mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1460 lines
39 KiB
1460 lines
39 KiB
/* |
|
* The simplest AC3 encoder |
|
* Copyright (c) 2000 Gerard Lantau. |
|
* |
|
* This program is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This program is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License |
|
* along with this program; if not, write to the Free Software |
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|
*/ |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <math.h> |
|
#include "avcodec.h" |
|
|
|
#include "ac3enc.h" |
|
#include "ac3tab.h" |
|
|
|
//#define DEBUG |
|
//#define DEBUG_BITALLOC |
|
#define NDEBUG |
|
#include <assert.h> |
|
|
|
#define MDCT_NBITS 9 |
|
#define N (1 << MDCT_NBITS) |
|
#define NB_BLOCKS 6 /* number of PCM blocks inside an AC3 frame */ |
|
|
|
/* new exponents are sent if their Norm 1 exceed this number */ |
|
#define EXP_DIFF_THRESHOLD 1000 |
|
|
|
/* exponent encoding strategy */ |
|
#define EXP_REUSE 0 |
|
#define EXP_NEW 1 |
|
|
|
#define EXP_D15 1 |
|
#define EXP_D25 2 |
|
#define EXP_D45 3 |
|
|
|
static void fft_init(int ln); |
|
static void ac3_crc_init(void); |
|
|
|
static inline INT16 fix15(float a) |
|
{ |
|
int v; |
|
v = (int)(a * (float)(1 << 15)); |
|
if (v < -32767) |
|
v = -32767; |
|
else if (v > 32767) |
|
v = 32767; |
|
return v; |
|
} |
|
|
|
static inline int calc_lowcomp1(int a, int b0, int b1) |
|
{ |
|
if ((b0 + 256) == b1) { |
|
a = 384 ; |
|
} else if (b0 > b1) { |
|
a = a - 64; |
|
if (a < 0) a=0; |
|
} |
|
return a; |
|
} |
|
|
|
static inline int calc_lowcomp(int a, int b0, int b1, int bin) |
|
{ |
|
if (bin < 7) { |
|
if ((b0 + 256) == b1) { |
|
a = 384 ; |
|
} else if (b0 > b1) { |
|
a = a - 64; |
|
if (a < 0) a=0; |
|
} |
|
} else if (bin < 20) { |
|
if ((b0 + 256) == b1) { |
|
a = 320 ; |
|
} else if (b0 > b1) { |
|
a= a - 64; |
|
if (a < 0) a=0; |
|
} |
|
} else { |
|
a = a - 128; |
|
if (a < 0) a=0; |
|
} |
|
return a; |
|
} |
|
|
|
/* AC3 bit allocation. The algorithm is the one described in the AC3 |
|
spec with some optimizations because of our simplified encoding |
|
assumptions. */ |
|
void parametric_bit_allocation(AC3EncodeContext *s, UINT8 *bap, |
|
INT8 *exp, int start, int end, |
|
int snroffset, int fgain) |
|
{ |
|
int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin; |
|
int fastleak,slowleak,address,tmp; |
|
INT16 psd[256]; /* scaled exponents */ |
|
INT16 bndpsd[50]; /* interpolated exponents */ |
|
INT16 excite[50]; /* excitation */ |
|
INT16 mask[50]; /* masking value */ |
|
|
|
/* exponent mapping to PSD */ |
|
for(bin=start;bin<end;bin++) { |
|
psd[bin]=(3072 - (exp[bin] << 7)); |
|
} |
|
|
|
/* PSD integration */ |
|
j=start; |
|
k=masktab[start]; |
|
do { |
|
v=psd[j]; |
|
j++; |
|
end1=bndtab[k+1]; |
|
if (end1 > end) end1=end; |
|
for(i=j;i<end1;i++) { |
|
int c,adr; |
|
/* logadd */ |
|
v1=psd[j]; |
|
c=v-v1; |
|
if (c >= 0) { |
|
adr=c >> 1; |
|
if (adr > 255) adr=255; |
|
v=v + latab[adr]; |
|
} else { |
|
adr=(-c) >> 1; |
|
if (adr > 255) adr=255; |
|
v=v1 + latab[adr]; |
|
} |
|
j++; |
|
} |
|
bndpsd[k]=v; |
|
k++; |
|
} while (end > bndtab[k]); |
|
|
|
/* excitation function */ |
|
bndstrt = masktab[start]; |
|
bndend = masktab[end-1] + 1; |
|
|
|
lowcomp = 0; |
|
lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ; |
|
excite[0] = bndpsd[0] - fgain - lowcomp ; |
|
lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ; |
|
excite[1] = bndpsd[1] - fgain - lowcomp ; |
|
begin = 7 ; |
|
for (bin = 2; bin < 7; bin++) { |
|
lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ; |
|
fastleak = bndpsd[bin] - fgain ; |
|
slowleak = bndpsd[bin] - s->sgain ; |
|
excite[bin] = fastleak - lowcomp ; |
|
if (bndpsd[bin] <= bndpsd[bin+1]) { |
|
begin = bin + 1 ; |
|
break ; |
|
} |
|
} |
|
|
|
end1=bndend; |
|
if (end1 > 22) end1=22; |
|
|
|
for (bin = begin; bin < end1; bin++) { |
|
lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ; |
|
|
|
fastleak -= s->fdecay ; |
|
v = bndpsd[bin] - fgain; |
|
if (fastleak < v) fastleak = v; |
|
|
|
slowleak -= s->sdecay ; |
|
v = bndpsd[bin] - s->sgain; |
|
if (slowleak < v) slowleak = v; |
|
|
|
v=fastleak - lowcomp; |
|
if (slowleak > v) v=slowleak; |
|
|
|
excite[bin] = v; |
|
} |
|
|
|
for (bin = 22; bin < bndend; bin++) { |
|
fastleak -= s->fdecay ; |
|
v = bndpsd[bin] - fgain; |
|
if (fastleak < v) fastleak = v; |
|
slowleak -= s->sdecay ; |
|
v = bndpsd[bin] - s->sgain; |
|
if (slowleak < v) slowleak = v; |
|
|
|
v=fastleak; |
|
if (slowleak > v) v = slowleak; |
|
excite[bin] = v; |
|
} |
|
|
|
/* compute masking curve */ |
|
|
|
for (bin = bndstrt; bin < bndend; bin++) { |
|
v1 = excite[bin]; |
|
tmp = s->dbknee - bndpsd[bin]; |
|
if (tmp > 0) { |
|
v1 += tmp >> 2; |
|
} |
|
v=hth[bin >> s->halfratecod][s->fscod]; |
|
if (v1 > v) v=v1; |
|
mask[bin] = v; |
|
} |
|
|
|
/* compute bit allocation */ |
|
|
|
i = start ; |
|
j = masktab[start] ; |
|
do { |
|
v=mask[j]; |
|
v -= snroffset ; |
|
v -= s->floor ; |
|
if (v < 0) v = 0; |
|
v &= 0x1fe0 ; |
|
v += s->floor ; |
|
|
|
end1=bndtab[j] + bndsz[j]; |
|
if (end1 > end) end1=end; |
|
|
|
for (k = i; k < end1; k++) { |
|
address = (psd[i] - v) >> 5 ; |
|
if (address < 0) address=0; |
|
else if (address > 63) address=63; |
|
bap[i] = baptab[address]; |
|
i++; |
|
} |
|
} while (end > bndtab[j++]) ; |
|
} |
|
|
|
typedef struct IComplex { |
|
short re,im; |
|
} IComplex; |
|
|
|
static void fft_init(int ln) |
|
{ |
|
int i, j, m, n; |
|
float alpha; |
|
|
|
n = 1 << ln; |
|
|
|
for(i=0;i<(n/2);i++) { |
|
alpha = 2 * M_PI * (float)i / (float)n; |
|
costab[i] = fix15(cos(alpha)); |
|
sintab[i] = fix15(sin(alpha)); |
|
} |
|
|
|
for(i=0;i<n;i++) { |
|
m=0; |
|
for(j=0;j<ln;j++) { |
|
m |= ((i >> j) & 1) << (ln-j-1); |
|
} |
|
fft_rev[i]=m; |
|
} |
|
} |
|
|
|
/* butter fly op */ |
|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ |
|
{\ |
|
int ax, ay, bx, by;\ |
|
bx=pre1;\ |
|
by=pim1;\ |
|
ax=qre1;\ |
|
ay=qim1;\ |
|
pre = (bx + ax) >> 1;\ |
|
pim = (by + ay) >> 1;\ |
|
qre = (bx - ax) >> 1;\ |
|
qim = (by - ay) >> 1;\ |
|
} |
|
|
|
#define MUL16(a,b) ((a) * (b)) |
|
|
|
#define CMUL(pre, pim, are, aim, bre, bim) \ |
|
{\ |
|
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\ |
|
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\ |
|
} |
|
|
|
|
|
/* do a 2^n point complex fft on 2^ln points. */ |
|
static void fft(IComplex *z, int ln) |
|
{ |
|
int j, l, np, np2; |
|
int nblocks, nloops; |
|
register IComplex *p,*q; |
|
int tmp_re, tmp_im; |
|
|
|
np = 1 << ln; |
|
|
|
/* reverse */ |
|
for(j=0;j<np;j++) { |
|
int k; |
|
IComplex tmp; |
|
k = fft_rev[j]; |
|
if (k < j) { |
|
tmp = z[k]; |
|
z[k] = z[j]; |
|
z[j] = tmp; |
|
} |
|
} |
|
|
|
/* pass 0 */ |
|
|
|
p=&z[0]; |
|
j=(np >> 1); |
|
do { |
|
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
|
p[0].re, p[0].im, p[1].re, p[1].im); |
|
p+=2; |
|
} while (--j != 0); |
|
|
|
/* pass 1 */ |
|
|
|
p=&z[0]; |
|
j=np >> 2; |
|
do { |
|
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
|
p[0].re, p[0].im, p[2].re, p[2].im); |
|
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
|
p[1].re, p[1].im, p[3].im, -p[3].re); |
|
p+=4; |
|
} while (--j != 0); |
|
|
|
/* pass 2 .. ln-1 */ |
|
|
|
nblocks = np >> 3; |
|
nloops = 1 << 2; |
|
np2 = np >> 1; |
|
do { |
|
p = z; |
|
q = z + nloops; |
|
for (j = 0; j < nblocks; ++j) { |
|
|
|
BF(p->re, p->im, q->re, q->im, |
|
p->re, p->im, q->re, q->im); |
|
|
|
p++; |
|
q++; |
|
for(l = nblocks; l < np2; l += nblocks) { |
|
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
|
BF(p->re, p->im, q->re, q->im, |
|
p->re, p->im, tmp_re, tmp_im); |
|
p++; |
|
q++; |
|
} |
|
p += nloops; |
|
q += nloops; |
|
} |
|
nblocks = nblocks >> 1; |
|
nloops = nloops << 1; |
|
} while (nblocks != 0); |
|
} |
|
|
|
/* do a 512 point mdct */ |
|
static void mdct512(INT32 *out, INT16 *in) |
|
{ |
|
int i, re, im, re1, im1; |
|
INT16 rot[N]; |
|
IComplex x[N/4]; |
|
|
|
/* shift to simplify computations */ |
|
for(i=0;i<N/4;i++) |
|
rot[i] = -in[i + 3*N/4]; |
|
for(i=N/4;i<N;i++) |
|
rot[i] = in[i - N/4]; |
|
|
|
/* pre rotation */ |
|
for(i=0;i<N/4;i++) { |
|
re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1; |
|
im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1; |
|
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
|
} |
|
|
|
fft(x, MDCT_NBITS - 2); |
|
|
|
/* post rotation */ |
|
for(i=0;i<N/4;i++) { |
|
re = x[i].re; |
|
im = x[i].im; |
|
CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); |
|
out[2*i] = im1; |
|
out[N/2-1-2*i] = re1; |
|
} |
|
} |
|
|
|
/* XXX: use another norm ? */ |
|
static int calc_exp_diff(UINT8 *exp1, UINT8 *exp2, int n) |
|
{ |
|
int sum, i; |
|
sum = 0; |
|
for(i=0;i<n;i++) { |
|
sum += abs(exp1[i] - exp2[i]); |
|
} |
|
return sum; |
|
} |
|
|
|
static void compute_exp_strategy(UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
|
UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
|
int ch) |
|
{ |
|
int i, j; |
|
int exp_diff; |
|
|
|
/* estimate if the exponent variation & decide if they should be |
|
reused in the next frame */ |
|
exp_strategy[0][ch] = EXP_NEW; |
|
for(i=1;i<NB_BLOCKS;i++) { |
|
exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2); |
|
#ifdef DEBUG |
|
printf("exp_diff=%d\n", exp_diff); |
|
#endif |
|
if (exp_diff > EXP_DIFF_THRESHOLD) |
|
exp_strategy[i][ch] = EXP_NEW; |
|
else |
|
exp_strategy[i][ch] = EXP_REUSE; |
|
} |
|
/* now select the encoding strategy type : if exponents are often |
|
recoded, we use a coarse encoding */ |
|
i = 0; |
|
while (i < NB_BLOCKS) { |
|
j = i + 1; |
|
while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) |
|
j++; |
|
switch(j - i) { |
|
case 1: |
|
exp_strategy[i][ch] = EXP_D45; |
|
break; |
|
case 2: |
|
case 3: |
|
exp_strategy[i][ch] = EXP_D25; |
|
break; |
|
default: |
|
exp_strategy[i][ch] = EXP_D15; |
|
break; |
|
} |
|
i = j; |
|
} |
|
} |
|
|
|
/* set exp[i] to min(exp[i], exp1[i]) */ |
|
static void exponent_min(UINT8 exp[N/2], UINT8 exp1[N/2], int n) |
|
{ |
|
int i; |
|
|
|
for(i=0;i<n;i++) { |
|
if (exp1[i] < exp[i]) |
|
exp[i] = exp1[i]; |
|
} |
|
} |
|
|
|
/* update the exponents so that they are the ones the decoder will |
|
decode. Return the number of bits used to code the exponents */ |
|
static int encode_exp(UINT8 encoded_exp[N/2], |
|
UINT8 exp[N/2], |
|
int nb_exps, |
|
int exp_strategy) |
|
{ |
|
int group_size, nb_groups, i, j, k, recurse, exp_min, delta; |
|
UINT8 exp1[N/2]; |
|
|
|
switch(exp_strategy) { |
|
case EXP_D15: |
|
group_size = 1; |
|
break; |
|
case EXP_D25: |
|
group_size = 2; |
|
break; |
|
default: |
|
case EXP_D45: |
|
group_size = 4; |
|
break; |
|
} |
|
nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3; |
|
|
|
/* for each group, compute the minimum exponent */ |
|
exp1[0] = exp[0]; /* DC exponent is handled separately */ |
|
k = 1; |
|
for(i=1;i<=nb_groups;i++) { |
|
exp_min = exp[k]; |
|
assert(exp_min >= 0 && exp_min <= 24); |
|
for(j=1;j<group_size;j++) { |
|
if (exp[k+j] < exp_min) |
|
exp_min = exp[k+j]; |
|
} |
|
exp1[i] = exp_min; |
|
k += group_size; |
|
} |
|
|
|
/* constraint for DC exponent */ |
|
if (exp1[0] > 15) |
|
exp1[0] = 15; |
|
|
|
/* Iterate until the delta constraints between each groups are |
|
satisfyed. I'm sure it is possible to find a better algorithm, |
|
but I am lazy */ |
|
do { |
|
recurse = 0; |
|
for(i=1;i<=nb_groups;i++) { |
|
delta = exp1[i] - exp1[i-1]; |
|
if (delta > 2) { |
|
/* if delta too big, we encode a smaller exponent */ |
|
exp1[i] = exp1[i-1] + 2; |
|
} else if (delta < -2) { |
|
/* if delta is too small, we must decrease the previous |
|
exponent, which means we must recurse */ |
|
recurse = 1; |
|
exp1[i-1] = exp1[i] + 2; |
|
} |
|
} |
|
} while (recurse); |
|
|
|
/* now we have the exponent values the decoder will see */ |
|
encoded_exp[0] = exp1[0]; |
|
k = 1; |
|
for(i=1;i<=nb_groups;i++) { |
|
for(j=0;j<group_size;j++) { |
|
encoded_exp[k+j] = exp1[i]; |
|
} |
|
k += group_size; |
|
} |
|
|
|
#if defined(DEBUG) |
|
printf("exponents: strategy=%d\n", exp_strategy); |
|
for(i=0;i<=nb_groups * group_size;i++) { |
|
printf("%d ", encoded_exp[i]); |
|
} |
|
printf("\n"); |
|
#endif |
|
|
|
return 4 + (nb_groups / 3) * 7; |
|
} |
|
|
|
/* return the size in bits taken by the mantissa */ |
|
int compute_mantissa_size(AC3EncodeContext *s, UINT8 *m, int nb_coefs) |
|
{ |
|
int bits, mant, i; |
|
|
|
bits = 0; |
|
for(i=0;i<nb_coefs;i++) { |
|
mant = m[i]; |
|
switch(mant) { |
|
case 0: |
|
/* nothing */ |
|
break; |
|
case 1: |
|
/* 3 mantissa in 5 bits */ |
|
if (s->mant1_cnt == 0) |
|
bits += 5; |
|
if (++s->mant1_cnt == 3) |
|
s->mant1_cnt = 0; |
|
break; |
|
case 2: |
|
/* 3 mantissa in 7 bits */ |
|
if (s->mant2_cnt == 0) |
|
bits += 7; |
|
if (++s->mant2_cnt == 3) |
|
s->mant2_cnt = 0; |
|
break; |
|
case 3: |
|
bits += 3; |
|
break; |
|
case 4: |
|
/* 2 mantissa in 7 bits */ |
|
if (s->mant4_cnt == 0) |
|
bits += 7; |
|
if (++s->mant4_cnt == 2) |
|
s->mant4_cnt = 0; |
|
break; |
|
case 14: |
|
bits += 14; |
|
break; |
|
case 15: |
|
bits += 16; |
|
break; |
|
default: |
|
bits += mant - 1; |
|
break; |
|
} |
|
} |
|
return bits; |
|
} |
|
|
|
|
|
static int bit_alloc(AC3EncodeContext *s, |
|
UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
|
UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
|
UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
|
int frame_bits, int csnroffst, int fsnroffst) |
|
{ |
|
int i, ch; |
|
|
|
/* compute size */ |
|
for(i=0;i<NB_BLOCKS;i++) { |
|
s->mant1_cnt = 0; |
|
s->mant2_cnt = 0; |
|
s->mant4_cnt = 0; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
parametric_bit_allocation(s, bap[i][ch], encoded_exp[i][ch], |
|
0, s->nb_coefs[ch], |
|
(((csnroffst-15) << 4) + |
|
fsnroffst) << 2, |
|
fgaintab[s->fgaincod[ch]]); |
|
frame_bits += compute_mantissa_size(s, bap[i][ch], |
|
s->nb_coefs[ch]); |
|
} |
|
} |
|
#if 0 |
|
printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n", |
|
csnroffst, fsnroffst, frame_bits, |
|
16 * s->frame_size - ((frame_bits + 7) & ~7)); |
|
#endif |
|
return 16 * s->frame_size - frame_bits; |
|
} |
|
|
|
#define SNR_INC1 4 |
|
|
|
static int compute_bit_allocation(AC3EncodeContext *s, |
|
UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
|
UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
|
UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
|
int frame_bits) |
|
{ |
|
int i, ch; |
|
int csnroffst, fsnroffst; |
|
UINT8 bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
|
|
|
/* init default parameters */ |
|
s->sdecaycod = 2; |
|
s->fdecaycod = 1; |
|
s->sgaincod = 1; |
|
s->dbkneecod = 2; |
|
s->floorcod = 4; |
|
for(ch=0;ch<s->nb_channels;ch++) |
|
s->fgaincod[ch] = 4; |
|
|
|
/* compute real values */ |
|
s->sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod; |
|
s->fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod; |
|
s->sgain = sgaintab[s->sgaincod]; |
|
s->dbknee = dbkneetab[s->dbkneecod]; |
|
s->floor = floortab[s->floorcod]; |
|
|
|
/* header size */ |
|
frame_bits += 65; |
|
if (s->acmod == 2) |
|
frame_bits += 2; |
|
|
|
/* audio blocks */ |
|
for(i=0;i<NB_BLOCKS;i++) { |
|
frame_bits += s->nb_channels * 2 + 2; |
|
if (s->acmod == 2) |
|
frame_bits++; |
|
frame_bits += 2 * s->nb_channels; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (exp_strategy[i][ch] != EXP_REUSE) |
|
frame_bits += 6 + 2; |
|
} |
|
frame_bits++; /* baie */ |
|
frame_bits++; /* snr */ |
|
frame_bits += 2; /* delta / skip */ |
|
} |
|
frame_bits++; /* cplinu for block 0 */ |
|
/* bit alloc info */ |
|
frame_bits += 2*4 + 3 + 6 + s->nb_channels * (4 + 3); |
|
|
|
/* CRC */ |
|
frame_bits += 16; |
|
|
|
/* now the big work begins : do the bit allocation. Modify the snr |
|
offset until we can pack everything in the requested frame size */ |
|
|
|
csnroffst = s->csnroffst; |
|
while (csnroffst >= 0 && |
|
bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0) |
|
csnroffst -= SNR_INC1; |
|
if (csnroffst < 0) { |
|
fprintf(stderr, "Error !!!\n"); |
|
return -1; |
|
} |
|
while ((csnroffst + SNR_INC1) <= 63 && |
|
bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, |
|
csnroffst + SNR_INC1, 0) >= 0) { |
|
csnroffst += SNR_INC1; |
|
memcpy(bap, bap1, sizeof(bap1)); |
|
} |
|
while ((csnroffst + 1) <= 63 && |
|
bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) { |
|
csnroffst++; |
|
memcpy(bap, bap1, sizeof(bap1)); |
|
} |
|
|
|
fsnroffst = 0; |
|
while ((fsnroffst + SNR_INC1) <= 15 && |
|
bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, |
|
csnroffst, fsnroffst + SNR_INC1) >= 0) { |
|
fsnroffst += SNR_INC1; |
|
memcpy(bap, bap1, sizeof(bap1)); |
|
} |
|
while ((fsnroffst + 1) <= 15 && |
|
bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, |
|
csnroffst, fsnroffst + 1) >= 0) { |
|
fsnroffst++; |
|
memcpy(bap, bap1, sizeof(bap1)); |
|
} |
|
|
|
s->csnroffst = csnroffst; |
|
for(ch=0;ch<s->nb_channels;ch++) |
|
s->fsnroffst[ch] = fsnroffst; |
|
#if defined(DEBUG_BITALLOC) |
|
{ |
|
int j; |
|
|
|
for(i=0;i<6;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
printf("Block #%d Ch%d:\n", i, ch); |
|
printf("bap="); |
|
for(j=0;j<s->nb_coefs[ch];j++) { |
|
printf("%d ",bap[i][ch][j]); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
} |
|
#endif |
|
return 0; |
|
} |
|
|
|
static int AC3_encode_init(AVCodecContext *avctx) |
|
{ |
|
int freq = avctx->sample_rate; |
|
int bitrate = avctx->bit_rate; |
|
int channels = avctx->channels; |
|
AC3EncodeContext *s = avctx->priv_data; |
|
int i, j, k, l, ch, v; |
|
float alpha; |
|
static unsigned short freqs[3] = { 48000, 44100, 32000 }; |
|
|
|
avctx->frame_size = AC3_FRAME_SIZE; |
|
avctx->key_frame = 1; /* always key frame */ |
|
|
|
/* number of channels */ |
|
if (channels == 1) |
|
s->acmod = 1; |
|
else if (channels == 2) |
|
s->acmod = 2; |
|
else |
|
return -1; |
|
s->nb_channels = channels; |
|
|
|
/* frequency */ |
|
for(i=0;i<3;i++) { |
|
for(j=0;j<3;j++) |
|
if ((freqs[j] >> i) == freq) |
|
goto found; |
|
} |
|
return -1; |
|
found: |
|
s->sample_rate = freq; |
|
s->halfratecod = i; |
|
s->fscod = j; |
|
s->bsid = 8 + s->halfratecod; |
|
s->bsmod = 0; /* complete main audio service */ |
|
|
|
/* bitrate & frame size */ |
|
bitrate /= 1000; |
|
for(i=0;i<19;i++) { |
|
if ((bitratetab[i] >> s->halfratecod) == bitrate) |
|
break; |
|
} |
|
if (i == 19) |
|
return -1; |
|
s->bit_rate = bitrate; |
|
s->frmsizecod = i << 1; |
|
s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16); |
|
/* for now we do not handle fractional sizes */ |
|
s->frame_size = s->frame_size_min; |
|
|
|
/* bit allocation init */ |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
/* bandwidth for each channel */ |
|
/* XXX: should compute the bandwidth according to the frame |
|
size, so that we avoid anoying high freq artefacts */ |
|
s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */ |
|
s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37; |
|
} |
|
/* initial snr offset */ |
|
s->csnroffst = 40; |
|
|
|
/* compute bndtab and masktab from bandsz */ |
|
k = 0; |
|
l = 0; |
|
for(i=0;i<50;i++) { |
|
bndtab[i] = l; |
|
v = bndsz[i]; |
|
for(j=0;j<v;j++) masktab[k++]=i; |
|
l += v; |
|
} |
|
bndtab[50] = 0; |
|
|
|
/* mdct init */ |
|
fft_init(MDCT_NBITS - 2); |
|
for(i=0;i<N/4;i++) { |
|
alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N; |
|
xcos1[i] = fix15(-cos(alpha)); |
|
xsin1[i] = fix15(-sin(alpha)); |
|
} |
|
|
|
ac3_crc_init(); |
|
|
|
return 0; |
|
} |
|
|
|
/* output the AC3 frame header */ |
|
static void output_frame_header(AC3EncodeContext *s, unsigned char *frame) |
|
{ |
|
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE, NULL, NULL); |
|
|
|
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
|
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
|
put_bits(&s->pb, 2, s->fscod); |
|
put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min)); |
|
put_bits(&s->pb, 5, s->bsid); |
|
put_bits(&s->pb, 3, s->bsmod); |
|
put_bits(&s->pb, 3, s->acmod); |
|
if (s->acmod == 2) { |
|
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
|
} |
|
put_bits(&s->pb, 1, 0); /* no LFE */ |
|
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
|
put_bits(&s->pb, 1, 0); /* no compression control word */ |
|
put_bits(&s->pb, 1, 0); /* no lang code */ |
|
put_bits(&s->pb, 1, 0); /* no audio production info */ |
|
put_bits(&s->pb, 1, 0); /* no copyright */ |
|
put_bits(&s->pb, 1, 1); /* original bitstream */ |
|
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
|
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
|
put_bits(&s->pb, 1, 0); /* no addtional bit stream info */ |
|
} |
|
|
|
/* symetric quantization on 'levels' levels */ |
|
static inline int sym_quant(int c, int e, int levels) |
|
{ |
|
int v; |
|
|
|
if (c >= 0) { |
|
v = (levels * (c << e)) >> 25; |
|
v = (levels >> 1) + v; |
|
} else { |
|
v = (levels * ((-c) << e)) >> 25; |
|
v = (levels >> 1) - v; |
|
} |
|
assert (v >= 0 && v < levels); |
|
return v; |
|
} |
|
|
|
/* asymetric quantization on 2^qbits levels */ |
|
static inline int asym_quant(int c, int e, int qbits) |
|
{ |
|
int lshift, m, v; |
|
|
|
lshift = e + qbits - 24; |
|
if (lshift >= 0) |
|
v = c << lshift; |
|
else |
|
v = c >> (-lshift); |
|
/* rounding */ |
|
v = (v + 1) >> 1; |
|
m = (1 << (qbits-1)); |
|
if (v >= m) |
|
v = m - 1; |
|
assert(v >= -m); |
|
return v & ((1 << qbits)-1); |
|
} |
|
|
|
/* Output one audio block. There are NB_BLOCKS audio blocks in one AC3 |
|
frame */ |
|
static void output_audio_block(AC3EncodeContext *s, |
|
UINT8 exp_strategy[AC3_MAX_CHANNELS], |
|
UINT8 encoded_exp[AC3_MAX_CHANNELS][N/2], |
|
UINT8 bap[AC3_MAX_CHANNELS][N/2], |
|
INT32 mdct_coefs[AC3_MAX_CHANNELS][N/2], |
|
INT8 global_exp[AC3_MAX_CHANNELS], |
|
int block_num) |
|
{ |
|
int ch, nb_groups, group_size, i, baie; |
|
UINT8 *p; |
|
UINT16 qmant[AC3_MAX_CHANNELS][N/2]; |
|
int exp0, exp1; |
|
int mant1_cnt, mant2_cnt, mant4_cnt; |
|
UINT16 *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; |
|
int delta0, delta1, delta2; |
|
|
|
for(ch=0;ch<s->nb_channels;ch++) |
|
put_bits(&s->pb, 1, 0); /* 512 point MDCT */ |
|
for(ch=0;ch<s->nb_channels;ch++) |
|
put_bits(&s->pb, 1, 1); /* no dither */ |
|
put_bits(&s->pb, 1, 0); /* no dynamic range */ |
|
if (block_num == 0) { |
|
/* for block 0, even if no coupling, we must say it. This is a |
|
waste of bit :-) */ |
|
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
|
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
|
} else { |
|
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
|
} |
|
|
|
if (s->acmod == 2) { |
|
put_bits(&s->pb, 1, 0); /* no matrixing (but should be used in the future) */ |
|
} |
|
|
|
#if defined(DEBUG) |
|
{ |
|
static int count = 0; |
|
printf("Block #%d (%d)\n", block_num, count++); |
|
} |
|
#endif |
|
/* exponent strategy */ |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
put_bits(&s->pb, 2, exp_strategy[ch]); |
|
} |
|
|
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (exp_strategy[ch] != EXP_REUSE) |
|
put_bits(&s->pb, 6, s->chbwcod[ch]); |
|
} |
|
|
|
/* exponents */ |
|
for (ch = 0; ch < s->nb_channels; ch++) { |
|
switch(exp_strategy[ch]) { |
|
case EXP_REUSE: |
|
continue; |
|
case EXP_D15: |
|
group_size = 1; |
|
break; |
|
case EXP_D25: |
|
group_size = 2; |
|
break; |
|
default: |
|
case EXP_D45: |
|
group_size = 4; |
|
break; |
|
} |
|
nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size); |
|
p = encoded_exp[ch]; |
|
|
|
/* first exponent */ |
|
exp1 = *p++; |
|
put_bits(&s->pb, 4, exp1); |
|
|
|
/* next ones are delta encoded */ |
|
for(i=0;i<nb_groups;i++) { |
|
/* merge three delta in one code */ |
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta0 = exp1 - exp0 + 2; |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta1 = exp1 - exp0 + 2; |
|
|
|
exp0 = exp1; |
|
exp1 = p[0]; |
|
p += group_size; |
|
delta2 = exp1 - exp0 + 2; |
|
|
|
put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2); |
|
} |
|
|
|
put_bits(&s->pb, 2, 0); /* no gain range info */ |
|
} |
|
|
|
/* bit allocation info */ |
|
baie = (block_num == 0); |
|
put_bits(&s->pb, 1, baie); |
|
if (baie) { |
|
put_bits(&s->pb, 2, s->sdecaycod); |
|
put_bits(&s->pb, 2, s->fdecaycod); |
|
put_bits(&s->pb, 2, s->sgaincod); |
|
put_bits(&s->pb, 2, s->dbkneecod); |
|
put_bits(&s->pb, 3, s->floorcod); |
|
} |
|
|
|
/* snr offset */ |
|
put_bits(&s->pb, 1, baie); /* always present with bai */ |
|
if (baie) { |
|
put_bits(&s->pb, 6, s->csnroffst); |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
put_bits(&s->pb, 4, s->fsnroffst[ch]); |
|
put_bits(&s->pb, 3, s->fgaincod[ch]); |
|
} |
|
} |
|
|
|
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
|
put_bits(&s->pb, 1, 0); /* no data to skip */ |
|
|
|
/* mantissa encoding : we use two passes to handle the grouping. A |
|
one pass method may be faster, but it would necessitate to |
|
modify the output stream. */ |
|
|
|
/* first pass: quantize */ |
|
mant1_cnt = mant2_cnt = mant4_cnt = 0; |
|
qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL; |
|
|
|
for (ch = 0; ch < s->nb_channels; ch++) { |
|
int b, c, e, v; |
|
|
|
for(i=0;i<s->nb_coefs[ch];i++) { |
|
c = mdct_coefs[ch][i]; |
|
e = encoded_exp[ch][i] - global_exp[ch]; |
|
b = bap[ch][i]; |
|
switch(b) { |
|
case 0: |
|
v = 0; |
|
break; |
|
case 1: |
|
v = sym_quant(c, e, 3); |
|
switch(mant1_cnt) { |
|
case 0: |
|
qmant1_ptr = &qmant[ch][i]; |
|
v = 9 * v; |
|
mant1_cnt = 1; |
|
break; |
|
case 1: |
|
*qmant1_ptr += 3 * v; |
|
mant1_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*qmant1_ptr += v; |
|
mant1_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 2: |
|
v = sym_quant(c, e, 5); |
|
switch(mant2_cnt) { |
|
case 0: |
|
qmant2_ptr = &qmant[ch][i]; |
|
v = 25 * v; |
|
mant2_cnt = 1; |
|
break; |
|
case 1: |
|
*qmant2_ptr += 5 * v; |
|
mant2_cnt = 2; |
|
v = 128; |
|
break; |
|
default: |
|
*qmant2_ptr += v; |
|
mant2_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 3: |
|
v = sym_quant(c, e, 7); |
|
break; |
|
case 4: |
|
v = sym_quant(c, e, 11); |
|
switch(mant4_cnt) { |
|
case 0: |
|
qmant4_ptr = &qmant[ch][i]; |
|
v = 11 * v; |
|
mant4_cnt = 1; |
|
break; |
|
default: |
|
*qmant4_ptr += v; |
|
mant4_cnt = 0; |
|
v = 128; |
|
break; |
|
} |
|
break; |
|
case 5: |
|
v = sym_quant(c, e, 15); |
|
break; |
|
case 14: |
|
v = asym_quant(c, e, 14); |
|
break; |
|
case 15: |
|
v = asym_quant(c, e, 16); |
|
break; |
|
default: |
|
v = asym_quant(c, e, b - 1); |
|
break; |
|
} |
|
qmant[ch][i] = v; |
|
} |
|
} |
|
|
|
/* second pass : output the values */ |
|
for (ch = 0; ch < s->nb_channels; ch++) { |
|
int b, q; |
|
|
|
for(i=0;i<s->nb_coefs[ch];i++) { |
|
q = qmant[ch][i]; |
|
b = bap[ch][i]; |
|
switch(b) { |
|
case 0: |
|
break; |
|
case 1: |
|
if (q != 128) |
|
put_bits(&s->pb, 5, q); |
|
break; |
|
case 2: |
|
if (q != 128) |
|
put_bits(&s->pb, 7, q); |
|
break; |
|
case 3: |
|
put_bits(&s->pb, 3, q); |
|
break; |
|
case 4: |
|
if (q != 128) |
|
put_bits(&s->pb, 7, q); |
|
break; |
|
case 14: |
|
put_bits(&s->pb, 14, q); |
|
break; |
|
case 15: |
|
put_bits(&s->pb, 16, q); |
|
break; |
|
default: |
|
put_bits(&s->pb, b - 1, q); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* compute the ac3 crc */ |
|
|
|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
|
|
|
static void ac3_crc_init(void) |
|
{ |
|
unsigned int c, n, k; |
|
|
|
for(n=0;n<256;n++) { |
|
c = n << 8; |
|
for (k = 0; k < 8; k++) { |
|
if (c & (1 << 15)) |
|
c = ((c << 1) & 0xffff) ^ (CRC16_POLY & 0xffff); |
|
else |
|
c = c << 1; |
|
} |
|
crc_table[n] = c; |
|
} |
|
} |
|
|
|
static unsigned int ac3_crc(UINT8 *data, int n, unsigned int crc) |
|
{ |
|
int i; |
|
for(i=0;i<n;i++) { |
|
crc = (crc_table[data[i] ^ (crc >> 8)] ^ (crc << 8)) & 0xffff; |
|
} |
|
return crc; |
|
} |
|
|
|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
|
{ |
|
unsigned int c; |
|
|
|
c = 0; |
|
while (a) { |
|
if (a & 1) |
|
c ^= b; |
|
a = a >> 1; |
|
b = b << 1; |
|
if (b & (1 << 16)) |
|
b ^= poly; |
|
} |
|
return c; |
|
} |
|
|
|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
|
{ |
|
unsigned int r; |
|
r = 1; |
|
while (n) { |
|
if (n & 1) |
|
r = mul_poly(r, a, poly); |
|
a = mul_poly(a, a, poly); |
|
n >>= 1; |
|
} |
|
return r; |
|
} |
|
|
|
|
|
/* compute log2(max(abs(tab[]))) */ |
|
static int log2_tab(INT16 *tab, int n) |
|
{ |
|
int i, v; |
|
|
|
v = 0; |
|
for(i=0;i<n;i++) { |
|
v |= abs(tab[i]); |
|
} |
|
return log2(v); |
|
} |
|
|
|
static void lshift_tab(INT16 *tab, int n, int lshift) |
|
{ |
|
int i; |
|
|
|
if (lshift > 0) { |
|
for(i=0;i<n;i++) { |
|
tab[i] <<= lshift; |
|
} |
|
} else if (lshift < 0) { |
|
lshift = -lshift; |
|
for(i=0;i<n;i++) { |
|
tab[i] >>= lshift; |
|
} |
|
} |
|
} |
|
|
|
/* fill the end of the frame and compute the two crcs */ |
|
static int output_frame_end(AC3EncodeContext *s) |
|
{ |
|
int frame_size, frame_size_58, n, crc1, crc2, crc_inv; |
|
UINT8 *frame; |
|
|
|
frame_size = s->frame_size; /* frame size in words */ |
|
/* align to 8 bits */ |
|
flush_put_bits(&s->pb); |
|
/* add zero bytes to reach the frame size */ |
|
frame = s->pb.buf; |
|
n = 2 * s->frame_size - (s->pb.buf_ptr - frame) - 2; |
|
assert(n >= 0); |
|
memset(s->pb.buf_ptr, 0, n); |
|
|
|
/* Now we must compute both crcs : this is not so easy for crc1 |
|
because it is at the beginning of the data... */ |
|
frame_size_58 = (frame_size >> 1) + (frame_size >> 3); |
|
crc1 = ac3_crc(frame + 4, (2 * frame_size_58) - 4, 0); |
|
/* XXX: could precompute crc_inv */ |
|
crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY); |
|
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
|
frame[2] = crc1 >> 8; |
|
frame[3] = crc1; |
|
|
|
crc2 = ac3_crc(frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2, 0); |
|
frame[2*frame_size - 2] = crc2 >> 8; |
|
frame[2*frame_size - 1] = crc2; |
|
|
|
// printf("n=%d frame_size=%d\n", n, frame_size); |
|
return frame_size * 2; |
|
} |
|
|
|
int AC3_encode_frame(AVCodecContext *avctx, |
|
unsigned char *frame, int buf_size, void *data) |
|
{ |
|
AC3EncodeContext *s = avctx->priv_data; |
|
short *samples = data; |
|
int i, j, k, v, ch; |
|
INT16 input_samples[N]; |
|
INT32 mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
|
UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
|
UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS]; |
|
UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
|
UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
|
INT8 exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS]; |
|
int frame_bits; |
|
|
|
frame_bits = 0; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
/* fixed mdct to the six sub blocks & exponent computation */ |
|
for(i=0;i<NB_BLOCKS;i++) { |
|
INT16 *sptr; |
|
int sinc; |
|
|
|
/* compute input samples */ |
|
memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(INT16)); |
|
sinc = s->nb_channels; |
|
sptr = samples + (sinc * (N/2) * i) + ch; |
|
for(j=0;j<N/2;j++) { |
|
v = *sptr; |
|
input_samples[j + N/2] = v; |
|
s->last_samples[ch][j] = v; |
|
sptr += sinc; |
|
} |
|
|
|
/* apply the MDCT window */ |
|
for(j=0;j<N/2;j++) { |
|
input_samples[j] = MUL16(input_samples[j], |
|
ac3_window[j]) >> 15; |
|
input_samples[N-j-1] = MUL16(input_samples[N-j-1], |
|
ac3_window[j]) >> 15; |
|
} |
|
|
|
/* Normalize the samples to use the maximum available |
|
precision */ |
|
v = 14 - log2_tab(input_samples, N); |
|
if (v < 0) |
|
v = 0; |
|
exp_samples[i][ch] = v - 8; |
|
lshift_tab(input_samples, N, v); |
|
|
|
/* do the MDCT */ |
|
mdct512(mdct_coef[i][ch], input_samples); |
|
|
|
/* compute "exponents". We take into account the |
|
normalization there */ |
|
for(j=0;j<N/2;j++) { |
|
int e; |
|
v = abs(mdct_coef[i][ch][j]); |
|
if (v == 0) |
|
e = 24; |
|
else { |
|
e = 23 - log2(v) + exp_samples[i][ch]; |
|
if (e >= 24) { |
|
e = 24; |
|
mdct_coef[i][ch][j] = 0; |
|
} |
|
} |
|
exp[i][ch][j] = e; |
|
} |
|
} |
|
|
|
compute_exp_strategy(exp_strategy, exp, ch); |
|
|
|
/* compute the exponents as the decoder will see them. The |
|
EXP_REUSE case must be handled carefully : we select the |
|
min of the exponents */ |
|
i = 0; |
|
while (i < NB_BLOCKS) { |
|
j = i + 1; |
|
while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) { |
|
exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]); |
|
j++; |
|
} |
|
frame_bits += encode_exp(encoded_exp[i][ch], |
|
exp[i][ch], s->nb_coefs[ch], |
|
exp_strategy[i][ch]); |
|
/* copy encoded exponents for reuse case */ |
|
for(k=i+1;k<j;k++) { |
|
memcpy(encoded_exp[k][ch], encoded_exp[i][ch], |
|
s->nb_coefs[ch] * sizeof(UINT8)); |
|
} |
|
i = j; |
|
} |
|
} |
|
|
|
compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits); |
|
/* everything is known... let's output the frame */ |
|
output_frame_header(s, frame); |
|
|
|
for(i=0;i<NB_BLOCKS;i++) { |
|
output_audio_block(s, exp_strategy[i], encoded_exp[i], |
|
bap[i], mdct_coef[i], exp_samples[i], i); |
|
} |
|
return output_frame_end(s); |
|
} |
|
|
|
#if 0 |
|
/*************************************************************************/ |
|
/* TEST */ |
|
|
|
#define FN (N/4) |
|
|
|
void fft_test(void) |
|
{ |
|
IComplex in[FN], in1[FN]; |
|
int k, n, i; |
|
float sum_re, sum_im, a; |
|
|
|
/* FFT test */ |
|
|
|
for(i=0;i<FN;i++) { |
|
in[i].re = random() % 65535 - 32767; |
|
in[i].im = random() % 65535 - 32767; |
|
in1[i] = in[i]; |
|
} |
|
fft(in, 7); |
|
|
|
/* do it by hand */ |
|
for(k=0;k<FN;k++) { |
|
sum_re = 0; |
|
sum_im = 0; |
|
for(n=0;n<FN;n++) { |
|
a = -2 * M_PI * (n * k) / FN; |
|
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
|
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
|
} |
|
printf("%3d: %6d,%6d %6.0f,%6.0f\n", |
|
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
|
} |
|
} |
|
|
|
void mdct_test(void) |
|
{ |
|
INT16 input[N]; |
|
INT32 output[N/2]; |
|
float input1[N]; |
|
float output1[N/2]; |
|
float s, a, err, e, emax; |
|
int i, k, n; |
|
|
|
for(i=0;i<N;i++) { |
|
input[i] = (random() % 65535 - 32767) * 9 / 10; |
|
input1[i] = input[i]; |
|
} |
|
|
|
mdct512(output, input); |
|
|
|
/* do it by hand */ |
|
for(k=0;k<N/2;k++) { |
|
s = 0; |
|
for(n=0;n<N;n++) { |
|
a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N)); |
|
s += input1[n] * cos(a); |
|
} |
|
output1[k] = -2 * s / N; |
|
} |
|
|
|
err = 0; |
|
emax = 0; |
|
for(i=0;i<N/2;i++) { |
|
printf("%3d: %7d %7.0f\n", i, output[i], output1[i]); |
|
e = output[i] - output1[i]; |
|
if (e > emax) |
|
emax = e; |
|
err += e * e; |
|
} |
|
printf("err2=%f emax=%f\n", err / (N/2), emax); |
|
} |
|
|
|
void test_ac3(void) |
|
{ |
|
AC3EncodeContext ctx; |
|
unsigned char frame[AC3_MAX_CODED_FRAME_SIZE]; |
|
short samples[AC3_FRAME_SIZE]; |
|
int ret, i; |
|
|
|
AC3_encode_init(&ctx, 44100, 64000, 1); |
|
|
|
fft_test(); |
|
mdct_test(); |
|
|
|
for(i=0;i<AC3_FRAME_SIZE;i++) |
|
samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000); |
|
ret = AC3_encode_frame(&ctx, frame, samples); |
|
printf("ret=%d\n", ret); |
|
} |
|
#endif |
|
|
|
AVCodec ac3_encoder = { |
|
"ac3", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_AC3, |
|
sizeof(AC3EncodeContext), |
|
AC3_encode_init, |
|
AC3_encode_frame, |
|
NULL, |
|
};
|
|
|