mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
7.4 KiB
253 lines
7.4 KiB
/* |
|
* A 32-bit implementation of the XTEA algorithm |
|
* Copyright (c) 2012 Samuel Pitoiset |
|
* |
|
* loosely based on the implementation of David Wheeler and Roger Needham |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* @brief XTEA 32-bit implementation |
|
* @author Samuel Pitoiset |
|
* @ingroup lavu_xtea |
|
*/ |
|
|
|
#include <string.h> |
|
#include "config.h" |
|
#include "intreadwrite.h" |
|
#include "mem.h" |
|
#include "xtea.h" |
|
|
|
AVXTEA *av_xtea_alloc(void) |
|
{ |
|
return av_mallocz(sizeof(struct AVXTEA)); |
|
} |
|
|
|
void av_xtea_init(AVXTEA *ctx, const uint8_t key[16]) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < 4; i++) |
|
ctx->key[i] = AV_RB32(key + (i << 2)); |
|
} |
|
|
|
void av_xtea_le_init(AVXTEA *ctx, const uint8_t key[16]) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < 4; i++) |
|
ctx->key[i] = AV_RL32(key + (i << 2)); |
|
} |
|
|
|
static void xtea_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, |
|
int decrypt, uint8_t *iv) |
|
{ |
|
uint32_t v0, v1; |
|
#if !CONFIG_SMALL |
|
uint32_t k0 = ctx->key[0]; |
|
uint32_t k1 = ctx->key[1]; |
|
uint32_t k2 = ctx->key[2]; |
|
uint32_t k3 = ctx->key[3]; |
|
#endif |
|
|
|
v0 = AV_RB32(src); |
|
v1 = AV_RB32(src + 4); |
|
|
|
if (decrypt) { |
|
#if CONFIG_SMALL |
|
int i; |
|
uint32_t delta = 0x9E3779B9U, sum = delta * 32; |
|
|
|
for (i = 0; i < 32; i++) { |
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]); |
|
sum -= delta; |
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]); |
|
} |
|
#else |
|
#define DSTEP(SUM, K0, K1) \ |
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + K0); \ |
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM - 0x9E3779B9U + K1) |
|
|
|
DSTEP(0xC6EF3720U, k2, k3); |
|
DSTEP(0x28B7BD67U, k3, k2); |
|
DSTEP(0x8A8043AEU, k0, k1); |
|
DSTEP(0xEC48C9F5U, k1, k0); |
|
DSTEP(0x4E11503CU, k2, k3); |
|
DSTEP(0xAFD9D683U, k2, k2); |
|
DSTEP(0x11A25CCAU, k3, k1); |
|
DSTEP(0x736AE311U, k0, k0); |
|
DSTEP(0xD5336958U, k1, k3); |
|
DSTEP(0x36FBEF9FU, k1, k2); |
|
DSTEP(0x98C475E6U, k2, k1); |
|
DSTEP(0xFA8CFC2DU, k3, k0); |
|
DSTEP(0x5C558274U, k0, k3); |
|
DSTEP(0xBE1E08BBU, k1, k2); |
|
DSTEP(0x1FE68F02U, k1, k1); |
|
DSTEP(0x81AF1549U, k2, k0); |
|
DSTEP(0xE3779B90U, k3, k3); |
|
DSTEP(0x454021D7U, k0, k2); |
|
DSTEP(0xA708A81EU, k1, k1); |
|
DSTEP(0x08D12E65U, k1, k0); |
|
DSTEP(0x6A99B4ACU, k2, k3); |
|
DSTEP(0xCC623AF3U, k3, k2); |
|
DSTEP(0x2E2AC13AU, k0, k1); |
|
DSTEP(0x8FF34781U, k0, k0); |
|
DSTEP(0xF1BBCDC8U, k1, k3); |
|
DSTEP(0x5384540FU, k2, k2); |
|
DSTEP(0xB54CDA56U, k3, k1); |
|
DSTEP(0x1715609DU, k0, k0); |
|
DSTEP(0x78DDE6E4U, k0, k3); |
|
DSTEP(0xDAA66D2BU, k1, k2); |
|
DSTEP(0x3C6EF372U, k2, k1); |
|
DSTEP(0x9E3779B9U, k3, k0); |
|
#endif |
|
if (iv) { |
|
v0 ^= AV_RB32(iv); |
|
v1 ^= AV_RB32(iv + 4); |
|
memcpy(iv, src, 8); |
|
} |
|
} else { |
|
#if CONFIG_SMALL |
|
int i; |
|
uint32_t sum = 0, delta = 0x9E3779B9U; |
|
|
|
for (i = 0; i < 32; i++) { |
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]); |
|
sum += delta; |
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]); |
|
} |
|
#else |
|
#define ESTEP(SUM, K0, K1) \ |
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM + K0);\ |
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + 0x9E3779B9U + K1) |
|
ESTEP(0x00000000U, k0, k3); |
|
ESTEP(0x9E3779B9U, k1, k2); |
|
ESTEP(0x3C6EF372U, k2, k1); |
|
ESTEP(0xDAA66D2BU, k3, k0); |
|
ESTEP(0x78DDE6E4U, k0, k0); |
|
ESTEP(0x1715609DU, k1, k3); |
|
ESTEP(0xB54CDA56U, k2, k2); |
|
ESTEP(0x5384540FU, k3, k1); |
|
ESTEP(0xF1BBCDC8U, k0, k0); |
|
ESTEP(0x8FF34781U, k1, k0); |
|
ESTEP(0x2E2AC13AU, k2, k3); |
|
ESTEP(0xCC623AF3U, k3, k2); |
|
ESTEP(0x6A99B4ACU, k0, k1); |
|
ESTEP(0x08D12E65U, k1, k1); |
|
ESTEP(0xA708A81EU, k2, k0); |
|
ESTEP(0x454021D7U, k3, k3); |
|
ESTEP(0xE3779B90U, k0, k2); |
|
ESTEP(0x81AF1549U, k1, k1); |
|
ESTEP(0x1FE68F02U, k2, k1); |
|
ESTEP(0xBE1E08BBU, k3, k0); |
|
ESTEP(0x5C558274U, k0, k3); |
|
ESTEP(0xFA8CFC2DU, k1, k2); |
|
ESTEP(0x98C475E6U, k2, k1); |
|
ESTEP(0x36FBEF9FU, k3, k1); |
|
ESTEP(0xD5336958U, k0, k0); |
|
ESTEP(0x736AE311U, k1, k3); |
|
ESTEP(0x11A25CCAU, k2, k2); |
|
ESTEP(0xAFD9D683U, k3, k2); |
|
ESTEP(0x4E11503CU, k0, k1); |
|
ESTEP(0xEC48C9F5U, k1, k0); |
|
ESTEP(0x8A8043AEU, k2, k3); |
|
ESTEP(0x28B7BD67U, k3, k2); |
|
#endif |
|
} |
|
|
|
AV_WB32(dst, v0); |
|
AV_WB32(dst + 4, v1); |
|
} |
|
|
|
static void xtea_le_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, |
|
int decrypt, uint8_t *iv) |
|
{ |
|
uint32_t v0, v1; |
|
int i; |
|
|
|
v0 = AV_RL32(src); |
|
v1 = AV_RL32(src + 4); |
|
|
|
if (decrypt) { |
|
uint32_t delta = 0x9E3779B9, sum = delta * 32; |
|
|
|
for (i = 0; i < 32; i++) { |
|
v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]); |
|
sum -= delta; |
|
v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]); |
|
} |
|
if (iv) { |
|
v0 ^= AV_RL32(iv); |
|
v1 ^= AV_RL32(iv + 4); |
|
memcpy(iv, src, 8); |
|
} |
|
} else { |
|
uint32_t sum = 0, delta = 0x9E3779B9; |
|
|
|
for (i = 0; i < 32; i++) { |
|
v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->key[sum & 3]); |
|
sum += delta; |
|
v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (sum + ctx->key[(sum >> 11) & 3]); |
|
} |
|
} |
|
|
|
AV_WL32(dst, v0); |
|
AV_WL32(dst + 4, v1); |
|
} |
|
|
|
static void xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count, |
|
uint8_t *iv, int decrypt, |
|
void (*crypt)(AVXTEA *, uint8_t *, const uint8_t *, int, uint8_t *)) |
|
{ |
|
int i; |
|
|
|
if (decrypt) { |
|
while (count--) { |
|
crypt(ctx, dst, src, decrypt, iv); |
|
|
|
src += 8; |
|
dst += 8; |
|
} |
|
} else { |
|
while (count--) { |
|
if (iv) { |
|
for (i = 0; i < 8; i++) |
|
dst[i] = src[i] ^ iv[i]; |
|
crypt(ctx, dst, dst, decrypt, NULL); |
|
memcpy(iv, dst, 8); |
|
} else { |
|
crypt(ctx, dst, src, decrypt, NULL); |
|
} |
|
src += 8; |
|
dst += 8; |
|
} |
|
} |
|
} |
|
|
|
void av_xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count, |
|
uint8_t *iv, int decrypt) |
|
{ |
|
xtea_crypt(ctx, dst, src, count, iv, decrypt, xtea_crypt_ecb); |
|
} |
|
|
|
void av_xtea_le_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count, |
|
uint8_t *iv, int decrypt) |
|
{ |
|
xtea_crypt(ctx, dst, src, count, iv, decrypt, xtea_le_crypt_ecb); |
|
}
|
|
|