mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1029 lines
34 KiB
1029 lines
34 KiB
/* |
|
* Copyright (c) 2012 Andrew D'Addesio |
|
* Copyright (c) 2013-2014 Mozilla Corporation |
|
* Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Opus CELT decoder |
|
*/ |
|
|
|
#include "opus_celt.h" |
|
#include "opustab.h" |
|
#include "opus_pvq.h" |
|
|
|
static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
int i, j; |
|
float prev[2] = {0}; |
|
float alpha, beta; |
|
const uint8_t *model; |
|
|
|
/* use the 2D z-transform to apply prediction in both */ |
|
/* the time domain (alpha) and the frequency domain (beta) */ |
|
|
|
if (opus_rc_tell(rc)+3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) { |
|
/* intra frame */ |
|
alpha = 0; |
|
beta = 1.0f - 4915.0f/32768.0f; |
|
model = ff_celt_coarse_energy_dist[f->size][1]; |
|
} else { |
|
alpha = ff_celt_alpha_coef[f->size]; |
|
beta = 1.0f - ff_celt_beta_coef[f->size]; |
|
model = ff_celt_coarse_energy_dist[f->size][0]; |
|
} |
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) { |
|
for (j = 0; j < f->channels; j++) { |
|
CeltBlock *block = &f->block[j]; |
|
float value; |
|
int available; |
|
|
|
if (i < f->start_band || i >= f->end_band) { |
|
block->energy[i] = 0.0; |
|
continue; |
|
} |
|
|
|
available = f->framebits - opus_rc_tell(rc); |
|
if (available >= 15) { |
|
/* decode using a Laplace distribution */ |
|
int k = FFMIN(i, 20) << 1; |
|
value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6); |
|
} else if (available >= 2) { |
|
int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small); |
|
value = (x>>1) ^ -(x&1); |
|
} else if (available >= 1) { |
|
value = -(float)ff_opus_rc_dec_log(rc, 1); |
|
} else value = -1; |
|
|
|
block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value; |
|
prev[j] += beta * value; |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
int i; |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int j; |
|
if (!f->fine_bits[i]) |
|
continue; |
|
|
|
for (j = 0; j < f->channels; j++) { |
|
CeltBlock *block = &f->block[j]; |
|
int q2; |
|
float offset; |
|
q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]); |
|
offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f; |
|
block->energy[i] += offset; |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
int priority, i, j; |
|
int bits_left = f->framebits - opus_rc_tell(rc); |
|
|
|
for (priority = 0; priority < 2; priority++) { |
|
for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) { |
|
if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) |
|
continue; |
|
|
|
for (j = 0; j < f->channels; j++) { |
|
int q2; |
|
float offset; |
|
q2 = ff_opus_rc_get_raw(rc, 1); |
|
offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; |
|
f->block[j].energy[i] += offset; |
|
bits_left--; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit; |
|
int consumed, bits = f->transient ? 2 : 4; |
|
|
|
consumed = opus_rc_tell(rc); |
|
tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits); |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
if (consumed+bits+tf_select_bit <= f->framebits) { |
|
diff ^= ff_opus_rc_dec_log(rc, bits); |
|
consumed = opus_rc_tell(rc); |
|
tf_changed |= diff; |
|
} |
|
f->tf_change[i] = diff; |
|
bits = f->transient ? 4 : 5; |
|
} |
|
|
|
if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != |
|
ff_celt_tf_select[f->size][f->transient][1][tf_changed]) |
|
tf_select = ff_opus_rc_dec_log(rc, 1); |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; |
|
} |
|
} |
|
|
|
static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
// approx. maximum bit allocation for each band before boost/trim |
|
int cap[CELT_MAX_BANDS]; |
|
int boost[CELT_MAX_BANDS]; |
|
int threshold[CELT_MAX_BANDS]; |
|
int bits1[CELT_MAX_BANDS]; |
|
int bits2[CELT_MAX_BANDS]; |
|
int trim_offset[CELT_MAX_BANDS]; |
|
|
|
int skip_start_band = f->start_band; |
|
int dynalloc = 6; |
|
int alloctrim = 5; |
|
int extrabits = 0; |
|
|
|
int skip_bit = 0; |
|
int intensity_stereo_bit = 0; |
|
int dual_stereo_bit = 0; |
|
|
|
int remaining, bandbits; |
|
int low, high, total, done; |
|
int totalbits; |
|
int consumed; |
|
int i, j; |
|
|
|
consumed = opus_rc_tell(rc); |
|
|
|
/* obtain spread flag */ |
|
f->spread = CELT_SPREAD_NORMAL; |
|
if (consumed + 4 <= f->framebits) |
|
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); |
|
|
|
/* generate static allocation caps */ |
|
for (i = 0; i < CELT_MAX_BANDS; i++) { |
|
cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64) |
|
* ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2; |
|
} |
|
|
|
/* obtain band boost */ |
|
totalbits = f->framebits << 3; // convert to 1/8 bits |
|
consumed = opus_rc_tell_frac(rc); |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int quanta, band_dynalloc; |
|
|
|
boost[i] = 0; |
|
|
|
quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; |
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); |
|
band_dynalloc = dynalloc; |
|
while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) { |
|
int add = ff_opus_rc_dec_log(rc, band_dynalloc); |
|
consumed = opus_rc_tell_frac(rc); |
|
if (!add) |
|
break; |
|
|
|
boost[i] += quanta; |
|
totalbits -= quanta; |
|
band_dynalloc = 1; |
|
} |
|
/* dynalloc is more likely to occur if it's already been used for earlier bands */ |
|
if (boost[i]) |
|
dynalloc = FFMAX(2, dynalloc - 1); |
|
} |
|
|
|
/* obtain allocation trim */ |
|
if (consumed + (6 << 3) <= totalbits) |
|
alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); |
|
|
|
/* anti-collapse bit reservation */ |
|
totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; |
|
f->anticollapse_needed = 0; |
|
if (f->blocks > 1 && f->size >= 2 && |
|
totalbits >= ((f->size + 2) << 3)) |
|
f->anticollapse_needed = 1 << 3; |
|
totalbits -= f->anticollapse_needed; |
|
|
|
/* band skip bit reservation */ |
|
if (totalbits >= 1 << 3) |
|
skip_bit = 1 << 3; |
|
totalbits -= skip_bit; |
|
|
|
/* intensity/dual stereo bit reservation */ |
|
if (f->channels == 2) { |
|
intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; |
|
if (intensity_stereo_bit <= totalbits) { |
|
totalbits -= intensity_stereo_bit; |
|
if (totalbits >= 1 << 3) { |
|
dual_stereo_bit = 1 << 3; |
|
totalbits -= 1 << 3; |
|
} |
|
} else |
|
intensity_stereo_bit = 0; |
|
} |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int trim = alloctrim - 5 - f->size; |
|
int band = ff_celt_freq_range[i] * (f->end_band - i - 1); |
|
int duration = f->size + 3; |
|
int scale = duration + f->channels - 1; |
|
|
|
/* PVQ minimum allocation threshold, below this value the band is |
|
* skipped */ |
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, |
|
f->channels << 3); |
|
|
|
trim_offset[i] = trim * (band << scale) >> 6; |
|
|
|
if (ff_celt_freq_range[i] << f->size == 1) |
|
trim_offset[i] -= f->channels << 3; |
|
} |
|
|
|
/* bisection */ |
|
low = 1; |
|
high = CELT_VECTORS - 1; |
|
while (low <= high) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i] |
|
<< (f->channels - 1) << f->size >> 2; |
|
|
|
if (bandbits) |
|
bandbits = FFMAX(0, bandbits + trim_offset[i]); |
|
bandbits += boost[i]; |
|
|
|
if (bandbits >= threshold[i] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, cap[i]); |
|
} else if (bandbits >= f->channels << 3) |
|
total += f->channels << 3; |
|
} |
|
|
|
if (total > totalbits) |
|
high = center - 1; |
|
else |
|
low = center + 1; |
|
} |
|
high = low--; |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i] |
|
<< (f->channels - 1) << f->size >> 2; |
|
bits2[i] = high >= CELT_VECTORS ? cap[i] : |
|
ff_celt_freq_range[i] * ff_celt_static_alloc[high][i] |
|
<< (f->channels - 1) << f->size >> 2; |
|
|
|
if (bits1[i]) |
|
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]); |
|
if (bits2[i]) |
|
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]); |
|
if (low) |
|
bits1[i] += boost[i]; |
|
bits2[i] += boost[i]; |
|
|
|
if (boost[i]) |
|
skip_start_band = i; |
|
bits2[i] = FFMAX(0, bits2[i] - bits1[i]); |
|
} |
|
|
|
/* bisection */ |
|
low = 0; |
|
high = 1 << CELT_ALLOC_STEPS; |
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (j = f->end_band - 1; j >= f->start_band; j--) { |
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[j] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, cap[j]); |
|
} else if (bandbits >= f->channels << 3) |
|
total += f->channels << 3; |
|
} |
|
if (total > totalbits) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
done = total = 0; |
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[i] || done) |
|
done = 1; |
|
else |
|
bandbits = (bandbits >= f->channels << 3) ? |
|
f->channels << 3 : 0; |
|
|
|
bandbits = FFMIN(bandbits, cap[i]); |
|
f->pulses[i] = bandbits; |
|
total += bandbits; |
|
} |
|
|
|
/* band skipping */ |
|
for (f->coded_bands = f->end_band; ; f->coded_bands--) { |
|
int allocation; |
|
j = f->coded_bands - 1; |
|
|
|
if (j == skip_start_band) { |
|
/* all remaining bands are not skipped */ |
|
totalbits += skip_bit; |
|
break; |
|
} |
|
|
|
/* determine the number of bits available for coding "do not skip" markers */ |
|
remaining = totalbits - total; |
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j] |
|
+ FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band])); |
|
|
|
/* a "do not skip" marker is only coded if the allocation is |
|
above the chosen threshold */ |
|
if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) { |
|
if (ff_opus_rc_dec_log(rc, 1)) |
|
break; |
|
|
|
total += 1 << 3; |
|
allocation -= 1 << 3; |
|
} |
|
|
|
/* the band is skipped, so reclaim its bits */ |
|
total -= f->pulses[j]; |
|
if (intensity_stereo_bit) { |
|
total -= intensity_stereo_bit; |
|
intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band]; |
|
total += intensity_stereo_bit; |
|
} |
|
|
|
total += f->pulses[j] = (allocation >= f->channels << 3) ? |
|
f->channels << 3 : 0; |
|
} |
|
|
|
/* obtain stereo flags */ |
|
f->intensity_stereo = 0; |
|
f->dual_stereo = 0; |
|
if (intensity_stereo_bit) |
|
f->intensity_stereo = f->start_band + |
|
ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); |
|
if (f->intensity_stereo <= f->start_band) |
|
totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */ |
|
else if (dual_stereo_bit) |
|
f->dual_stereo = ff_opus_rc_dec_log(rc, 1); |
|
|
|
/* supply the remaining bits in this frame to lower bands */ |
|
remaining = totalbits - total; |
|
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
int bits = FFMIN(remaining, ff_celt_freq_range[i]); |
|
|
|
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; |
|
remaining -= bits; |
|
} |
|
|
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
int N = ff_celt_freq_range[i] << f->size; |
|
int prev_extra = extrabits; |
|
f->pulses[i] += extrabits; |
|
|
|
if (N > 1) { |
|
int dof; // degrees of freedom |
|
int temp; // dof * channels * log(dof) |
|
int offset; // fine energy quantization offset, i.e. |
|
// extra bits assigned over the standard |
|
// totalbits/dof |
|
int fine_bits, max_bits; |
|
|
|
extrabits = FFMAX(0, f->pulses[i] - cap[i]); |
|
f->pulses[i] -= extrabits; |
|
|
|
/* intensity stereo makes use of an extra degree of freedom */ |
|
dof = N * f->channels |
|
+ (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); |
|
temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3)); |
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET; |
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */ |
|
offset += dof<<1; |
|
|
|
/* grant an additional bias for the first and second pulses */ |
|
if (f->pulses[i] + offset < 2 * (dof << 3)) |
|
offset += temp >> 2; |
|
else if (f->pulses[i] + offset < 3 * (dof << 3)) |
|
offset += temp >> 3; |
|
|
|
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); |
|
max_bits = FFMIN((f->pulses[i]>>3) >> (f->channels - 1), |
|
CELT_MAX_FINE_BITS); |
|
|
|
max_bits = FFMAX(max_bits, 0); |
|
|
|
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); |
|
|
|
/* if fine_bits was rounded down or capped, |
|
give priority for the final fine energy pass */ |
|
f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset); |
|
|
|
/* the remaining bits are assigned to PVQ */ |
|
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; |
|
} else { |
|
/* all bits go to fine energy except for the sign bit */ |
|
extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3)); |
|
f->pulses[i] -= extrabits; |
|
f->fine_bits[i] = 0; |
|
f->fine_priority[i] = 1; |
|
} |
|
|
|
/* hand back a limited number of extra fine energy bits to this band */ |
|
if (extrabits > 0) { |
|
int fineextra = FFMIN(extrabits >> (f->channels + 2), |
|
CELT_MAX_FINE_BITS - f->fine_bits[i]); |
|
f->fine_bits[i] += fineextra; |
|
|
|
fineextra <<= f->channels + 2; |
|
f->fine_priority[i] = (fineextra >= extrabits - prev_extra); |
|
extrabits -= fineextra; |
|
} |
|
} |
|
f->remaining = extrabits; |
|
|
|
/* skipped bands dedicate all of their bits for fine energy */ |
|
for (; i < f->end_band; i++) { |
|
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; |
|
f->pulses[i] = 0; |
|
f->fine_priority[i] = f->fine_bits[i] < 1; |
|
} |
|
} |
|
|
|
static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data) |
|
{ |
|
int i, j; |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
float *dst = data + (ff_celt_freq_bands[i] << f->size); |
|
float norm = exp2(block->energy[i] + ff_celt_mean_energy[i]); |
|
|
|
for (j = 0; j < ff_celt_freq_range[i] << f->size; j++) |
|
dst[j] *= norm; |
|
} |
|
} |
|
|
|
static void celt_postfilter_apply_transition(CeltBlock *block, float *data) |
|
{ |
|
const int T0 = block->pf_period_old; |
|
const int T1 = block->pf_period; |
|
|
|
float g00, g01, g02; |
|
float g10, g11, g12; |
|
|
|
float x0, x1, x2, x3, x4; |
|
|
|
int i; |
|
|
|
if (block->pf_gains[0] == 0.0 && |
|
block->pf_gains_old[0] == 0.0) |
|
return; |
|
|
|
g00 = block->pf_gains_old[0]; |
|
g01 = block->pf_gains_old[1]; |
|
g02 = block->pf_gains_old[2]; |
|
g10 = block->pf_gains[0]; |
|
g11 = block->pf_gains[1]; |
|
g12 = block->pf_gains[2]; |
|
|
|
x1 = data[-T1 + 1]; |
|
x2 = data[-T1]; |
|
x3 = data[-T1 - 1]; |
|
x4 = data[-T1 - 2]; |
|
|
|
for (i = 0; i < CELT_OVERLAP; i++) { |
|
float w = ff_celt_window2[i]; |
|
x0 = data[i - T1 + 2]; |
|
|
|
data[i] += (1.0 - w) * g00 * data[i - T0] + |
|
(1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) + |
|
(1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) + |
|
w * g10 * x2 + |
|
w * g11 * (x1 + x3) + |
|
w * g12 * (x0 + x4); |
|
x4 = x3; |
|
x3 = x2; |
|
x2 = x1; |
|
x1 = x0; |
|
} |
|
} |
|
|
|
static void celt_postfilter_apply(CeltBlock *block, float *data, int len) |
|
{ |
|
const int T = block->pf_period; |
|
float g0, g1, g2; |
|
float x0, x1, x2, x3, x4; |
|
int i; |
|
|
|
if (block->pf_gains[0] == 0.0 || len <= 0) |
|
return; |
|
|
|
g0 = block->pf_gains[0]; |
|
g1 = block->pf_gains[1]; |
|
g2 = block->pf_gains[2]; |
|
|
|
x4 = data[-T - 2]; |
|
x3 = data[-T - 1]; |
|
x2 = data[-T]; |
|
x1 = data[-T + 1]; |
|
|
|
for (i = 0; i < len; i++) { |
|
x0 = data[i - T + 2]; |
|
data[i] += g0 * x2 + |
|
g1 * (x1 + x3) + |
|
g2 * (x0 + x4); |
|
x4 = x3; |
|
x3 = x2; |
|
x2 = x1; |
|
x1 = x0; |
|
} |
|
} |
|
|
|
static void celt_postfilter(CeltFrame *f, CeltBlock *block) |
|
{ |
|
int len = f->blocksize * f->blocks; |
|
|
|
celt_postfilter_apply_transition(block, block->buf + 1024); |
|
|
|
block->pf_period_old = block->pf_period; |
|
memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); |
|
|
|
block->pf_period = block->pf_period_new; |
|
memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains)); |
|
|
|
if (len > CELT_OVERLAP) { |
|
celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP); |
|
celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP, |
|
len - 2 * CELT_OVERLAP); |
|
|
|
block->pf_period_old = block->pf_period; |
|
memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains)); |
|
} |
|
|
|
memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float)); |
|
} |
|
|
|
static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed) |
|
{ |
|
static const float postfilter_taps[3][3] = { |
|
{ 0.3066406250f, 0.2170410156f, 0.1296386719f }, |
|
{ 0.4638671875f, 0.2680664062f, 0.0 }, |
|
{ 0.7998046875f, 0.1000976562f, 0.0 } |
|
}; |
|
int i; |
|
|
|
memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new)); |
|
memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new)); |
|
|
|
if (f->start_band == 0 && consumed + 16 <= f->framebits) { |
|
int has_postfilter = ff_opus_rc_dec_log(rc, 1); |
|
if (has_postfilter) { |
|
float gain; |
|
int tapset, octave, period; |
|
|
|
octave = ff_opus_rc_dec_uint(rc, 6); |
|
period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1; |
|
gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1); |
|
tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ? |
|
ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0; |
|
|
|
for (i = 0; i < 2; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); |
|
block->pf_gains_new[0] = gain * postfilter_taps[tapset][0]; |
|
block->pf_gains_new[1] = gain * postfilter_taps[tapset][1]; |
|
block->pf_gains_new[2] = gain * postfilter_taps[tapset][2]; |
|
} |
|
} |
|
|
|
consumed = opus_rc_tell(rc); |
|
} |
|
|
|
return consumed; |
|
} |
|
|
|
static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X) |
|
{ |
|
int i, j, k; |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int renormalize = 0; |
|
float *xptr; |
|
float prev[2]; |
|
float Ediff, r; |
|
float thresh, sqrt_1; |
|
int depth; |
|
|
|
/* depth in 1/8 bits */ |
|
depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size); |
|
thresh = exp2f(-1.0 - 0.125f * depth); |
|
sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size); |
|
|
|
xptr = X + (ff_celt_freq_bands[i] << f->size); |
|
|
|
prev[0] = block->prev_energy[0][i]; |
|
prev[1] = block->prev_energy[1][i]; |
|
if (f->channels == 1) { |
|
CeltBlock *block1 = &f->block[1]; |
|
|
|
prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]); |
|
prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]); |
|
} |
|
Ediff = block->energy[i] - FFMIN(prev[0], prev[1]); |
|
Ediff = FFMAX(0, Ediff); |
|
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
|
short blocks don't have the same energy as long */ |
|
r = exp2(1 - Ediff); |
|
if (f->size == 3) |
|
r *= M_SQRT2; |
|
r = FFMIN(thresh, r) * sqrt_1; |
|
for (k = 0; k < 1 << f->size; k++) { |
|
/* Detect collapse */ |
|
if (!(block->collapse_masks[i] & 1 << k)) { |
|
/* Fill with noise */ |
|
for (j = 0; j < ff_celt_freq_range[i]; j++) |
|
xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r; |
|
renormalize = 1; |
|
} |
|
} |
|
|
|
/* We just added some energy, so we need to renormalize */ |
|
if (renormalize) |
|
celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f); |
|
} |
|
} |
|
|
|
static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
float lowband_scratch[8 * 22]; |
|
float norm[2 * 8 * 100]; |
|
|
|
int totalbits = (f->framebits << 3) - f->anticollapse_needed; |
|
|
|
int update_lowband = 1; |
|
int lowband_offset = 0; |
|
|
|
int i, j; |
|
|
|
memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); |
|
memset(f->block[1].coeffs, 0, sizeof(f->block[0].coeffs)); |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; |
|
int band_offset = ff_celt_freq_bands[i] << f->size; |
|
int band_size = ff_celt_freq_range[i] << f->size; |
|
float *X = f->block[0].coeffs + band_offset; |
|
float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; |
|
|
|
int consumed = opus_rc_tell_frac(rc); |
|
float *norm2 = norm + 8 * 100; |
|
int effective_lowband = -1; |
|
int b = 0; |
|
|
|
/* Compute how many bits we want to allocate to this band */ |
|
if (i != f->start_band) |
|
f->remaining -= consumed; |
|
f->remaining2 = totalbits - consumed - 1; |
|
if (i <= f->coded_bands - 1) { |
|
int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); |
|
b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); |
|
} |
|
|
|
if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] && |
|
(update_lowband || lowband_offset == 0)) |
|
lowband_offset = i; |
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're |
|
going to be folding from. */ |
|
if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || |
|
f->blocks > 1 || f->tf_change[i] < 0)) { |
|
int foldstart, foldend; |
|
|
|
/* This ensures we never repeat spectral content within one band */ |
|
effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], |
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); |
|
foldstart = lowband_offset; |
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband); |
|
foldend = lowband_offset - 1; |
|
while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]); |
|
|
|
cm[0] = cm[1] = 0; |
|
for (j = foldstart; j < foldend; j++) { |
|
cm[0] |= f->block[0].collapse_masks[j]; |
|
cm[1] |= f->block[f->channels - 1].collapse_masks[j]; |
|
} |
|
} |
|
|
|
if (f->dual_stereo && i == f->intensity_stereo) { |
|
/* Switch off dual stereo to do intensity */ |
|
f->dual_stereo = 0; |
|
for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) |
|
norm[j] = (norm[j] + norm2[j]) / 2; |
|
} |
|
|
|
if (f->dual_stereo) { |
|
cm[0] = ff_celt_decode_band(f, rc, i, X, NULL, band_size, b / 2, f->blocks, |
|
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, |
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); |
|
|
|
cm[1] = ff_celt_decode_band(f, rc, i, Y, NULL, band_size, b/2, f->blocks, |
|
effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size, |
|
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); |
|
} else { |
|
cm[0] = ff_celt_decode_band(f, rc, i, X, Y, band_size, b, f->blocks, |
|
effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, |
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]); |
|
cm[1] = cm[0]; |
|
} |
|
|
|
f->block[0].collapse_masks[i] = (uint8_t)cm[0]; |
|
f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; |
|
f->remaining += f->pulses[i] + consumed; |
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */ |
|
update_lowband = (b > band_size << 3); |
|
} |
|
} |
|
|
|
int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc, |
|
float **output, int channels, int frame_size, |
|
int start_band, int end_band) |
|
{ |
|
int i, j; |
|
int consumed; // bits of entropy consumed thus far for this frame |
|
MDCT15Context *imdct; |
|
float imdct_scale = 1.0; |
|
|
|
if (channels != 1 && channels != 2) { |
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n", |
|
channels); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) { |
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n", |
|
start_band, end_band); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
f->silence = 0; |
|
f->transient = 0; |
|
f->anticollapse = 0; |
|
f->flushed = 0; |
|
f->channels = channels; |
|
f->start_band = start_band; |
|
f->end_band = end_band; |
|
f->framebits = rc->rb.bytes * 8; |
|
|
|
f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE); |
|
if (f->size > CELT_MAX_LOG_BLOCKS || |
|
frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) { |
|
av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n", |
|
frame_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!f->output_channels) |
|
f->output_channels = channels; |
|
|
|
memset(f->block[0].collapse_masks, 0, sizeof(f->block[0].collapse_masks)); |
|
memset(f->block[1].collapse_masks, 0, sizeof(f->block[1].collapse_masks)); |
|
|
|
consumed = opus_rc_tell(rc); |
|
|
|
/* obtain silence flag */ |
|
if (consumed >= f->framebits) |
|
f->silence = 1; |
|
else if (consumed == 1) |
|
f->silence = ff_opus_rc_dec_log(rc, 15); |
|
|
|
|
|
if (f->silence) { |
|
consumed = f->framebits; |
|
rc->total_bits += f->framebits - opus_rc_tell(rc); |
|
} |
|
|
|
/* obtain post-filter options */ |
|
consumed = parse_postfilter(f, rc, consumed); |
|
|
|
/* obtain transient flag */ |
|
if (f->size != 0 && consumed+3 <= f->framebits) |
|
f->transient = ff_opus_rc_dec_log(rc, 3); |
|
|
|
f->blocks = f->transient ? 1 << f->size : 1; |
|
f->blocksize = frame_size / f->blocks; |
|
|
|
imdct = f->imdct[f->transient ? 0 : f->size]; |
|
|
|
if (channels == 1) { |
|
for (i = 0; i < CELT_MAX_BANDS; i++) |
|
f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]); |
|
} |
|
|
|
celt_decode_coarse_energy(f, rc); |
|
celt_decode_tf_changes (f, rc); |
|
celt_decode_allocation (f, rc); |
|
celt_decode_fine_energy (f, rc); |
|
celt_decode_bands (f, rc); |
|
|
|
if (f->anticollapse_needed) |
|
f->anticollapse = ff_opus_rc_get_raw(rc, 1); |
|
|
|
celt_decode_final_energy(f, rc); |
|
|
|
/* apply anti-collapse processing and denormalization to |
|
* each coded channel */ |
|
for (i = 0; i < f->channels; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
if (f->anticollapse) |
|
process_anticollapse(f, block, f->block[i].coeffs); |
|
|
|
celt_denormalize(f, block, f->block[i].coeffs); |
|
} |
|
|
|
/* stereo -> mono downmix */ |
|
if (f->output_channels < f->channels) { |
|
f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16)); |
|
imdct_scale = 0.5; |
|
} else if (f->output_channels > f->channels) |
|
memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float)); |
|
|
|
if (f->silence) { |
|
for (i = 0; i < 2; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++) |
|
block->energy[j] = CELT_ENERGY_SILENCE; |
|
} |
|
memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs)); |
|
memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs)); |
|
} |
|
|
|
/* transform and output for each output channel */ |
|
for (i = 0; i < f->output_channels; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
float m = block->emph_coeff; |
|
|
|
/* iMDCT and overlap-add */ |
|
for (j = 0; j < f->blocks; j++) { |
|
float *dst = block->buf + 1024 + j * f->blocksize; |
|
|
|
imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j, |
|
f->blocks, imdct_scale); |
|
f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2, |
|
ff_celt_window, CELT_OVERLAP / 2); |
|
} |
|
|
|
/* postfilter */ |
|
celt_postfilter(f, block); |
|
|
|
/* deemphasis and output scaling */ |
|
for (j = 0; j < frame_size; j++) { |
|
float tmp = block->buf[1024 - frame_size + j] + m; |
|
m = tmp * CELT_EMPH_COEFF; |
|
output[i][j] = tmp / 32768.; |
|
} |
|
block->emph_coeff = m; |
|
} |
|
|
|
if (channels == 1) |
|
memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy)); |
|
|
|
for (i = 0; i < 2; i++ ) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
if (!f->transient) { |
|
memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0])); |
|
memcpy(block->prev_energy[0], block->energy, sizeof(block->prev_energy[0])); |
|
} else { |
|
for (j = 0; j < CELT_MAX_BANDS; j++) |
|
block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]); |
|
} |
|
|
|
for (j = 0; j < f->start_band; j++) { |
|
block->prev_energy[0][j] = CELT_ENERGY_SILENCE; |
|
block->energy[j] = 0.0; |
|
} |
|
for (j = f->end_band; j < CELT_MAX_BANDS; j++) { |
|
block->prev_energy[0][j] = CELT_ENERGY_SILENCE; |
|
block->energy[j] = 0.0; |
|
} |
|
} |
|
|
|
f->seed = rc->range; |
|
|
|
return 0; |
|
} |
|
|
|
void ff_celt_flush(CeltFrame *f) |
|
{ |
|
int i, j; |
|
|
|
if (f->flushed) |
|
return; |
|
|
|
for (i = 0; i < 2; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
for (j = 0; j < CELT_MAX_BANDS; j++) |
|
block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE; |
|
|
|
memset(block->energy, 0, sizeof(block->energy)); |
|
memset(block->buf, 0, sizeof(block->buf)); |
|
|
|
memset(block->pf_gains, 0, sizeof(block->pf_gains)); |
|
memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old)); |
|
memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new)); |
|
|
|
block->emph_coeff = 0.0; |
|
} |
|
f->seed = 0; |
|
|
|
f->flushed = 1; |
|
} |
|
|
|
void ff_celt_free(CeltFrame **f) |
|
{ |
|
CeltFrame *frm = *f; |
|
int i; |
|
|
|
if (!frm) |
|
return; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) |
|
ff_mdct15_uninit(&frm->imdct[i]); |
|
|
|
av_freep(&frm->dsp); |
|
av_freep(f); |
|
} |
|
|
|
int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels) |
|
{ |
|
CeltFrame *frm; |
|
int i, ret; |
|
|
|
if (output_channels != 1 && output_channels != 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n", |
|
output_channels); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
frm = av_mallocz(sizeof(*frm)); |
|
if (!frm) |
|
return AVERROR(ENOMEM); |
|
|
|
frm->avctx = avctx; |
|
frm->output_channels = output_channels; |
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++) { |
|
ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
|
if (!frm->dsp) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
|
|
ff_celt_flush(frm); |
|
|
|
*f = frm; |
|
|
|
return 0; |
|
fail: |
|
ff_celt_free(&frm); |
|
return ret; |
|
}
|
|
|