mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1182 lines
39 KiB
1182 lines
39 KiB
/* |
|
* MLP decoder |
|
* Copyright (c) 2007-2008 Ian Caulfield |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file mlpdec.c |
|
* MLP decoder |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
#include "avcodec.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "bitstream.h" |
|
#include "libavutil/crc.h" |
|
#include "parser.h" |
|
#include "mlp_parser.h" |
|
|
|
/** Maximum number of channels that can be decoded. */ |
|
#define MAX_CHANNELS 16 |
|
|
|
/** Maximum number of matrices used in decoding; most streams have one matrix |
|
* per output channel, but some rematrix a channel (usually 0) more than once. |
|
*/ |
|
|
|
#define MAX_MATRICES 15 |
|
|
|
/** Maximum number of substreams that can be decoded. This could also be set |
|
* higher, but I haven't seen any examples with more than two. */ |
|
#define MAX_SUBSTREAMS 2 |
|
|
|
/** maximum sample frequency seen in files */ |
|
#define MAX_SAMPLERATE 192000 |
|
|
|
/** maximum number of audio samples within one access unit */ |
|
#define MAX_BLOCKSIZE (40 * (MAX_SAMPLERATE / 48000)) |
|
/** next power of two greater than MAX_BLOCKSIZE */ |
|
#define MAX_BLOCKSIZE_POW2 (64 * (MAX_SAMPLERATE / 48000)) |
|
|
|
/** number of allowed filters */ |
|
#define NUM_FILTERS 2 |
|
|
|
/** The maximum number of taps in either the IIR or FIR filter; |
|
* I believe MLP actually specifies the maximum order for IIR filters as four, |
|
* and that the sum of the orders of both filters must be <= 8. */ |
|
#define MAX_FILTER_ORDER 8 |
|
|
|
/** number of bits used for VLC lookup - longest Huffman code is 9 */ |
|
#define VLC_BITS 9 |
|
|
|
|
|
static const char* sample_message = |
|
"Please file a bug report following the instructions at " |
|
"http://ffmpeg.mplayerhq.hu/bugreports.html and include " |
|
"a sample of this file."; |
|
|
|
typedef struct SubStream { |
|
//! Set if a valid restart header has been read. Otherwise the substream cannot be decoded. |
|
uint8_t restart_seen; |
|
|
|
//@{ |
|
/** restart header data */ |
|
//! The type of noise to be used in the rematrix stage. |
|
uint16_t noise_type; |
|
|
|
//! The index of the first channel coded in this substream. |
|
uint8_t min_channel; |
|
//! The index of the last channel coded in this substream. |
|
uint8_t max_channel; |
|
//! The number of channels input into the rematrix stage. |
|
uint8_t max_matrix_channel; |
|
|
|
//! The left shift applied to random noise in 0x31ea substreams. |
|
uint8_t noise_shift; |
|
//! The current seed value for the pseudorandom noise generator(s). |
|
uint32_t noisegen_seed; |
|
|
|
//! Set if the substream contains extra info to check the size of VLC blocks. |
|
uint8_t data_check_present; |
|
|
|
//! Bitmask of which parameter sets are conveyed in a decoding parameter block. |
|
uint8_t param_presence_flags; |
|
#define PARAM_BLOCKSIZE (1 << 7) |
|
#define PARAM_MATRIX (1 << 6) |
|
#define PARAM_OUTSHIFT (1 << 5) |
|
#define PARAM_QUANTSTEP (1 << 4) |
|
#define PARAM_FIR (1 << 3) |
|
#define PARAM_IIR (1 << 2) |
|
#define PARAM_HUFFOFFSET (1 << 1) |
|
//@} |
|
|
|
//@{ |
|
/** matrix data */ |
|
|
|
//! Number of matrices to be applied. |
|
uint8_t num_primitive_matrices; |
|
|
|
//! matrix output channel |
|
uint8_t matrix_out_ch[MAX_MATRICES]; |
|
|
|
//! Whether the LSBs of the matrix output are encoded in the bitstream. |
|
uint8_t lsb_bypass[MAX_MATRICES]; |
|
//! Matrix coefficients, stored as 2.14 fixed point. |
|
int32_t matrix_coeff[MAX_MATRICES][MAX_CHANNELS+2]; |
|
//! Left shift to apply to noise values in 0x31eb substreams. |
|
uint8_t matrix_noise_shift[MAX_MATRICES]; |
|
//@} |
|
|
|
//! Left shift to apply to Huffman-decoded residuals. |
|
uint8_t quant_step_size[MAX_CHANNELS]; |
|
|
|
//! number of PCM samples in current audio block |
|
uint16_t blocksize; |
|
//! Number of PCM samples decoded so far in this frame. |
|
uint16_t blockpos; |
|
|
|
//! Left shift to apply to decoded PCM values to get final 24-bit output. |
|
int8_t output_shift[MAX_CHANNELS]; |
|
|
|
//! Running XOR of all output samples. |
|
int32_t lossless_check_data; |
|
|
|
} SubStream; |
|
|
|
typedef struct MLPDecodeContext { |
|
AVCodecContext *avctx; |
|
|
|
//! Set if a valid major sync block has been read. Otherwise no decoding is possible. |
|
uint8_t params_valid; |
|
|
|
//! Number of substreams contained within this stream. |
|
uint8_t num_substreams; |
|
|
|
//! Index of the last substream to decode - further substreams are skipped. |
|
uint8_t max_decoded_substream; |
|
|
|
//! number of PCM samples contained in each frame |
|
int access_unit_size; |
|
//! next power of two above the number of samples in each frame |
|
int access_unit_size_pow2; |
|
|
|
SubStream substream[MAX_SUBSTREAMS]; |
|
|
|
//@{ |
|
/** filter data */ |
|
#define FIR 0 |
|
#define IIR 1 |
|
//! number of taps in filter |
|
uint8_t filter_order[MAX_CHANNELS][NUM_FILTERS]; |
|
//! Right shift to apply to output of filter. |
|
uint8_t filter_shift[MAX_CHANNELS][NUM_FILTERS]; |
|
|
|
int32_t filter_coeff[MAX_CHANNELS][NUM_FILTERS][MAX_FILTER_ORDER]; |
|
int32_t filter_state[MAX_CHANNELS][NUM_FILTERS][MAX_FILTER_ORDER]; |
|
//@} |
|
|
|
//@{ |
|
/** sample data coding information */ |
|
//! Offset to apply to residual values. |
|
int16_t huff_offset[MAX_CHANNELS]; |
|
//! sign/rounding-corrected version of huff_offset |
|
int32_t sign_huff_offset[MAX_CHANNELS]; |
|
//! Which VLC codebook to use to read residuals. |
|
uint8_t codebook[MAX_CHANNELS]; |
|
//! Size of residual suffix not encoded using VLC. |
|
uint8_t huff_lsbs[MAX_CHANNELS]; |
|
//@} |
|
|
|
int8_t noise_buffer[MAX_BLOCKSIZE_POW2]; |
|
int8_t bypassed_lsbs[MAX_BLOCKSIZE][MAX_CHANNELS]; |
|
int32_t sample_buffer[MAX_BLOCKSIZE][MAX_CHANNELS+2]; |
|
} MLPDecodeContext; |
|
|
|
/** Tables defining the Huffman codes. |
|
* There are three entropy coding methods used in MLP (four if you count |
|
* "none" as a method). These use the same sequences for codes starting with |
|
* 00 or 01, but have different codes starting with 1. */ |
|
|
|
static const uint8_t huffman_tables[3][18][2] = { |
|
{ /* Huffman table 0, -7 - +10 */ |
|
{0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3}, |
|
{0x04, 3}, {0x05, 3}, {0x06, 3}, {0x07, 3}, |
|
{0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9}, |
|
}, { /* Huffman table 1, -7 - +8 */ |
|
{0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3}, |
|
{0x02, 2}, {0x03, 2}, |
|
{0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9}, |
|
}, { /* Huffman table 2, -7 - +7 */ |
|
{0x01, 9}, {0x01, 8}, {0x01, 7}, {0x01, 6}, {0x01, 5}, {0x01, 4}, {0x01, 3}, |
|
{0x01, 1}, |
|
{0x03, 3}, {0x05, 4}, {0x09, 5}, {0x11, 6}, {0x21, 7}, {0x41, 8}, {0x81, 9}, |
|
} |
|
}; |
|
|
|
static VLC huff_vlc[3]; |
|
|
|
static int crc_init = 0; |
|
static AVCRC crc_63[1024]; |
|
static AVCRC crc_1D[1024]; |
|
|
|
|
|
/** Initialize static data, constant between all invocations of the codec. */ |
|
|
|
static av_cold void init_static() |
|
{ |
|
INIT_VLC_STATIC(&huff_vlc[0], VLC_BITS, 18, |
|
&huffman_tables[0][0][1], 2, 1, |
|
&huffman_tables[0][0][0], 2, 1, 512); |
|
INIT_VLC_STATIC(&huff_vlc[1], VLC_BITS, 16, |
|
&huffman_tables[1][0][1], 2, 1, |
|
&huffman_tables[1][0][0], 2, 1, 512); |
|
INIT_VLC_STATIC(&huff_vlc[2], VLC_BITS, 15, |
|
&huffman_tables[2][0][1], 2, 1, |
|
&huffman_tables[2][0][0], 2, 1, 512); |
|
|
|
if (!crc_init) { |
|
av_crc_init(crc_63, 0, 8, 0x63, sizeof(crc_63)); |
|
av_crc_init(crc_1D, 0, 8, 0x1D, sizeof(crc_1D)); |
|
crc_init = 1; |
|
} |
|
} |
|
|
|
|
|
/** MLP uses checksums that seem to be based on the standard CRC algorithm, but |
|
* are not (in implementation terms, the table lookup and XOR are reversed). |
|
* We can implement this behavior using a standard av_crc on all but the |
|
* last element, then XOR that with the last element. */ |
|
|
|
static uint8_t mlp_checksum8(const uint8_t *buf, unsigned int buf_size) |
|
{ |
|
uint8_t checksum = av_crc(crc_63, 0x3c, buf, buf_size - 1); // crc_63[0xa2] == 0x3c |
|
checksum ^= buf[buf_size-1]; |
|
return checksum; |
|
} |
|
|
|
/** Calculate an 8-bit checksum over a restart header -- a non-multiple-of-8 |
|
* number of bits, starting two bits into the first byte of buf. */ |
|
|
|
static uint8_t mlp_restart_checksum(const uint8_t *buf, unsigned int bit_size) |
|
{ |
|
int i; |
|
int num_bytes = (bit_size + 2) / 8; |
|
|
|
int crc = crc_1D[buf[0] & 0x3f]; |
|
crc = av_crc(crc_1D, crc, buf + 1, num_bytes - 2); |
|
crc ^= buf[num_bytes - 1]; |
|
|
|
for (i = 0; i < ((bit_size + 2) & 7); i++) { |
|
crc <<= 1; |
|
if (crc & 0x100) |
|
crc ^= 0x11D; |
|
crc ^= (buf[num_bytes] >> (7 - i)) & 1; |
|
} |
|
|
|
return crc; |
|
} |
|
|
|
static inline int32_t calculate_sign_huff(MLPDecodeContext *m, |
|
unsigned int substr, unsigned int ch) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
int lsb_bits = m->huff_lsbs[ch] - s->quant_step_size[ch]; |
|
int sign_shift = lsb_bits + (m->codebook[ch] ? 2 - m->codebook[ch] : -1); |
|
int32_t sign_huff_offset = m->huff_offset[ch]; |
|
|
|
if (m->codebook[ch] > 0) |
|
sign_huff_offset -= 7 << lsb_bits; |
|
|
|
if (sign_shift >= 0) |
|
sign_huff_offset -= 1 << sign_shift; |
|
|
|
return sign_huff_offset; |
|
} |
|
|
|
/** Read a sample, consisting of either, both or neither of entropy-coded MSBs |
|
* and plain LSBs. */ |
|
|
|
static inline int read_huff_channels(MLPDecodeContext *m, GetBitContext *gbp, |
|
unsigned int substr, unsigned int pos) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int mat, channel; |
|
|
|
for (mat = 0; mat < s->num_primitive_matrices; mat++) |
|
if (s->lsb_bypass[mat]) |
|
m->bypassed_lsbs[pos + s->blockpos][mat] = get_bits1(gbp); |
|
|
|
for (channel = s->min_channel; channel <= s->max_channel; channel++) { |
|
int codebook = m->codebook[channel]; |
|
int quant_step_size = s->quant_step_size[channel]; |
|
int lsb_bits = m->huff_lsbs[channel] - quant_step_size; |
|
int result = 0; |
|
|
|
if (codebook > 0) |
|
result = get_vlc2(gbp, huff_vlc[codebook-1].table, |
|
VLC_BITS, (9 + VLC_BITS - 1) / VLC_BITS); |
|
|
|
if (result < 0) |
|
return -1; |
|
|
|
if (lsb_bits > 0) |
|
result = (result << lsb_bits) + get_bits(gbp, lsb_bits); |
|
|
|
result += m->sign_huff_offset[channel]; |
|
result <<= quant_step_size; |
|
|
|
m->sample_buffer[pos + s->blockpos][channel] = result; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int mlp_decode_init(AVCodecContext *avctx) |
|
{ |
|
MLPDecodeContext *m = avctx->priv_data; |
|
int substr; |
|
|
|
init_static(); |
|
m->avctx = avctx; |
|
for (substr = 0; substr < MAX_SUBSTREAMS; substr++) |
|
m->substream[substr].lossless_check_data = 0xffffffff; |
|
return 0; |
|
} |
|
|
|
/** Read a major sync info header - contains high level information about |
|
* the stream - sample rate, channel arrangement etc. Most of this |
|
* information is not actually necessary for decoding, only for playback. |
|
*/ |
|
|
|
static int read_major_sync(MLPDecodeContext *m, GetBitContext *gb) |
|
{ |
|
MLPHeaderInfo mh; |
|
int substr; |
|
|
|
if (ff_mlp_read_major_sync(m->avctx, &mh, gb) != 0) |
|
return -1; |
|
|
|
if (mh.group1_bits == 0) { |
|
av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown bits per sample\n"); |
|
return -1; |
|
} |
|
if (mh.group2_bits > mh.group1_bits) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Channel group 2 cannot have more bits per sample than group 1.\n"); |
|
return -1; |
|
} |
|
|
|
if (mh.group2_samplerate && mh.group2_samplerate != mh.group1_samplerate) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Channel groups with differing sample rates are not currently supported.\n"); |
|
return -1; |
|
} |
|
|
|
if (mh.group1_samplerate == 0) { |
|
av_log(m->avctx, AV_LOG_ERROR, "invalid/unknown sampling rate\n"); |
|
return -1; |
|
} |
|
if (mh.group1_samplerate > MAX_SAMPLERATE) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Sampling rate %d is greater than the supported maximum (%d).\n", |
|
mh.group1_samplerate, MAX_SAMPLERATE); |
|
return -1; |
|
} |
|
if (mh.access_unit_size > MAX_BLOCKSIZE) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Block size %d is greater than the supported maximum (%d).\n", |
|
mh.access_unit_size, MAX_BLOCKSIZE); |
|
return -1; |
|
} |
|
if (mh.access_unit_size_pow2 > MAX_BLOCKSIZE_POW2) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Block size pow2 %d is greater than the supported maximum (%d).\n", |
|
mh.access_unit_size_pow2, MAX_BLOCKSIZE_POW2); |
|
return -1; |
|
} |
|
|
|
if (mh.num_substreams == 0) |
|
return -1; |
|
if (mh.num_substreams > MAX_SUBSTREAMS) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Number of substreams %d is larger than the maximum supported " |
|
"by the decoder. %s\n", mh.num_substreams, sample_message); |
|
return -1; |
|
} |
|
|
|
m->access_unit_size = mh.access_unit_size; |
|
m->access_unit_size_pow2 = mh.access_unit_size_pow2; |
|
|
|
m->num_substreams = mh.num_substreams; |
|
m->max_decoded_substream = m->num_substreams - 1; |
|
|
|
m->avctx->sample_rate = mh.group1_samplerate; |
|
m->avctx->frame_size = mh.access_unit_size; |
|
|
|
#ifdef CONFIG_AUDIO_NONSHORT |
|
m->avctx->bits_per_sample = mh.group1_bits; |
|
if (mh.group1_bits > 16) { |
|
m->avctx->sample_fmt = SAMPLE_FMT_S32; |
|
} |
|
#endif |
|
|
|
m->params_valid = 1; |
|
for (substr = 0; substr < MAX_SUBSTREAMS; substr++) |
|
m->substream[substr].restart_seen = 0; |
|
|
|
return 0; |
|
} |
|
|
|
/** Read a restart header from a block in a substream. This contains parameters |
|
* required to decode the audio that do not change very often. Generally |
|
* (always) present only in blocks following a major sync. */ |
|
|
|
static int read_restart_header(MLPDecodeContext *m, GetBitContext *gbp, |
|
const uint8_t *buf, unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int ch; |
|
int sync_word, tmp; |
|
uint8_t checksum; |
|
uint8_t lossless_check; |
|
int start_count = get_bits_count(gbp); |
|
|
|
sync_word = get_bits(gbp, 13); |
|
|
|
if (sync_word != 0x31ea >> 1) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"restart header sync incorrect (got 0x%04x)\n", sync_word); |
|
return -1; |
|
} |
|
s->noise_type = get_bits1(gbp); |
|
|
|
skip_bits(gbp, 16); /* Output timestamp */ |
|
|
|
s->min_channel = get_bits(gbp, 4); |
|
s->max_channel = get_bits(gbp, 4); |
|
s->max_matrix_channel = get_bits(gbp, 4); |
|
|
|
if (s->min_channel > s->max_channel) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Substream min channel cannot be greater than max channel.\n"); |
|
return -1; |
|
} |
|
|
|
if (m->avctx->request_channels > 0 |
|
&& s->max_channel + 1 >= m->avctx->request_channels |
|
&& substr < m->max_decoded_substream) { |
|
av_log(m->avctx, AV_LOG_INFO, |
|
"Extracting %d channel downmix from substream %d. " |
|
"Further substreams will be skipped.\n", |
|
s->max_channel + 1, substr); |
|
m->max_decoded_substream = substr; |
|
} |
|
|
|
s->noise_shift = get_bits(gbp, 4); |
|
s->noisegen_seed = get_bits(gbp, 23); |
|
|
|
skip_bits(gbp, 19); |
|
|
|
s->data_check_present = get_bits1(gbp); |
|
lossless_check = get_bits(gbp, 8); |
|
if (substr == m->max_decoded_substream |
|
&& s->lossless_check_data != 0xffffffff) { |
|
tmp = s->lossless_check_data; |
|
tmp ^= tmp >> 16; |
|
tmp ^= tmp >> 8; |
|
tmp &= 0xff; |
|
if (tmp != lossless_check) |
|
av_log(m->avctx, AV_LOG_WARNING, |
|
"Lossless check failed - expected %02x, calculated %02x.\n", |
|
lossless_check, tmp); |
|
else |
|
dprintf(m->avctx, "Lossless check passed for substream %d (%x).\n", |
|
substr, tmp); |
|
} |
|
|
|
skip_bits(gbp, 16); |
|
|
|
for (ch = 0; ch <= s->max_matrix_channel; ch++) { |
|
int ch_assign = get_bits(gbp, 6); |
|
dprintf(m->avctx, "ch_assign[%d][%d] = %d\n", substr, ch, |
|
ch_assign); |
|
if (ch_assign != ch) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Non-1:1 channel assignments are used in this stream. %s\n", |
|
sample_message); |
|
return -1; |
|
} |
|
} |
|
|
|
checksum = mlp_restart_checksum(buf, get_bits_count(gbp) - start_count); |
|
|
|
if (checksum != get_bits(gbp, 8)) |
|
av_log(m->avctx, AV_LOG_ERROR, "restart header checksum error\n"); |
|
|
|
/* Set default decoding parameters. */ |
|
s->param_presence_flags = 0xff; |
|
s->num_primitive_matrices = 0; |
|
s->blocksize = 8; |
|
s->lossless_check_data = 0; |
|
|
|
memset(s->output_shift , 0, sizeof(s->output_shift )); |
|
memset(s->quant_step_size, 0, sizeof(s->quant_step_size)); |
|
|
|
for (ch = s->min_channel; ch <= s->max_channel; ch++) { |
|
m->filter_order[ch][FIR] = 0; |
|
m->filter_order[ch][IIR] = 0; |
|
m->filter_shift[ch][FIR] = 0; |
|
m->filter_shift[ch][IIR] = 0; |
|
|
|
/* Default audio coding is 24-bit raw PCM. */ |
|
m->huff_offset [ch] = 0; |
|
m->sign_huff_offset[ch] = (-1) << 23; |
|
m->codebook [ch] = 0; |
|
m->huff_lsbs [ch] = 24; |
|
} |
|
|
|
if (substr == m->max_decoded_substream) { |
|
m->avctx->channels = s->max_channel + 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** Read parameters for one of the prediction filters. */ |
|
|
|
static int read_filter_params(MLPDecodeContext *m, GetBitContext *gbp, |
|
unsigned int channel, unsigned int filter) |
|
{ |
|
const char fchar = filter ? 'I' : 'F'; |
|
int i, order; |
|
|
|
// Filter is 0 for FIR, 1 for IIR. |
|
assert(filter < 2); |
|
|
|
order = get_bits(gbp, 4); |
|
if (order > MAX_FILTER_ORDER) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"%cIR filter order %d is greater than maximum %d.\n", |
|
fchar, order, MAX_FILTER_ORDER); |
|
return -1; |
|
} |
|
m->filter_order[channel][filter] = order; |
|
|
|
if (order > 0) { |
|
int coeff_bits, coeff_shift; |
|
|
|
m->filter_shift[channel][filter] = get_bits(gbp, 4); |
|
|
|
coeff_bits = get_bits(gbp, 5); |
|
coeff_shift = get_bits(gbp, 3); |
|
if (coeff_bits < 1 || coeff_bits > 16) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"%cIR filter coeff_bits must be between 1 and 16.\n", |
|
fchar); |
|
return -1; |
|
} |
|
if (coeff_bits + coeff_shift > 16) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Sum of coeff_bits and coeff_shift for %cIR filter must be 16 or less.\n", |
|
fchar); |
|
return -1; |
|
} |
|
|
|
for (i = 0; i < order; i++) |
|
m->filter_coeff[channel][filter][i] = |
|
get_sbits(gbp, coeff_bits) << coeff_shift; |
|
|
|
if (get_bits1(gbp)) { |
|
int state_bits, state_shift; |
|
|
|
if (filter == FIR) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"FIR filter has state data specified.\n"); |
|
return -1; |
|
} |
|
|
|
state_bits = get_bits(gbp, 4); |
|
state_shift = get_bits(gbp, 4); |
|
|
|
/* TODO: Check validity of state data. */ |
|
|
|
for (i = 0; i < order; i++) |
|
m->filter_state[channel][filter][i] = |
|
get_sbits(gbp, state_bits) << state_shift; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** Read decoding parameters that change more often than those in the restart |
|
* header. */ |
|
|
|
static int read_decoding_params(MLPDecodeContext *m, GetBitContext *gbp, |
|
unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int mat, ch; |
|
|
|
if (get_bits1(gbp)) |
|
s->param_presence_flags = get_bits(gbp, 8); |
|
|
|
if (s->param_presence_flags & PARAM_BLOCKSIZE) |
|
if (get_bits1(gbp)) { |
|
s->blocksize = get_bits(gbp, 9); |
|
if (s->blocksize > MAX_BLOCKSIZE) { |
|
av_log(m->avctx, AV_LOG_ERROR, "block size too large\n"); |
|
s->blocksize = 0; |
|
return -1; |
|
} |
|
} |
|
|
|
if (s->param_presence_flags & PARAM_MATRIX) |
|
if (get_bits1(gbp)) { |
|
s->num_primitive_matrices = get_bits(gbp, 4); |
|
|
|
for (mat = 0; mat < s->num_primitive_matrices; mat++) { |
|
int frac_bits, max_chan; |
|
s->matrix_out_ch[mat] = get_bits(gbp, 4); |
|
frac_bits = get_bits(gbp, 4); |
|
s->lsb_bypass [mat] = get_bits1(gbp); |
|
|
|
if (s->matrix_out_ch[mat] > s->max_channel) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Invalid channel %d specified as output from matrix.\n", |
|
s->matrix_out_ch[mat]); |
|
return -1; |
|
} |
|
if (frac_bits > 14) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Too many fractional bits specified.\n"); |
|
return -1; |
|
} |
|
|
|
max_chan = s->max_matrix_channel; |
|
if (!s->noise_type) |
|
max_chan+=2; |
|
|
|
for (ch = 0; ch <= max_chan; ch++) { |
|
int coeff_val = 0; |
|
if (get_bits1(gbp)) |
|
coeff_val = get_sbits(gbp, frac_bits + 2); |
|
|
|
s->matrix_coeff[mat][ch] = coeff_val << (14 - frac_bits); |
|
} |
|
|
|
if (s->noise_type) |
|
s->matrix_noise_shift[mat] = get_bits(gbp, 4); |
|
else |
|
s->matrix_noise_shift[mat] = 0; |
|
} |
|
} |
|
|
|
if (s->param_presence_flags & PARAM_OUTSHIFT) |
|
if (get_bits1(gbp)) |
|
for (ch = 0; ch <= s->max_matrix_channel; ch++) { |
|
s->output_shift[ch] = get_bits(gbp, 4); |
|
dprintf(m->avctx, "output shift[%d] = %d\n", |
|
ch, s->output_shift[ch]); |
|
/* TODO: validate */ |
|
} |
|
|
|
if (s->param_presence_flags & PARAM_QUANTSTEP) |
|
if (get_bits1(gbp)) |
|
for (ch = 0; ch <= s->max_channel; ch++) { |
|
s->quant_step_size[ch] = get_bits(gbp, 4); |
|
/* TODO: validate */ |
|
|
|
m->sign_huff_offset[ch] = calculate_sign_huff(m, substr, ch); |
|
} |
|
|
|
for (ch = s->min_channel; ch <= s->max_channel; ch++) |
|
if (get_bits1(gbp)) { |
|
if (s->param_presence_flags & PARAM_FIR) |
|
if (get_bits1(gbp)) |
|
if (read_filter_params(m, gbp, ch, FIR) < 0) |
|
return -1; |
|
|
|
if (s->param_presence_flags & PARAM_IIR) |
|
if (get_bits1(gbp)) |
|
if (read_filter_params(m, gbp, ch, IIR) < 0) |
|
return -1; |
|
|
|
if (m->filter_order[ch][FIR] && m->filter_order[ch][IIR] && |
|
m->filter_shift[ch][FIR] != m->filter_shift[ch][IIR]) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"FIR and IIR filters must use the same precision.\n"); |
|
return -1; |
|
} |
|
/* The FIR and IIR filters must have the same precision. |
|
* To simplify the filtering code, only the precision of the |
|
* FIR filter is considered. If only the IIR filter is employed, |
|
* the FIR filter precision is set to that of the IIR filter, so |
|
* that the filtering code can use it. */ |
|
if (!m->filter_order[ch][FIR] && m->filter_order[ch][IIR]) |
|
m->filter_shift[ch][FIR] = m->filter_shift[ch][IIR]; |
|
|
|
if (s->param_presence_flags & PARAM_HUFFOFFSET) |
|
if (get_bits1(gbp)) |
|
m->huff_offset[ch] = get_sbits(gbp, 15); |
|
|
|
m->codebook [ch] = get_bits(gbp, 2); |
|
m->huff_lsbs[ch] = get_bits(gbp, 5); |
|
|
|
m->sign_huff_offset[ch] = calculate_sign_huff(m, substr, ch); |
|
|
|
/* TODO: validate */ |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#define MSB_MASK(bits) (-1u << bits) |
|
|
|
/** Generate PCM samples using the prediction filters and residual values |
|
* read from the data stream, and update the filter state. */ |
|
|
|
static void filter_channel(MLPDecodeContext *m, unsigned int substr, |
|
unsigned int channel) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
int32_t filter_state_buffer[NUM_FILTERS][MAX_BLOCKSIZE + MAX_FILTER_ORDER]; |
|
unsigned int filter_shift = m->filter_shift[channel][FIR]; |
|
int32_t mask = MSB_MASK(s->quant_step_size[channel]); |
|
int index = MAX_BLOCKSIZE; |
|
int j, i; |
|
|
|
for (j = 0; j < NUM_FILTERS; j++) { |
|
memcpy(& filter_state_buffer [j][MAX_BLOCKSIZE], |
|
&m->filter_state[channel][j][0], |
|
MAX_FILTER_ORDER * sizeof(int32_t)); |
|
} |
|
|
|
for (i = 0; i < s->blocksize; i++) { |
|
int32_t residual = m->sample_buffer[i + s->blockpos][channel]; |
|
unsigned int order; |
|
int64_t accum = 0; |
|
int32_t result; |
|
|
|
/* TODO: Move this code to DSPContext? */ |
|
|
|
for (j = 0; j < NUM_FILTERS; j++) |
|
for (order = 0; order < m->filter_order[channel][j]; order++) |
|
accum += (int64_t)filter_state_buffer[j][index + order] * |
|
m->filter_coeff[channel][j][order]; |
|
|
|
accum = accum >> filter_shift; |
|
result = (accum + residual) & mask; |
|
|
|
--index; |
|
|
|
filter_state_buffer[FIR][index] = result; |
|
filter_state_buffer[IIR][index] = result - accum; |
|
|
|
m->sample_buffer[i + s->blockpos][channel] = result; |
|
} |
|
|
|
for (j = 0; j < NUM_FILTERS; j++) { |
|
memcpy(&m->filter_state[channel][j][0], |
|
& filter_state_buffer [j][index], |
|
MAX_FILTER_ORDER * sizeof(int32_t)); |
|
} |
|
} |
|
|
|
/** Read a block of PCM residual data (or actual if no filtering active). */ |
|
|
|
static int read_block_data(MLPDecodeContext *m, GetBitContext *gbp, |
|
unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int i, ch, expected_stream_pos = 0; |
|
|
|
if (s->data_check_present) { |
|
expected_stream_pos = get_bits_count(gbp); |
|
expected_stream_pos += get_bits(gbp, 16); |
|
av_log(m->avctx, AV_LOG_WARNING, "This file contains some features " |
|
"we have not tested yet. %s\n", sample_message); |
|
} |
|
|
|
if (s->blockpos + s->blocksize > m->access_unit_size) { |
|
av_log(m->avctx, AV_LOG_ERROR, "too many audio samples in frame\n"); |
|
return -1; |
|
} |
|
|
|
memset(&m->bypassed_lsbs[s->blockpos][0], 0, |
|
s->blocksize * sizeof(m->bypassed_lsbs[0])); |
|
|
|
for (i = 0; i < s->blocksize; i++) { |
|
if (read_huff_channels(m, gbp, substr, i) < 0) |
|
return -1; |
|
} |
|
|
|
for (ch = s->min_channel; ch <= s->max_channel; ch++) { |
|
filter_channel(m, substr, ch); |
|
} |
|
|
|
s->blockpos += s->blocksize; |
|
|
|
if (s->data_check_present) { |
|
if (get_bits_count(gbp) != expected_stream_pos) |
|
av_log(m->avctx, AV_LOG_ERROR, "block data length mismatch\n"); |
|
skip_bits(gbp, 8); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** Data table used for TrueHD noise generation function. */ |
|
|
|
static const int8_t noise_table[256] = { |
|
30, 51, 22, 54, 3, 7, -4, 38, 14, 55, 46, 81, 22, 58, -3, 2, |
|
52, 31, -7, 51, 15, 44, 74, 30, 85, -17, 10, 33, 18, 80, 28, 62, |
|
10, 32, 23, 69, 72, 26, 35, 17, 73, 60, 8, 56, 2, 6, -2, -5, |
|
51, 4, 11, 50, 66, 76, 21, 44, 33, 47, 1, 26, 64, 48, 57, 40, |
|
38, 16, -10, -28, 92, 22, -18, 29, -10, 5, -13, 49, 19, 24, 70, 34, |
|
61, 48, 30, 14, -6, 25, 58, 33, 42, 60, 67, 17, 54, 17, 22, 30, |
|
67, 44, -9, 50, -11, 43, 40, 32, 59, 82, 13, 49, -14, 55, 60, 36, |
|
48, 49, 31, 47, 15, 12, 4, 65, 1, 23, 29, 39, 45, -2, 84, 69, |
|
0, 72, 37, 57, 27, 41, -15, -16, 35, 31, 14, 61, 24, 0, 27, 24, |
|
16, 41, 55, 34, 53, 9, 56, 12, 25, 29, 53, 5, 20, -20, -8, 20, |
|
13, 28, -3, 78, 38, 16, 11, 62, 46, 29, 21, 24, 46, 65, 43, -23, |
|
89, 18, 74, 21, 38, -12, 19, 12, -19, 8, 15, 33, 4, 57, 9, -8, |
|
36, 35, 26, 28, 7, 83, 63, 79, 75, 11, 3, 87, 37, 47, 34, 40, |
|
39, 19, 20, 42, 27, 34, 39, 77, 13, 42, 59, 64, 45, -1, 32, 37, |
|
45, -5, 53, -6, 7, 36, 50, 23, 6, 32, 9, -21, 18, 71, 27, 52, |
|
-25, 31, 35, 42, -1, 68, 63, 52, 26, 43, 66, 37, 41, 25, 40, 70, |
|
}; |
|
|
|
/** Noise generation functions. |
|
* I'm not sure what these are for - they seem to be some kind of pseudorandom |
|
* sequence generators, used to generate noise data which is used when the |
|
* channels are rematrixed. I'm not sure if they provide a practical benefit |
|
* to compression, or just obfuscate the decoder. Are they for some kind of |
|
* dithering? */ |
|
|
|
/** Generate two channels of noise, used in the matrix when |
|
* restart sync word == 0x31ea. */ |
|
|
|
static void generate_2_noise_channels(MLPDecodeContext *m, unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int i; |
|
uint32_t seed = s->noisegen_seed; |
|
unsigned int maxchan = s->max_matrix_channel; |
|
|
|
for (i = 0; i < s->blockpos; i++) { |
|
uint16_t seed_shr7 = seed >> 7; |
|
m->sample_buffer[i][maxchan+1] = ((int8_t)(seed >> 15)) << s->noise_shift; |
|
m->sample_buffer[i][maxchan+2] = ((int8_t) seed_shr7) << s->noise_shift; |
|
|
|
seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5); |
|
} |
|
|
|
s->noisegen_seed = seed; |
|
} |
|
|
|
/** Generate a block of noise, used when restart sync word == 0x31eb. */ |
|
|
|
static void fill_noise_buffer(MLPDecodeContext *m, unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int i; |
|
uint32_t seed = s->noisegen_seed; |
|
|
|
for (i = 0; i < m->access_unit_size_pow2; i++) { |
|
uint8_t seed_shr15 = seed >> 15; |
|
m->noise_buffer[i] = noise_table[seed_shr15]; |
|
seed = (seed << 8) ^ seed_shr15 ^ (seed_shr15 << 5); |
|
} |
|
|
|
s->noisegen_seed = seed; |
|
} |
|
|
|
|
|
/** Apply the channel matrices in turn to reconstruct the original audio |
|
* samples. */ |
|
|
|
static void rematrix_channels(MLPDecodeContext *m, unsigned int substr) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int mat, src_ch, i; |
|
unsigned int maxchan; |
|
|
|
maxchan = s->max_matrix_channel; |
|
if (!s->noise_type) { |
|
generate_2_noise_channels(m, substr); |
|
maxchan += 2; |
|
} else { |
|
fill_noise_buffer(m, substr); |
|
} |
|
|
|
for (mat = 0; mat < s->num_primitive_matrices; mat++) { |
|
int matrix_noise_shift = s->matrix_noise_shift[mat]; |
|
unsigned int dest_ch = s->matrix_out_ch[mat]; |
|
int32_t mask = MSB_MASK(s->quant_step_size[dest_ch]); |
|
|
|
/* TODO: DSPContext? */ |
|
|
|
for (i = 0; i < s->blockpos; i++) { |
|
int64_t accum = 0; |
|
for (src_ch = 0; src_ch <= maxchan; src_ch++) { |
|
accum += (int64_t)m->sample_buffer[i][src_ch] |
|
* s->matrix_coeff[mat][src_ch]; |
|
} |
|
if (matrix_noise_shift) { |
|
uint32_t index = s->num_primitive_matrices - mat; |
|
index = (i * (index * 2 + 1) + index) & (m->access_unit_size_pow2 - 1); |
|
accum += m->noise_buffer[index] << (matrix_noise_shift + 7); |
|
} |
|
m->sample_buffer[i][dest_ch] = ((accum >> 14) & mask) |
|
+ m->bypassed_lsbs[i][mat]; |
|
} |
|
} |
|
} |
|
|
|
/** Write the audio data into the output buffer. */ |
|
|
|
static int output_data_internal(MLPDecodeContext *m, unsigned int substr, |
|
uint8_t *data, unsigned int *data_size, int is32) |
|
{ |
|
SubStream *s = &m->substream[substr]; |
|
unsigned int i, ch = 0; |
|
int32_t *data_32 = (int32_t*) data; |
|
int16_t *data_16 = (int16_t*) data; |
|
|
|
if (*data_size < (s->max_channel + 1) * s->blockpos * (is32 ? 4 : 2)) |
|
return -1; |
|
|
|
for (i = 0; i < s->blockpos; i++) { |
|
for (ch = 0; ch <= s->max_channel; ch++) { |
|
int32_t sample = m->sample_buffer[i][ch] << s->output_shift[ch]; |
|
s->lossless_check_data ^= (sample & 0xffffff) << ch; |
|
if (is32) *data_32++ = sample << 8; |
|
else *data_16++ = sample >> 8; |
|
} |
|
} |
|
|
|
*data_size = i * ch * (is32 ? 4 : 2); |
|
|
|
return 0; |
|
} |
|
|
|
static int output_data(MLPDecodeContext *m, unsigned int substr, |
|
uint8_t *data, unsigned int *data_size) |
|
{ |
|
if (m->avctx->sample_fmt == SAMPLE_FMT_S32) |
|
return output_data_internal(m, substr, data, data_size, 1); |
|
else |
|
return output_data_internal(m, substr, data, data_size, 0); |
|
} |
|
|
|
|
|
/** XOR together all the bytes of a buffer. |
|
* Does this belong in dspcontext? */ |
|
|
|
static uint8_t calculate_parity(const uint8_t *buf, unsigned int buf_size) |
|
{ |
|
uint32_t scratch = 0; |
|
const uint8_t *buf_end = buf + buf_size; |
|
|
|
for (; buf < buf_end - 3; buf += 4) |
|
scratch ^= *((const uint32_t*)buf); |
|
|
|
scratch ^= scratch >> 16; |
|
scratch ^= scratch >> 8; |
|
|
|
for (; buf < buf_end; buf++) |
|
scratch ^= *buf; |
|
|
|
return scratch; |
|
} |
|
|
|
/** Read an access unit from the stream. |
|
* Returns < 0 on error, 0 if not enough data is present in the input stream |
|
* otherwise returns the number of bytes consumed. */ |
|
|
|
static int read_access_unit(AVCodecContext *avctx, void* data, int *data_size, |
|
const uint8_t *buf, int buf_size) |
|
{ |
|
MLPDecodeContext *m = avctx->priv_data; |
|
GetBitContext gb; |
|
unsigned int length, substr; |
|
unsigned int substream_start; |
|
unsigned int header_size = 4; |
|
unsigned int substr_header_size = 0; |
|
uint8_t substream_parity_present[MAX_SUBSTREAMS]; |
|
uint16_t substream_data_len[MAX_SUBSTREAMS]; |
|
uint8_t parity_bits; |
|
|
|
if (buf_size < 4) |
|
return 0; |
|
|
|
length = (AV_RB16(buf) & 0xfff) * 2; |
|
|
|
if (length > buf_size) |
|
return -1; |
|
|
|
init_get_bits(&gb, (buf + 4), (length - 4) * 8); |
|
|
|
if (show_bits_long(&gb, 31) == (0xf8726fba >> 1)) { |
|
dprintf(m->avctx, "Found major sync.\n"); |
|
if (read_major_sync(m, &gb) < 0) |
|
goto error; |
|
header_size += 28; |
|
} |
|
|
|
if (!m->params_valid) { |
|
av_log(m->avctx, AV_LOG_WARNING, |
|
"Stream parameters not seen; skipping frame.\n"); |
|
*data_size = 0; |
|
return length; |
|
} |
|
|
|
substream_start = 0; |
|
|
|
for (substr = 0; substr < m->num_substreams; substr++) { |
|
int extraword_present, checkdata_present, end; |
|
|
|
extraword_present = get_bits1(&gb); |
|
skip_bits1(&gb); |
|
checkdata_present = get_bits1(&gb); |
|
skip_bits1(&gb); |
|
|
|
end = get_bits(&gb, 12) * 2; |
|
|
|
substr_header_size += 2; |
|
|
|
if (extraword_present) { |
|
skip_bits(&gb, 16); |
|
substr_header_size += 2; |
|
} |
|
|
|
if (end + header_size + substr_header_size > length) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Indicated length of substream %d data goes off end of " |
|
"packet.\n", substr); |
|
end = length - header_size - substr_header_size; |
|
} |
|
|
|
if (end < substream_start) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Indicated end offset of substream %d data " |
|
"is smaller than calculated start offset.\n", |
|
substr); |
|
goto error; |
|
} |
|
|
|
if (substr > m->max_decoded_substream) |
|
continue; |
|
|
|
substream_parity_present[substr] = checkdata_present; |
|
substream_data_len[substr] = end - substream_start; |
|
substream_start = end; |
|
} |
|
|
|
parity_bits = calculate_parity(buf, 4); |
|
parity_bits ^= calculate_parity(buf + header_size, substr_header_size); |
|
|
|
if ((((parity_bits >> 4) ^ parity_bits) & 0xF) != 0xF) { |
|
av_log(avctx, AV_LOG_ERROR, "Parity check failed.\n"); |
|
goto error; |
|
} |
|
|
|
buf += header_size + substr_header_size; |
|
|
|
for (substr = 0; substr <= m->max_decoded_substream; substr++) { |
|
SubStream *s = &m->substream[substr]; |
|
init_get_bits(&gb, buf, substream_data_len[substr] * 8); |
|
|
|
s->blockpos = 0; |
|
do { |
|
if (get_bits1(&gb)) { |
|
if (get_bits1(&gb)) { |
|
/* A restart header should be present. */ |
|
if (read_restart_header(m, &gb, buf, substr) < 0) |
|
goto next_substr; |
|
s->restart_seen = 1; |
|
} |
|
|
|
if (!s->restart_seen) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"No restart header present in substream %d.\n", |
|
substr); |
|
goto next_substr; |
|
} |
|
|
|
if (read_decoding_params(m, &gb, substr) < 0) |
|
goto next_substr; |
|
} |
|
|
|
if (!s->restart_seen) { |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"No restart header present in substream %d.\n", |
|
substr); |
|
goto next_substr; |
|
} |
|
|
|
if (read_block_data(m, &gb, substr) < 0) |
|
return -1; |
|
|
|
} while ((get_bits_count(&gb) < substream_data_len[substr] * 8) |
|
&& get_bits1(&gb) == 0); |
|
|
|
skip_bits(&gb, (-get_bits_count(&gb)) & 15); |
|
if (substream_data_len[substr] * 8 - get_bits_count(&gb) >= 48 && |
|
(show_bits_long(&gb, 32) == 0xd234d234 || |
|
show_bits_long(&gb, 20) == 0xd234e)) { |
|
skip_bits(&gb, 18); |
|
if (substr == m->max_decoded_substream) |
|
av_log(m->avctx, AV_LOG_INFO, "End of stream indicated.\n"); |
|
|
|
if (get_bits1(&gb)) { |
|
int shorten_by = get_bits(&gb, 13); |
|
shorten_by = FFMIN(shorten_by, s->blockpos); |
|
s->blockpos -= shorten_by; |
|
} else |
|
skip_bits(&gb, 13); |
|
} |
|
if (substream_parity_present[substr]) { |
|
uint8_t parity, checksum; |
|
|
|
parity = calculate_parity(buf, substream_data_len[substr] - 2); |
|
if ((parity ^ get_bits(&gb, 8)) != 0xa9) |
|
av_log(m->avctx, AV_LOG_ERROR, |
|
"Substream %d parity check failed.\n", substr); |
|
|
|
checksum = mlp_checksum8(buf, substream_data_len[substr] - 2); |
|
if (checksum != get_bits(&gb, 8)) |
|
av_log(m->avctx, AV_LOG_ERROR, "Substream %d checksum failed.\n", |
|
substr); |
|
} |
|
if (substream_data_len[substr] * 8 != get_bits_count(&gb)) { |
|
av_log(m->avctx, AV_LOG_ERROR, "substream %d length mismatch\n", |
|
substr); |
|
return -1; |
|
} |
|
|
|
next_substr: |
|
buf += substream_data_len[substr]; |
|
} |
|
|
|
rematrix_channels(m, m->max_decoded_substream); |
|
|
|
if (output_data(m, m->max_decoded_substream, data, data_size) < 0) |
|
return -1; |
|
|
|
return length; |
|
|
|
error: |
|
m->params_valid = 0; |
|
return -1; |
|
} |
|
|
|
AVCodec mlp_decoder = { |
|
"mlp", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_MLP, |
|
sizeof(MLPDecodeContext), |
|
mlp_decode_init, |
|
NULL, |
|
NULL, |
|
read_access_unit, |
|
.long_name = NULL_IF_CONFIG_SMALL("Meridian Lossless Packing"), |
|
}; |
|
|
|
|