a |
|
* copy of this software and associated documentation files (the "Software"), |
|
* to deal in the Software without restriction, including without limitation |
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
* and/or sell copies of the Software, and to permit persons to whom the |
|
* Software is furnished to do so, subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included |
|
* in all copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
|
* OTHER DEALINGS IN THE SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* TODO: |
|
* - optimize: color space conversion (move conversion to libswscale), ... |
|
* MAYBE: |
|
* - "optimally" split the frame into several non-regular areas |
|
* using a separate codebook pair for each area and approximating |
|
* the area by several rectangular strips (generally not full width ones) |
|
* (use quadtree splitting? a simple fixed-granularity grid?) |
|
*/ |
|
|
|
#include <string.h> |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/lfg.h" |
|
#include "libavutil/opt.h" |
|
|
|
#include "avcodec.h" |
|
#include "codec_internal.h" |
|
#include "elbg.h" |
|
#include "encode.h" |
|
|
|
#define CVID_HEADER_SIZE 10 |
|
#define STRIP_HEADER_SIZE 12 |
|
#define CHUNK_HEADER_SIZE 4 |
|
|
|
#define MB_SIZE 4 //4x4 MBs |
|
#define MB_AREA (MB_SIZE * MB_SIZE) |
|
|
|
#define VECTOR_MAX 6 // six or four entries per vector depending on format |
|
#define CODEBOOK_MAX 256 // size of a codebook |
|
|
|
#define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously) |
|
#define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious) |
|
// MAX_STRIPS limits the maximum quality you can reach |
|
// when you want high quality on high resolutions, |
|
// MIN_STRIPS limits the minimum efficiently encodable bit rate |
|
// on low resolutions |
|
// the numbers are only used for brute force optimization for the first frame, |
|
// for the following frames they are adaptively readjusted |
|
// NOTE the decoder in ffmpeg has its own arbitrary limitation on the number |
|
// of strips, currently 32 |
|
|
|
typedef enum CinepakMode { |
|
MODE_V1_ONLY = 0, |
|
MODE_V1_V4, |
|
MODE_MC, |
|
|
|
MODE_COUNT, |
|
} CinepakMode; |
|
|
|
typedef enum mb_encoding { |
|
ENC_V1, |
|
ENC_V4, |
|
ENC_SKIP, |
|
|
|
ENC_UNCERTAIN |
|
} mb_encoding; |
|
|
|
typedef struct mb_info { |
|
int v1_vector; // index into v1 codebook |
|
int v1_error; // error when using V1 encoding |
|
int v4_vector[4]; // indices into v4 codebook |
|
int v4_error; // error when using V4 encoding |
|
int skip_error; // error when block is skipped (aka copied from last frame) |
|
mb_encoding best_encoding; // last result from calculate_mode_score() |
|
} mb_info; |
|
|
|
typedef struct strip_info { |
|
int v1_codebook[CODEBOOK_MAX * VECTOR_MAX]; |
|
int v4_codebook[CODEBOOK_MAX * VECTOR_MAX]; |
|
int v1_size; |
|
int v4_size; |
|
CinepakMode mode; |
|
} strip_info; |
|
|
|
typedef struct CinepakEncContext { |
|
const AVClass *class; |
|
AVCodecContext *avctx; |
|
unsigned char *pict_bufs[4], *strip_buf, *frame_buf; |
|
AVFrame *last_frame; |
|
AVFrame *best_frame; |
|
AVFrame *scratch_frame; |
|
AVFrame *input_frame; |
|
enum AVPixelFormat pix_fmt; |
|
int w, h; |
|
int frame_buf_size; |
|
int curframe; |
|
AVLFG randctx; |
|
uint64_t lambda; |
|
int *codebook_input; |
|
int *codebook_closest; |
|
mb_info *mb; // MB RD state |
|
int min_strips; // the current limit |
|
int max_strips; // the current limit |
|
// options |
|
int max_extra_cb_iterations; |
|
int skip_empty_cb; |
|
int min_min_strips; |
|
int max_max_strips; |
|
int strip_number_delta_range; |
|
struct ELBGContext *elbg; |
|
} CinepakEncContext; |
|
|
|
#define OFFSET(x) offsetof(CinepakEncContext, x) |
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
static const AVOption options[] = { |
|
{ "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower", |
|
OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE }, |
|
{ "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder", |
|
OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
|
{ "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better", |
|
OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE }, |
|
{ "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips", |
|
OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE }, |
|
{ "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower", |
|
OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass cinepak_class = { |
|
.class_name = "cinepak", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static av_cold int cinepak_encode_init(AVCodecContext *avctx) |
|
{ |
|
CinepakEncContext *s = avctx->priv_data; |
|
int x, mb_count, strip_buf_size, frame_buf_size; |
|
|
|
if (avctx->width & 3 || avctx->height & 3) { |
|
av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n", |
|
avctx->width, avctx->height); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (s->min_min_strips > s->max_max_strips) { |
|
av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n", |
|
s->min_min_strips, s->max_max_strips); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (!(s->last_frame = av_frame_alloc())) |
|
return AVERROR(ENOMEM); |
|
if (!(s->best_frame = av_frame_alloc())) |
|
return AVERROR(ENOMEM); |
|
if (!(s->scratch_frame = av_frame_alloc())) |
|
return AVERROR(ENOMEM); |
|
if (avctx->pix_fmt == AV_PIX_FMT_RGB24) |
|
if (!(s->input_frame = av_frame_alloc())) |
|
return AVERROR(ENOMEM); |
|
|
|
if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input)))) |
|
return AVERROR(ENOMEM); |
|
|
|
if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest)))) |
|
return AVERROR(ENOMEM); |
|
|
|
for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) |
|
if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2))) |
|
return AVERROR(ENOMEM); |
|
|
|
mb_count = avctx->width * avctx->height / MB_AREA; |
|
|
|
// the largest possible chunk is 0x31 with all MBs encoded in V4 mode |
|
// and full codebooks being replaced in INTER mode, |
|
// which is 34 bits per MB |
|
// and 2*256 extra flag bits per strip |
|
strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8; |
|
|
|
frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size; |
|
|
|
if (!(s->strip_buf = av_malloc(strip_buf_size))) |
|
return AVERROR(ENOMEM); |
|
|
|
if (!(s->frame_buf = av_malloc(frame_buf_size))) |
|
return AVERROR(ENOMEM); |
|
|
|
if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info)))) |
|
return AVERROR(ENOMEM); |
|
|
|
av_lfg_init(&s->randctx, 1); |
|
s->avctx = avctx; |
|
s->w = avctx->width; |
|
s->h = avctx->height; |
|
s->frame_buf_size = frame_buf_size; |
|
s->curframe = 0; |
|
s->pix_fmt = avctx->pix_fmt; |
|
|
|
// set up AVFrames |
|
s->last_frame->data[0] = s->pict_bufs[0]; |
|
s->last_frame->linesize[0] = s->w; |
|
s->best_frame->data[0] = s->pict_bufs[1]; |
|
s->best_frame->linesize[0] = s->w; |
|
s->scratch_frame->data[0] = s->pict_bufs[2]; |
|
s->scratch_frame->linesize[0] = s->w; |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h; |
|
s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2); |
|
s->last_frame->linesize[1] = |
|
s->last_frame->linesize[2] = s->w >> 1; |
|
|
|
s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h; |
|
s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2); |
|
s->best_frame->linesize[1] = |
|
s->best_frame->linesize[2] = s->w >> 1; |
|
|
|
s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h; |
|
s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2); |
|
s->scratch_frame->linesize[1] = |
|
s->scratch_frame->linesize[2] = s->w >> 1; |
|
|
|
s->input_frame->data[0] = s->pict_bufs[3]; |
|
s->input_frame->linesize[0] = s->w; |
|
s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h; |
|
s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2); |
|
s->input_frame->linesize[1] = |
|
s->input_frame->linesize[2] = s->w >> 1; |
|
} |
|
|
|
s->min_strips = s->min_min_strips; |
|
s->max_strips = s->max_max_strips; |
|
|
|
return 0; |
|
} |
|
|
|
static int64_t calculate_mode_score(CinepakEncContext *s, int h, |
|
strip_info *info, int report, |
|
int *training_set_v1_shrunk, |
|
int *training_set_v4_shrunk) |
|
{ |
|
// score = FF_LAMBDA_SCALE * error + lambda * bits |
|
int x; |
|
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
|
int mb_count = s->w * h / MB_AREA; |
|
mb_info *mb; |
|
int64_t score1, score2, score3; |
|
int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) + |
|
(info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) + |
|
CHUNK_HEADER_SIZE) << 3; |
|
|
|
switch (info->mode) { |
|
case MODE_V1_ONLY: |
|
// one byte per MB |
|
ret += s->lambda * 8 * mb_count; |
|
|
|
// while calculating we assume all blocks are ENC_V1 |
|
for (x = 0; x < mb_count; x++) { |
|
mb = &s->mb[x]; |
|
ret += FF_LAMBDA_SCALE * mb->v1_error; |
|
// this function is never called for report in MODE_V1_ONLY |
|
// if (!report) |
|
mb->best_encoding = ENC_V1; |
|
} |
|
|
|
break; |
|
case MODE_V1_V4: |
|
// 9 or 33 bits per MB |
|
if (report) { |
|
// no moves between the corresponding training sets are allowed |
|
*training_set_v1_shrunk = *training_set_v4_shrunk = 0; |
|
for (x = 0; x < mb_count; x++) { |
|
int mberr; |
|
mb = &s->mb[x]; |
|
if (mb->best_encoding == ENC_V1) |
|
score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error); |
|
else |
|
score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error); |
|
ret += score1; |
|
} |
|
} else { // find best mode per block |
|
for (x = 0; x < mb_count; x++) { |
|
mb = &s->mb[x]; |
|
score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error; |
|
score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error; |
|
|
|
if (score1 <= score2) { |
|
ret += score1; |
|
mb->best_encoding = ENC_V1; |
|
} else { |
|
ret += score2; |
|
mb->best_encoding = ENC_V4; |
|
} |
|
} |
|
} |
|
|
|
break; |
|
case MODE_MC: |
|
// 1, 10 or 34 bits per MB |
|
if (report) { |
|
int v1_shrunk = 0, v4_shrunk = 0; |
|
for (x = 0; x < mb_count; x++) { |
|
mb = &s->mb[x]; |
|
// it is OK to move blocks to ENC_SKIP here |
|
// but not to any codebook encoding! |
|
score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; |
|
if (mb->best_encoding == ENC_SKIP) { |
|
ret += score1; |
|
} else if (mb->best_encoding == ENC_V1) { |
|
if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) { |
|
mb->best_encoding = ENC_SKIP; |
|
++v1_shrunk; |
|
ret += score1; |
|
} else { |
|
ret += score2; |
|
} |
|
} else { |
|
if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) { |
|
mb->best_encoding = ENC_SKIP; |
|
++v4_shrunk; |
|
ret += score1; |
|
} else { |
|
ret += score3; |
|
} |
|
} |
|
} |
|
*training_set_v1_shrunk = v1_shrunk; |
|
*training_set_v4_shrunk = v4_shrunk; |
|
} else { // find best mode per block |
|
for (x = 0; x < mb_count; x++) { |
|
mb = &s->mb[x]; |
|
score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; |
|
score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error; |
|
score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error; |
|
|
|
if (score1 <= score2 && score1 <= score3) { |
|
ret += score1; |
|
mb->best_encoding = ENC_SKIP; |
|
} else if (score2 <= score3) { |
|
ret += score2; |
|
mb->best_encoding = ENC_V1; |
|
} else { |
|
ret += score3; |
|
mb->best_encoding = ENC_V4; |
|
} |
|
} |
|
} |
|
|
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size) |
|
{ |
|
buf[0] = chunk_type; |
|
AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE); |
|
return CHUNK_HEADER_SIZE; |
|
} |
|
|
|
static int encode_codebook(CinepakEncContext *s, int *codebook, int size, |
|
int chunk_type_yuv, int chunk_type_gray, |
|
unsigned char *buf) |
|
{ |
|
int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
|
int incremental_codebook_replacement_mode = 0; // hardcoded here, |
|
// the compiler should notice that this is a constant -- rl |
|
|
|
ret = write_chunk_header(buf, |
|
s->pix_fmt == AV_PIX_FMT_RGB24 ? |
|
chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) : |
|
chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0), |
|
entry_size * size + |
|
(incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0)); |
|
|
|
// we do codebook encoding according to the "intra" mode |
|
// but we keep the "dead" code for reference in case we will want |
|
// to use incremental codebook updates (which actually would give us |
|
// "kind of" motion compensation, especially in 1 strip/frame case) -- rl |
|
// (of course, the code will be not useful as-is) |
|
if (incremental_codebook_replacement_mode) { |
|
int flags = 0; |
|
int flagsind; |
|
for (x = 0; x < size; x++) { |
|
if (flags == 0) { |
|
flagsind = ret; |
|
ret += 4; |
|
flags = 0x80000000; |
|
} else |
|
flags = ((flags >> 1) | 0x80000000); |
|
for (y = 0; y < entry_size; y++) |
|
buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); |
|
if ((flags & 0xffffffff) == 0xffffffff) { |
|
AV_WB32(&buf[flagsind], flags); |
|
flags = 0; |
|
} |
|
} |
|
if (flags) |
|
AV_WB32(&buf[flagsind], flags); |
|
} else |
|
for (x = 0; x < size; x++) |
|
for (y = 0; y < entry_size; y++) |
|
buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); |
|
|
|
return ret; |
|
} |
|
|
|
// sets out to the sub picture starting at (x,y) in in |
|
static void get_sub_picture(CinepakEncContext *s, int x, int y, |
|
uint8_t *const in_data[4], const int in_linesize[4], |
|
uint8_t *out_data[4], int out_linesize[4]) |
|
{ |
|
out_data[0] = in_data[0] + x + y * in_linesize[0]; |
|
out_linesize[0] = in_linesize[0]; |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1]; |
|
out_linesize[1] = in_linesize[1]; |
|
|
|
out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2]; |
|
out_linesize[2] = in_linesize[2]; |
|
} |
|
} |
|
|
|
// decodes the V1 vector in mb into the 4x4 MB pointed to by data |
|
static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], |
|
int linesize[4], int v1_vector, strip_info *info) |
|
{ |
|
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
|
|
|
data[0][0] = |
|
data[0][1] = |
|
data[0][ linesize[0]] = |
|
data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size]; |
|
|
|
data[0][2] = |
|
data[0][3] = |
|
data[0][2 + linesize[0]] = |
|
data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1]; |
|
|
|
data[0][ 2 * linesize[0]] = |
|
data[0][1 + 2 * linesize[0]] = |
|
data[0][ 3 * linesize[0]] = |
|
data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2]; |
|
|
|
data[0][2 + 2 * linesize[0]] = |
|
data[0][3 + 2 * linesize[0]] = |
|
data[0][2 + 3 * linesize[0]] = |
|
data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3]; |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
data[1][0] = |
|
data[1][1] = |
|
data[1][ linesize[1]] = |
|
data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4]; |
|
|
|
data[2][0] = |
|
data[2][1] = |
|
data[2][ linesize[2]] = |
|
data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5]; |
|
} |
|
} |
|
|
|
// decodes the V4 vectors in mb into the 4x4 MB pointed to by data |
|
static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], |
|
int linesize[4], int *v4_vector, strip_info *info) |
|
{ |
|
int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
|
|
|
for (i = y = 0; y < 4; y += 2) { |
|
for (x = 0; x < 4; x += 2, i++) { |
|
data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size]; |
|
data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1]; |
|
data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2]; |
|
data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3]; |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4]; |
|
data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void copy_mb(CinepakEncContext *s, |
|
uint8_t *a_data[4], int a_linesize[4], |
|
uint8_t *b_data[4], int b_linesize[4]) |
|
{ |
|
int y, p; |
|
|
|
for (y = 0; y < MB_SIZE; y++) |
|
memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0], |
|
MB_SIZE); |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
for (p = 1; p <= 2; p++) |
|
for (y = 0; y < MB_SIZE / 2; y++) |
|
memcpy(a_data[p] + y * a_linesize[p], |
|
b_data[p] + y * b_linesize[p], |
|
MB_SIZE / 2); |
|
} |
|
} |
|
|
|
static int encode_mode(CinepakEncContext *s, int h, |
|
uint8_t *scratch_data[4], int scratch_linesize[4], |
|
uint8_t *last_data[4], int last_linesize[4], |
|
strip_info *info, unsigned char *buf) |
|
{ |
|
int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA; |
|
int needs_extra_bit, should_write_temp; |
|
uint32_t flags; |
|
unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B |
|
mb_info *mb; |
|
uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 }; |
|
int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 }; |
|
|
|
// encode codebooks |
|
////// MacOS vintage decoder compatibility dictates the presence of |
|
////// the codebook chunk even when the codebook is empty - pretty dumb... |
|
////// and also the certain order of the codebook chunks -- rl |
|
if (info->v4_size || !s->skip_empty_cb) |
|
ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret); |
|
|
|
if (info->v1_size || !s->skip_empty_cb) |
|
ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret); |
|
|
|
// update scratch picture |
|
for (z = y = 0; y < h; y += MB_SIZE) |
|
for (x = 0; x < s->w; x += MB_SIZE, z++) { |
|
mb = &s->mb[z]; |
|
|
|
get_sub_picture(s, x, y, scratch_data, scratch_linesize, |
|
sub_scratch_data, sub_scratch_linesize); |
|
|
|
if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) { |
|
get_sub_picture(s, x, y, last_data, last_linesize, |
|
sub_last_data, sub_last_linesize); |
|
copy_mb(s, sub_scratch_data, sub_scratch_linesize, |
|
sub_last_data, sub_last_linesize); |
|
} else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1) |
|
decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize, |
|
mb->v1_vector, info); |
|
else |
|
decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize, |
|
mb->v4_vector, info); |
|
} |
|
|
|
switch (info->mode) { |
|
case MODE_V1_ONLY: |
|
ret += write_chunk_header(buf + ret, 0x32, mb_count); |
|
|
|
for (x = 0; x < mb_count; x++) |
|
buf[ret++] = s->mb[x].v1_vector; |
|
|
|
break; |
|
case MODE_V1_V4: |
|
// remember header position |
|
header_ofs = ret; |
|
ret += CHUNK_HEADER_SIZE; |
|
|
|
for (x = 0; x < mb_count; x += 32) { |
|
flags = 0; |
|
for (y = x; y < FFMIN(x + 32, mb_count); y++) |
|
if (s->mb[y].best_encoding == ENC_V4) |
|
flags |= 1U << (31 - y + x); |
|
|
|
AV_WB32(&buf[ret], flags); |
|
ret += 4; |
|
|
|
for (y = x; y < FFMIN(x + 32, mb_count); y++) { |
|
mb = &s->mb[y]; |
|
|
|
if (mb->best_encoding == ENC_V1) |
|
buf[ret++] = mb->v1_vector; |
|
else |
|
for (z = 0; z < 4; z++) |
|
buf[ret++] = mb->v4_vector[z]; |
|
} |
|
} |
|
|
|
write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE); |
|
|
|
break; |
|
case MODE_MC: |
|
// remember header position |
|
header_ofs = ret; |
|
ret += CHUNK_HEADER_SIZE; |
|
flags = bits = temp_size = 0; |
|
|
|
for (x = 0; x < mb_count; x++) { |
|
mb = &s->mb[x]; |
|
flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++); |
|
needs_extra_bit = 0; |
|
should_write_temp = 0; |
|
|
|
if (mb->best_encoding != ENC_SKIP) { |
|
if (bits < 32) |
|
flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++); |
|
else |
|
needs_extra_bit = 1; |
|
} |
|
|
|
if (bits == 32) { |
|
AV_WB32(&buf[ret], flags); |
|
ret += 4; |
|
flags = bits = 0; |
|
|
|
if (mb->best_encoding == ENC_SKIP || needs_extra_bit) { |
|
memcpy(&buf[ret], temp, temp_size); |
|
ret += temp_size; |
|
temp_size = 0; |
|
} else |
|
should_write_temp = 1; |
|
} |
|
|
|
if (needs_extra_bit) { |
|
flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31; |
|
bits = 1; |
|
} |
|
|
|
if (mb->best_encoding == ENC_V1) |
|
temp[temp_size++] = mb->v1_vector; |
|
else if (mb->best_encoding == ENC_V4) |
|
for (z = 0; z < 4; z++) |
|
temp[temp_size++] = mb->v4_vector[z]; |
|
|
|
if (should_write_temp) { |
|
memcpy(&buf[ret], temp, temp_size); |
|
ret += temp_size; |
|
temp_size = 0; |
|
} |
|
} |
|
|
|
if (bits > 0) { |
|
AV_WB32(&buf[ret], flags); |
|
ret += 4; |
|
memcpy(&buf[ret], temp, temp_size); |
|
ret += temp_size; |
|
} |
|
|
|
write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE); |
|
|
|
break; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
// computes distortion of 4x4 MB in b compared to a |
|
static int compute_mb_distortion(CinepakEncContext *s, |
|
uint8_t *a_data[4], int a_linesize[4], |
|
uint8_t *b_data[4], int b_linesize[4]) |
|
{ |
|
int x, y, p, d, ret = 0; |
|
|
|
for (y = 0; y < MB_SIZE; y++) |
|
for (x = 0; x < MB_SIZE; x++) { |
|
d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]]; |
|
ret += d * d; |
|
} |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
for (p = 1; p <= 2; p++) { |
|
for (y = 0; y < MB_SIZE / 2; y++) |
|
for (x = 0; x < MB_SIZE / 2; x++) { |
|
d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]]; |
|
ret += d * d; |
|
} |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
// return the possibly adjusted size of the codebook |
|
#define CERTAIN(x) ((x) != ENC_UNCERTAIN) |
|
static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], |
|
int linesize[4], int v1mode, strip_info *info, |
|
mb_encoding encoding) |
|
{ |
|
int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn; |
|
int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
|
int *codebook = v1mode ? info->v1_codebook : info->v4_codebook; |
|
int size = v1mode ? info->v1_size : info->v4_size; |
|
uint8_t vq_pict_buf[(MB_AREA * 3) / 2]; |
|
uint8_t *sub_data[4], *vq_data[4]; |
|
int sub_linesize[4], vq_linesize[4]; |
|
int ret; |
|
|
|
for (mbn = i = y = 0; y < h; y += MB_SIZE) { |
|
for (x = 0; x < s->w; x += MB_SIZE, ++mbn) { |
|
int *base; |
|
|
|
if (CERTAIN(encoding)) { |
|
// use for the training only the blocks known to be to be encoded [sic:-] |
|
if (s->mb[mbn].best_encoding != encoding) |
|
continue; |
|
} |
|
|
|
base = s->codebook_input + i * entry_size; |
|
if (v1mode) { |
|
// subsample |
|
for (j = y2 = 0; y2 < entry_size; y2 += 2) |
|
for (x2 = 0; x2 < 4; x2 += 2, j++) { |
|
plane = y2 < 4 ? 0 : 1 + (x2 >> 1); |
|
shift = y2 < 4 ? 0 : 1; |
|
x3 = shift ? 0 : x2; |
|
y3 = shift ? 0 : y2; |
|
base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] + |
|
data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] + |
|
data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] + |
|
data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2; |
|
} |
|
} else { |
|
// copy |
|
for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) { |
|
for (x2 = 0; x2 < MB_SIZE; x2 += 2) |
|
for (k = 0; k < entry_size; k++, j++) { |
|
plane = k >= 4 ? k - 3 : 0; |
|
|
|
if (k >= 4) { |
|
x3 = (x + x2) >> 1; |
|
y3 = (y + y2) >> 1; |
|
} else { |
|
x3 = x + x2 + (k & 1); |
|
y3 = y + y2 + (k >> 1); |
|
} |
|
|
|
base[j] = data[plane][x3 + y3 * linesize[plane]]; |
|
} |
|
} |
|
} |
|
i += v1mode ? 1 : 4; |
|
} |
|
} |
|
|
|
if (i == 0) // empty training set, nothing to do |
|
return 0; |
|
if (i < size) |
|
size = i; |
|
|
|
ret = avpriv_elbg_do(&s->elbg, s->codebook_input, entry_size, i, codebook, |
|
size, 1, s->codebook_closest, &s->randctx, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
// set up vq_data, which contains a single MB |
|
vq_data[0] = vq_pict_buf; |
|
vq_linesize[0] = MB_SIZE; |
|
vq_data[1] = &vq_pict_buf[MB_AREA]; |
|
vq_data[2] = vq_data[1] + (MB_AREA >> 2); |
|
vq_linesize[1] = |
|
vq_linesize[2] = MB_SIZE >> 1; |
|
|
|
// copy indices |
|
for (i = j = y = 0; y < h; y += MB_SIZE) |
|
for (x = 0; x < s->w; x += MB_SIZE, j++) { |
|
mb_info *mb = &s->mb[j]; |
|
// skip uninteresting blocks if we know their preferred encoding |
|
if (CERTAIN(encoding) && mb->best_encoding != encoding) |
|
continue; |
|
|
|
// point sub_data to current MB |
|
get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize); |
|
|
|
if (v1mode) { |
|
mb->v1_vector = s->codebook_closest[i]; |
|
|
|
// fill in vq_data with V1 data |
|
decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info); |
|
|
|
mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize, |
|
vq_data, vq_linesize); |
|
} else { |
|
for (k = 0; k < 4; k++) |
|
mb->v4_vector[k] = s->codebook_closest[i + k]; |
|
|
|
// fill in vq_data with V4 data |
|
decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info); |
|
|
|
mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize, |
|
vq_data, vq_linesize); |
|
} |
|
i += v1mode ? 1 : 4; |
|
} |
|
// check that we did it right in the beginning of the function |
|
av_assert0(i >= size); // training set is no smaller than the codebook |
|
|
|
return size; |
|
} |
|
|
|
static void calculate_skip_errors(CinepakEncContext *s, int h, |
|
uint8_t *last_data[4], int last_linesize[4], |
|
uint8_t *data[4], int linesize[4], |
|
strip_info *info) |
|
{ |
|
int x, y, i; |
|
uint8_t *sub_last_data [4], *sub_pict_data [4]; |
|
int sub_last_linesize[4], sub_pict_linesize[4]; |
|
|
|
for (i = y = 0; y < h; y += MB_SIZE) |
|
for (x = 0; x < s->w; x += MB_SIZE, i++) { |
|
get_sub_picture(s, x, y, last_data, last_linesize, |
|
sub_last_data, sub_last_linesize); |
|
get_sub_picture(s, x, y, data, linesize, |
|
sub_pict_data, sub_pict_linesize); |
|
|
|
s->mb[i].skip_error = |
|
compute_mb_distortion(s, |
|
sub_last_data, sub_last_linesize, |
|
sub_pict_data, sub_pict_linesize); |
|
} |
|
} |
|
|
|
static void write_strip_keyframe(unsigned char *buf, int keyframe) |
|
{ |
|
// actually we are exclusively using intra strip coding (how much can we win |
|
// otherwise? how to choose which part of a codebook to update?), |
|
// keyframes are different only because we disallow ENC_SKIP on them -- rl |
|
// (besides, the logic here used to be inverted: ) |
|
// buf[0] = keyframe ? 0x11: 0x10; |
|
buf[0] = keyframe ? 0x10 : 0x11; |
|
} |
|
|
|
static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, |
|
unsigned char *buf, int strip_size) |
|
{ |
|
write_strip_keyframe(buf, keyframe); |
|
AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE); |
|
// AV_WB16(&buf[4], y); /* using absolute y values works -- rl */ |
|
AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */ |
|
AV_WB16(&buf[6], 0); |
|
// AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */ |
|
AV_WB16(&buf[8], h); /* using relative values works as well -- rl */ |
|
AV_WB16(&buf[10], s->w); |
|
} |
|
|
|
static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, |
|
uint8_t *last_data[4], int last_linesize[4], |
|
uint8_t *data[4], int linesize[4], |
|
uint8_t *scratch_data[4], int scratch_linesize[4], |
|
unsigned char *buf, int64_t *best_score, int *no_skip) |
|
{ |
|
int64_t score = 0; |
|
int best_size = 0; |
|
strip_info info; |
|
// for codebook optimization: |
|
int v1enough, v1_size, v4enough, v4_size; |
|
int new_v1_size, new_v4_size; |
|
int v1shrunk, v4shrunk; |
|
|
|
if (!keyframe) |
|
calculate_skip_errors(s, h, last_data, last_linesize, data, linesize, |
|
&info); |
|
|
|
// try some powers of 4 for the size of the codebooks |
|
// constraint the v4 codebook to be no bigger than v1 one, |
|
// (and no less than v1_size/4) |
|
// thus making v1 preferable and possibly losing small details? should be ok |
|
#define SMALLEST_CODEBOOK 1 |
|
for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) { |
|
for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) { |
|
CinepakMode mode; |
|
// try all modes |
|
for (mode = 0; mode < MODE_COUNT; mode++) { |
|
// don't allow MODE_MC in intra frames |
|
if (keyframe && mode == MODE_MC) |
|
continue; |
|
|
|
if (mode == MODE_V1_ONLY) { |
|
info.v1_size = v1_size; |
|
// the size may shrink even before optimizations if the input is short: |
|
if ((new_v1_size = quantize(s, h, data, linesize, 1, |
|
&info, ENC_UNCERTAIN)) < 0) |
|
return new_v1_size; |
|
info.v1_size = new_v1_size; |
|
if (info.v1_size < v1_size) |
|
// too few eligible blocks, no sense in trying bigger sizes |
|
v1enough = 1; |
|
|
|
info.v4_size = 0; |
|
} else { // mode != MODE_V1_ONLY |
|
// if v4 codebook is empty then only allow V1-only mode |
|
if (!v4_size) |
|
continue; |
|
|
|
if (mode == MODE_V1_V4) { |
|
info.v4_size = v4_size; |
|
new_v4_size = quantize(s, h, data, linesize, 0, |
|
&info, ENC_UNCERTAIN); |
|
if (new_v4_size < 0) |
|
return new_v4_size; |
|
info.v4_size = new_v4_size; |
|
if (info.v4_size < v4_size) |
|
// too few eligible blocks, no sense in trying bigger sizes |
|
v4enough = 1; |
|
} |
|
} |
|
|
|
info.mode = mode; |
|
// choose the best encoding per block, based on current experience |
|
score = calculate_mode_score(s, h, &info, 0, |
|
&v1shrunk, &v4shrunk); |
|
|
|
if (mode != MODE_V1_ONLY) { |
|
int extra_iterations_limit = s->max_extra_cb_iterations; |
|
// recompute the codebooks, omitting the extra blocks |
|
// we assume we _may_ come here with more blocks to encode than before |
|
info.v1_size = v1_size; |
|
new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); |
|
if (new_v1_size < 0) |
|
return new_v1_size; |
|
if (new_v1_size < info.v1_size) |
|
info.v1_size = new_v1_size; |
|
// we assume we _may_ come here with more blocks to encode than before |
|
info.v4_size = v4_size; |
|
new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); |
|
if (new_v4_size < 0) |
|
return new_v4_size; |
|
if (new_v4_size < info.v4_size) |
|
info.v4_size = new_v4_size; |
|
// calculate the resulting score |
|
// (do not move blocks to codebook encodings now, as some blocks may have |
|
// got bigger errors despite a smaller training set - but we do not |
|
// ever grow the training sets back) |
|
for (;;) { |
|
score = calculate_mode_score(s, h, &info, 1, |
|
&v1shrunk, &v4shrunk); |
|
// do we have a reason to reiterate? if so, have we reached the limit? |
|
if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--) |
|
break; |
|
// recompute the codebooks, omitting the extra blocks |
|
if (v1shrunk) { |
|
info.v1_size = v1_size; |
|
new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); |
|
if (new_v1_size < 0) |
|
return new_v1_size; |
|
if (new_v1_size < info.v1_size) |
|
info.v1_size = new_v1_size; |
|
} |
|
if (v4shrunk) { |
|
info.v4_size = v4_size; |
|
new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); |
|
if (new_v4_size < 0) |
|
return new_v4_size; |
|
if (new_v4_size < info.v4_size) |
|
info.v4_size = new_v4_size; |
|
} |
|
} |
|
} |
|
|
|
if (best_size == 0 || score < *best_score) { |
|
*best_score = score; |
|
best_size = encode_mode(s, h, |
|
scratch_data, scratch_linesize, |
|
last_data, last_linesize, &info, |
|
s->strip_buf + STRIP_HEADER_SIZE); |
|
// in theory we could have MODE_MC without ENC_SKIP, |
|
// but MODE_V1_V4 will always be more efficient |
|
*no_skip = info.mode != MODE_MC; |
|
|
|
write_strip_header(s, y, h, keyframe, s->strip_buf, best_size); |
|
} |
|
} |
|
} |
|
} |
|
|
|
best_size += STRIP_HEADER_SIZE; |
|
memcpy(buf, s->strip_buf, best_size); |
|
|
|
return best_size; |
|
} |
|
|
|
static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, |
|
int num_strips, int data_size, int isakeyframe) |
|
{ |
|
buf[0] = isakeyframe ? 0 : 1; |
|
AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE); |
|
AV_WB16(&buf[4], s->w); |
|
AV_WB16(&buf[6], s->h); |
|
AV_WB16(&buf[8], num_strips); |
|
|
|
return CVID_HEADER_SIZE; |
|
} |
|
|
|
static int rd_frame(CinepakEncContext *s, const AVFrame *frame, |
|
int isakeyframe, unsigned char *buf, int buf_size, int *got_keyframe) |
|
{ |
|
int num_strips, strip, i, y, nexty, size, temp_size, best_size; |
|
uint8_t *last_data [4], *data [4], *scratch_data [4]; |
|
int last_linesize[4], linesize[4], scratch_linesize[4]; |
|
int64_t best_score = 0, score, score_temp; |
|
int best_nstrips, best_strip_offsets[MAX_STRIPS]; |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
|
int x; |
|
// build a copy of the given frame in the correct colorspace |
|
for (y = 0; y < s->h; y += 2) |
|
for (x = 0; x < s->w; x += 2) { |
|
const uint8_t *ir[2]; |
|
int32_t r, g, b, rr, gg, bb; |
|
ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0]; |
|
ir[1] = ir[0] + frame->linesize[0]; |
|
get_sub_picture(s, x, y, |
|
s->input_frame->data, s->input_frame->linesize, |
|
scratch_data, scratch_linesize); |
|
r = g = b = 0; |
|
for (i = 0; i < 4; ++i) { |
|
int i1, i2; |
|
i1 = (i & 1); |
|
i2 = (i >= 2); |
|
rr = ir[i2][i1 * 3 + 0]; |
|
gg = ir[i2][i1 * 3 + 1]; |
|
bb = ir[i2][i1 * 3 + 2]; |
|
r += rr; |
|
g += gg; |
|
b += bb; |
|
// using fixed point arithmetic for portable repeatability, scaling by 2^23 |
|
// "Y" |
|
// rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb; |
|
rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23; |
|
if (rr < 0) |
|
rr = 0; |
|
else if (rr > 255) |
|
rr = 255; |
|
scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr; |
|
} |
|
// let us scale down as late as possible |
|
// r /= 4; g /= 4; b /= 4; |
|
// "U" |
|
// rr = -0.1429 * r - 0.2857 * g + 0.4286 * b; |
|
rr = (-299683 * r - 599156 * g + 898839 * b) >> 23; |
|
if (rr < -128) |
|
rr = -128; |
|
else if (rr > 127) |
|
rr = 127; |
|
scratch_data[1][0] = rr + 128; // quantize needs unsigned |
|
// "V" |
|
// rr = 0.3571 * r - 0.2857 * g - 0.0714 * b; |
|
rr = (748893 * r - 599156 * g - 149737 * b) >> 23; |
|
if (rr < -128) |
|
rr = -128; |
|
else if (rr > 127) |
|
rr = 127; |
|
scratch_data[2][0] = rr + 128; // quantize needs unsigned |
|
} |
|
} |
|
|
|
// would be nice but quite certainly incompatible with vintage players: |
|
// support encoding zero strips (meaning skip the whole frame) |
|
for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) { |
|
int strip_offsets[MAX_STRIPS]; |
|
int all_no_skip = 1; |
|
score = 0; |
|
size = 0; |
|
|
|
for (y = 0, strip = 1; y < s->h; strip++, y = nexty) { |
|
int strip_height, no_skip; |
|
|
|
strip_offsets[strip-1] = size + CVID_HEADER_SIZE; |
|
nexty = strip * s->h / num_strips; // <= s->h |
|
// make nexty the next multiple of 4 if not already there |
|
if (nexty & 3) |
|
nexty += 4 - (nexty & 3); |
|
|
|
strip_height = nexty - y; |
|
if (strip_height <= 0) { // can this ever happen? |
|
av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips); |
|
continue; |
|
} |
|
|
|
if (s->pix_fmt == AV_PIX_FMT_RGB24) |
|
get_sub_picture(s, 0, y, |
|
s->input_frame->data, s->input_frame->linesize, |
|
data, linesize); |
|
else |
|
get_sub_picture(s, 0, y, |
|
frame->data, frame->linesize, |
|
data, linesize); |
|
get_sub_picture(s, 0, y, |
|
s->last_frame->data, s->last_frame->linesize, |
|
last_data, last_linesize); |
|
get_sub_picture(s, 0, y, |
|
s->scratch_frame->data, s->scratch_frame->linesize, |
|
scratch_data, scratch_linesize); |
|
|
|
if ((temp_size = rd_strip(s, y, strip_height, isakeyframe, |
|
last_data, last_linesize, data, linesize, |
|
scratch_data, scratch_linesize, |
|
s->frame_buf + strip_offsets[strip-1], |
|
&score_temp, &no_skip)) < 0) |
|
return temp_size; |
|
|
|
score += score_temp; |
|
size += temp_size; |
|
all_no_skip &= no_skip; |
|
} |
|
|
|
if (best_score == 0 || score < best_score) { |
|
best_score = score; |
|
best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, all_no_skip); |
|
|
|
FFSWAP(AVFrame *, s->best_frame, s->scratch_frame); |
|
memcpy(buf, s->frame_buf, best_size); |
|
best_nstrips = num_strips; |
|
*got_keyframe = all_no_skip; // no skip MBs in any strip -> keyframe |
|
memcpy(best_strip_offsets, strip_offsets, sizeof(strip_offsets)); |
|
} |
|
// avoid trying too many strip numbers without a real reason |
|
// (this makes the processing of the very first frame faster) |
|
if (num_strips - best_nstrips > 4) |
|
break; |
|
} |
|
|
|
// update strip headers |
|
for (i = 0; i < best_nstrips; i++) { |
|
write_strip_keyframe(s->frame_buf + best_strip_offsets[i], *got_keyframe); |
|
} |
|
|
|
// let the number of strips slowly adapt to the changes in the contents, |
|
// compared to full bruteforcing every time this will occasionally lead |
|
// to some r/d performance loss but makes encoding up to several times faster |
|
if (!s->strip_number_delta_range) { |
|
if (best_nstrips == s->max_strips) { // let us try to step up |
|
s->max_strips = best_nstrips + 1; |
|
if (s->max_strips >= s->max_max_strips) |
|
s->max_strips = s->max_max_strips; |
|
} else { // try to step down |
|
s->max_strips = best_nstrips; |
|
} |
|
s->min_strips = s->max_strips - 1; |
|
if (s->min_strips < s->min_min_strips) |
|
s->min_strips = s->min_min_strips; |
|
} else { |
|
s->max_strips = best_nstrips + s->strip_number_delta_range; |
|
if (s->max_strips >= s->max_max_strips) |
|
s->max_strips = s->max_max_strips; |
|
s->min_strips = best_nstrips - s->strip_number_delta_range; |
|
if (s->min_strips < s->min_min_strips) |
|
s->min_strips = s->min_min_strips; |
|
} |
|
|
|
return best_size; |
|
} |
|
|
|
static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *frame, int *got_packet) |
|
{ |
|
CinepakEncContext *s = avctx->priv_data; |
|
int ret, got_keyframe; |
|
|
|
s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE; |
|
|
|
if ((ret = ff_alloc_packet(avctx, pkt, s->frame_buf_size)) < 0) |
|
return ret; |
|
ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size, &got_keyframe); |
|
pkt->size = ret; |
|
if (got_keyframe) { |
|
pkt->flags |= AV_PKT_FLAG_KEY; |
|
s->curframe = 0; |
|
} |
|
*got_packet = 1; |
|
|
|
FFSWAP(AVFrame *, s->last_frame, s->best_frame); |
|
|
|
if (++s->curframe >= avctx->gop_size) |
|
s->curframe = 0; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int cinepak_encode_end(AVCodecContext *avctx) |
|
{ |
|
CinepakEncContext *s = avctx->priv_data; |
|
int x; |
|
|
|
avpriv_elbg_free(&s->elbg); |
|
av_frame_free(&s->last_frame); |
|
av_frame_free(&s->best_frame); |
|
av_frame_free(&s->scratch_frame); |
|
if (avctx->pix_fmt == AV_PIX_FMT_RGB24) |
|
av_frame_free(&s->input_frame); |
|
av_freep(&s->codebook_input); |
|
av_freep(&s->codebook_closest); |
|
av_freep(&s->strip_buf); |
|
av_freep(&s->frame_buf); |
|
av_freep(&s->mb); |
|
|
|
for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) |
|
av_freep(&s->pict_bufs[x]); |
|
|
|
return 0; |
|
} |
|
|
|
const FFCodec ff_cinepak_encoder = { |
|
.p.name = "cinepak", |
|
CODEC_LONG_NAME("Cinepak"), |
|
.p.type = AVMEDIA_TYPE_VIDEO, |
|
.p.id = AV_CODEC_ID_CINEPAK, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, |
|
.priv_data_size = sizeof(CinepakEncContext), |
|
.init = cinepak_encode_init, |
|
FF_CODEC_ENCODE_CB(cinepak_encode_frame), |
|
.close = cinepak_encode_end, |
|
.p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, |
|
.p.priv_class = &cinepak_class, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
};
|
|
|