mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1182 lines
37 KiB
1182 lines
37 KiB
/* |
|
* COOK compatible decoder |
|
* Copyright (c) 2003 Sascha Sommer |
|
* Copyright (c) 2005 Benjamin Larsson |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
* |
|
*/ |
|
|
|
/** |
|
* @file cook.c |
|
* Cook compatible decoder. |
|
* This decoder handles RealNetworks, RealAudio G2 data. |
|
* Cook is identified by the codec name cook in RM files. |
|
* |
|
* To use this decoder, a calling application must supply the extradata |
|
* bytes provided from the RM container; 8+ bytes for mono streams and |
|
* 16+ for stereo streams (maybe more). |
|
* |
|
* Codec technicalities (all this assume a buffer length of 1024): |
|
* Cook works with several different techniques to achieve its compression. |
|
* In the timedomain the buffer is divided into 8 pieces and quantized. If |
|
* two neighboring pieces have different quantization index a smooth |
|
* quantization curve is used to get a smooth overlap between the different |
|
* pieces. |
|
* To get to the transformdomain Cook uses a modulated lapped transform. |
|
* The transform domain has 50 subbands with 20 elements each. This |
|
* means only a maximum of 50*20=1000 coefficients are used out of the 1024 |
|
* available. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "dsputil.h" |
|
#include "common.h" |
|
#include "bytestream.h" |
|
|
|
#include "cookdata.h" |
|
|
|
/* the different Cook versions */ |
|
#define MONO 0x1000001 |
|
#define STEREO 0x1000002 |
|
#define JOINT_STEREO 0x1000003 |
|
#define MC_COOK 0x2000000 //multichannel Cook, not supported |
|
|
|
#define SUBBAND_SIZE 20 |
|
//#define COOKDEBUG |
|
|
|
typedef struct { |
|
int *now; |
|
int *previous; |
|
} cook_gains; |
|
|
|
typedef struct { |
|
GetBitContext gb; |
|
/* stream data */ |
|
int nb_channels; |
|
int joint_stereo; |
|
int bit_rate; |
|
int sample_rate; |
|
int samples_per_channel; |
|
int samples_per_frame; |
|
int subbands; |
|
int log2_numvector_size; |
|
int numvector_size; //1 << log2_numvector_size; |
|
int js_subband_start; |
|
int total_subbands; |
|
int num_vectors; |
|
int bits_per_subpacket; |
|
int cookversion; |
|
/* states */ |
|
int random_state; |
|
|
|
/* transform data */ |
|
MDCTContext mdct_ctx; |
|
DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]); /* temporary storage for imlt */ |
|
float* mlt_window; |
|
|
|
/* gain buffers */ |
|
cook_gains gains1; |
|
cook_gains gains2; |
|
int gain_1[9]; |
|
int gain_2[9]; |
|
int gain_3[9]; |
|
int gain_4[9]; |
|
|
|
/* VLC data */ |
|
int js_vlc_bits; |
|
VLC envelope_quant_index[13]; |
|
VLC sqvh[7]; //scalar quantization |
|
VLC ccpl; //channel coupling |
|
|
|
/* generatable tables and related variables */ |
|
int gain_size_factor; |
|
float gain_table[23]; |
|
float pow2tab[127]; |
|
float rootpow2tab[127]; |
|
|
|
/* data buffers */ |
|
|
|
uint8_t* decoded_bytes_buffer; |
|
DECLARE_ALIGNED_16(float,mono_mdct_output[2048]); |
|
float mono_previous_buffer1[1024]; |
|
float mono_previous_buffer2[1024]; |
|
float decode_buffer_1[1024]; |
|
float decode_buffer_2[1024]; |
|
} COOKContext; |
|
|
|
/* debug functions */ |
|
|
|
#ifdef COOKDEBUG |
|
static void dump_float_table(float* table, int size, int delimiter) { |
|
int i=0; |
|
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
|
for (i=0 ; i<size ; i++) { |
|
av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); |
|
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
|
} |
|
} |
|
|
|
static void dump_int_table(int* table, int size, int delimiter) { |
|
int i=0; |
|
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
|
for (i=0 ; i<size ; i++) { |
|
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); |
|
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
|
} |
|
} |
|
|
|
static void dump_short_table(short* table, int size, int delimiter) { |
|
int i=0; |
|
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); |
|
for (i=0 ; i<size ; i++) { |
|
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); |
|
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
/*************** init functions ***************/ |
|
|
|
/* table generator */ |
|
static void init_pow2table(COOKContext *q){ |
|
int i; |
|
q->pow2tab[63] = 1.0; |
|
for (i=1 ; i<64 ; i++){ |
|
q->pow2tab[63+i]=(float)((uint64_t)1<<i); |
|
q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i); |
|
} |
|
} |
|
|
|
/* table generator */ |
|
static void init_rootpow2table(COOKContext *q){ |
|
int i; |
|
q->rootpow2tab[63] = 1.0; |
|
for (i=1 ; i<64 ; i++){ |
|
q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i)); |
|
q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i)); |
|
} |
|
} |
|
|
|
/* table generator */ |
|
static void init_gain_table(COOKContext *q) { |
|
int i; |
|
q->gain_size_factor = q->samples_per_channel/8; |
|
for (i=0 ; i<23 ; i++) { |
|
q->gain_table[i] = pow((double)q->pow2tab[i+52] , |
|
(1.0/(double)q->gain_size_factor)); |
|
} |
|
} |
|
|
|
|
|
static int init_cook_vlc_tables(COOKContext *q) { |
|
int i, result; |
|
|
|
result = 0; |
|
for (i=0 ; i<13 ; i++) { |
|
result &= init_vlc (&q->envelope_quant_index[i], 9, 24, |
|
envelope_quant_index_huffbits[i], 1, 1, |
|
envelope_quant_index_huffcodes[i], 2, 2, 0); |
|
} |
|
av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n"); |
|
for (i=0 ; i<7 ; i++) { |
|
result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], |
|
cvh_huffbits[i], 1, 1, |
|
cvh_huffcodes[i], 2, 2, 0); |
|
} |
|
|
|
if (q->nb_channels==2 && q->joint_stereo==1){ |
|
result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1, |
|
ccpl_huffbits[q->js_vlc_bits-2], 1, 1, |
|
ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0); |
|
av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n"); |
|
} |
|
|
|
av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n"); |
|
return result; |
|
} |
|
|
|
static int init_cook_mlt(COOKContext *q) { |
|
int j; |
|
float alpha; |
|
int mlt_size = q->samples_per_channel; |
|
|
|
if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) |
|
return -1; |
|
|
|
/* Initialize the MLT window: simple sine window. */ |
|
alpha = M_PI / (2.0 * (float)mlt_size); |
|
for(j=0 ; j<mlt_size ; j++) |
|
q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel); |
|
|
|
/* Initialize the MDCT. */ |
|
if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) { |
|
av_free(q->mlt_window); |
|
return -1; |
|
} |
|
av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n", |
|
av_log2(mlt_size)+1); |
|
|
|
return 0; |
|
} |
|
|
|
/*************** init functions end ***********/ |
|
|
|
/** |
|
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2. |
|
* Why? No idea, some checksum/error detection method maybe. |
|
* |
|
* Out buffer size: extra bytes are needed to cope with |
|
* padding/missalignment. |
|
* Subpackets passed to the decoder can contain two, consecutive |
|
* half-subpackets, of identical but arbitrary size. |
|
* 1234 1234 1234 1234 extraA extraB |
|
* Case 1: AAAA BBBB 0 0 |
|
* Case 2: AAAA ABBB BB-- 3 3 |
|
* Case 3: AAAA AABB BBBB 2 2 |
|
* Case 4: AAAA AAAB BBBB BB-- 1 5 |
|
* |
|
* Nice way to waste CPU cycles. |
|
* |
|
* @param inbuffer pointer to byte array of indata |
|
* @param out pointer to byte array of outdata |
|
* @param bytes number of bytes |
|
*/ |
|
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4) |
|
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) |
|
|
|
static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){ |
|
int i, off; |
|
uint32_t c; |
|
uint32_t* buf; |
|
uint32_t* obuf = (uint32_t*) out; |
|
/* FIXME: 64 bit platforms would be able to do 64 bits at a time. |
|
* I'm too lazy though, should be something like |
|
* for(i=0 ; i<bitamount/64 ; i++) |
|
* (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]); |
|
* Buffer alignment needs to be checked. */ |
|
|
|
off = (int)((long)inbuffer & 3); |
|
buf = (uint32_t*) (inbuffer - off); |
|
c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8)))); |
|
bytes += 3 + off; |
|
for (i = 0; i < bytes/4; i++) |
|
obuf[i] = c ^ buf[i]; |
|
|
|
return off; |
|
} |
|
|
|
/** |
|
* Cook uninit |
|
*/ |
|
|
|
static int cook_decode_close(AVCodecContext *avctx) |
|
{ |
|
int i; |
|
COOKContext *q = avctx->priv_data; |
|
av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n"); |
|
|
|
/* Free allocated memory buffers. */ |
|
av_free(q->mlt_window); |
|
av_free(q->decoded_bytes_buffer); |
|
|
|
/* Free the transform. */ |
|
ff_mdct_end(&q->mdct_ctx); |
|
|
|
/* Free the VLC tables. */ |
|
for (i=0 ; i<13 ; i++) { |
|
free_vlc(&q->envelope_quant_index[i]); |
|
} |
|
for (i=0 ; i<7 ; i++) { |
|
free_vlc(&q->sqvh[i]); |
|
} |
|
if(q->nb_channels==2 && q->joint_stereo==1 ){ |
|
free_vlc(&q->ccpl); |
|
} |
|
|
|
av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n"); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Fill the gain array for the timedomain quantization. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param gaininfo[9] array of gain indices |
|
*/ |
|
|
|
static void decode_gain_info(GetBitContext *gb, int *gaininfo) |
|
{ |
|
int i, n; |
|
|
|
while (get_bits1(gb)) {} |
|
n = get_bits_count(gb) - 1; //amount of elements*2 to update |
|
|
|
i = 0; |
|
while (n--) { |
|
int index = get_bits(gb, 3); |
|
int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; |
|
|
|
while (i <= index) gaininfo[i++] = gain; |
|
} |
|
while (i <= 8) gaininfo[i++] = 0; |
|
} |
|
|
|
/** |
|
* Create the quant index table needed for the envelope. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param quant_index_table pointer to the array |
|
*/ |
|
|
|
static void decode_envelope(COOKContext *q, int* quant_index_table) { |
|
int i,j, vlc_index; |
|
int bitbias; |
|
|
|
bitbias = get_bits_count(&q->gb); |
|
quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize |
|
|
|
for (i=1 ; i < q->total_subbands ; i++){ |
|
vlc_index=i; |
|
if (i >= q->js_subband_start * 2) { |
|
vlc_index-=q->js_subband_start; |
|
} else { |
|
vlc_index/=2; |
|
if(vlc_index < 1) vlc_index = 1; |
|
} |
|
if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 |
|
|
|
j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table, |
|
q->envelope_quant_index[vlc_index-1].bits,2); |
|
quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding |
|
} |
|
} |
|
|
|
/** |
|
* Create the quant value table. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param quant_value_table pointer to the array |
|
*/ |
|
|
|
static void inline dequant_envelope(COOKContext *q, int* quant_index_table, |
|
float* quant_value_table){ |
|
|
|
int i; |
|
for(i=0 ; i < q->total_subbands ; i++){ |
|
quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63]; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate the category and category_index vector. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param quant_index_table pointer to the array |
|
* @param category pointer to the category array |
|
* @param category_index pointer to the category_index array |
|
*/ |
|
|
|
static void categorize(COOKContext *q, int* quant_index_table, |
|
int* category, int* category_index){ |
|
int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j; |
|
int exp_index2[102]; |
|
int exp_index1[102]; |
|
|
|
int tmp_categorize_array1[128]; |
|
int tmp_categorize_array1_idx=0; |
|
int tmp_categorize_array2[128]; |
|
int tmp_categorize_array2_idx=0; |
|
int category_index_size=0; |
|
|
|
bits_left = q->bits_per_subpacket - get_bits_count(&q->gb); |
|
|
|
if(bits_left > q->samples_per_channel) { |
|
bits_left = q->samples_per_channel + |
|
((bits_left - q->samples_per_channel)*5)/8; |
|
//av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left); |
|
} |
|
|
|
memset(&exp_index1,0,102*sizeof(int)); |
|
memset(&exp_index2,0,102*sizeof(int)); |
|
memset(&tmp_categorize_array1,0,128*sizeof(int)); |
|
memset(&tmp_categorize_array2,0,128*sizeof(int)); |
|
|
|
bias=-32; |
|
|
|
/* Estimate bias. */ |
|
for (i=32 ; i>0 ; i=i/2){ |
|
num_bits = 0; |
|
index = 0; |
|
for (j=q->total_subbands ; j>0 ; j--){ |
|
exp_idx = (i - quant_index_table[index] + bias) / 2; |
|
if (exp_idx<0){ |
|
exp_idx=0; |
|
} else if(exp_idx >7) { |
|
exp_idx=7; |
|
} |
|
index++; |
|
num_bits+=expbits_tab[exp_idx]; |
|
} |
|
if(num_bits >= bits_left - 32){ |
|
bias+=i; |
|
} |
|
} |
|
|
|
/* Calculate total number of bits. */ |
|
num_bits=0; |
|
for (i=0 ; i<q->total_subbands ; i++) { |
|
exp_idx = (bias - quant_index_table[i]) / 2; |
|
if (exp_idx<0) { |
|
exp_idx=0; |
|
} else if(exp_idx >7) { |
|
exp_idx=7; |
|
} |
|
num_bits += expbits_tab[exp_idx]; |
|
exp_index1[i] = exp_idx; |
|
exp_index2[i] = exp_idx; |
|
} |
|
tmpbias = bias = num_bits; |
|
|
|
for (j = 1 ; j < q->numvector_size ; j++) { |
|
if (tmpbias + bias > 2*bits_left) { /* ---> */ |
|
int max = -999999; |
|
index=-1; |
|
for (i=0 ; i<q->total_subbands ; i++){ |
|
if (exp_index1[i] < 7) { |
|
v = (-2*exp_index1[i]) - quant_index_table[i] - 32; |
|
if ( v >= max) { |
|
max = v; |
|
index = i; |
|
} |
|
} |
|
} |
|
if(index==-1)break; |
|
tmp_categorize_array1[tmp_categorize_array1_idx++] = index; |
|
tmpbias -= expbits_tab[exp_index1[index]] - |
|
expbits_tab[exp_index1[index]+1]; |
|
++exp_index1[index]; |
|
} else { /* <--- */ |
|
int min = 999999; |
|
index=-1; |
|
for (i=0 ; i<q->total_subbands ; i++){ |
|
if(exp_index2[i] > 0){ |
|
v = (-2*exp_index2[i])-quant_index_table[i]; |
|
if ( v < min) { |
|
min = v; |
|
index = i; |
|
} |
|
} |
|
} |
|
if(index == -1)break; |
|
tmp_categorize_array2[tmp_categorize_array2_idx++] = index; |
|
tmpbias -= expbits_tab[exp_index2[index]] - |
|
expbits_tab[exp_index2[index]-1]; |
|
--exp_index2[index]; |
|
} |
|
} |
|
|
|
for(i=0 ; i<q->total_subbands ; i++) |
|
category[i] = exp_index2[i]; |
|
|
|
/* Concatenate the two arrays. */ |
|
for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--) |
|
category_index[category_index_size++] = tmp_categorize_array2[i]; |
|
|
|
for(i=0;i<tmp_categorize_array1_idx;i++) |
|
category_index[category_index_size++ ] = tmp_categorize_array1[i]; |
|
|
|
/* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we |
|
should fill the remaining bytes. */ |
|
for(i=category_index_size;i<q->numvector_size;i++) |
|
category_index[i]=0; |
|
|
|
} |
|
|
|
|
|
/** |
|
* Expand the category vector. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param category_index pointer to the category_index array |
|
*/ |
|
|
|
static void inline expand_category(COOKContext *q, int* category, |
|
int* category_index){ |
|
int i; |
|
for(i=0 ; i<q->num_vectors ; i++){ |
|
++category[category_index[i]]; |
|
} |
|
} |
|
|
|
/** |
|
* The real requantization of the mltcoefs |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param index index |
|
* @param band current subband |
|
* @param quant_value_table pointer to the array |
|
* @param subband_coef_index array of indexes to quant_centroid_tab |
|
* @param subband_coef_noise use random noise instead of predetermined value |
|
* @param mlt_buffer pointer to the mlt buffer |
|
*/ |
|
|
|
|
|
static void scalar_dequant(COOKContext *q, int index, int band, |
|
float* quant_value_table, int* subband_coef_index, |
|
int* subband_coef_noise, float* mlt_buffer){ |
|
int i; |
|
float f1; |
|
|
|
for(i=0 ; i<SUBBAND_SIZE ; i++) { |
|
if (subband_coef_index[i]) { |
|
if (subband_coef_noise[i]) { |
|
f1 = -quant_centroid_tab[index][subband_coef_index[i]]; |
|
} else { |
|
f1 = quant_centroid_tab[index][subband_coef_index[i]]; |
|
} |
|
} else { |
|
/* noise coding if subband_coef_noise[i] == 0 */ |
|
q->random_state = q->random_state * 214013 + 2531011; //typical RNG numbers |
|
f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31 |
|
} |
|
mlt_buffer[band*20+ i] = f1 * quant_value_table[band]; |
|
} |
|
} |
|
/** |
|
* Unpack the subband_coef_index and subband_coef_noise vectors. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param subband_coef_index array of indexes to quant_centroid_tab |
|
* @param subband_coef_noise use random noise instead of predetermined value |
|
*/ |
|
|
|
static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index, |
|
int* subband_coef_noise) { |
|
int i,j; |
|
int vlc, vd ,tmp, result; |
|
int ub; |
|
int cb; |
|
|
|
vd = vd_tab[category]; |
|
result = 0; |
|
for(i=0 ; i<vpr_tab[category] ; i++){ |
|
ub = get_bits_count(&q->gb); |
|
vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); |
|
cb = get_bits_count(&q->gb); |
|
if (q->bits_per_subpacket < get_bits_count(&q->gb)){ |
|
vlc = 0; |
|
result = 1; |
|
} |
|
for(j=vd-1 ; j>=0 ; j--){ |
|
tmp = (vlc * invradix_tab[category])/0x100000; |
|
subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1); |
|
vlc = tmp; |
|
} |
|
for(j=0 ; j<vd ; j++){ |
|
if (subband_coef_index[i*vd + j]) { |
|
if(get_bits_count(&q->gb) < q->bits_per_subpacket){ |
|
subband_coef_noise[i*vd+j] = get_bits1(&q->gb); |
|
} else { |
|
result=1; |
|
subband_coef_noise[i*vd+j]=0; |
|
} |
|
} else { |
|
subband_coef_noise[i*vd+j]=0; |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
/** |
|
* Fill the mlt_buffer with mlt coefficients. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param quant_value_table pointer to the array |
|
* @param mlt_buffer pointer to mlt coefficients |
|
*/ |
|
|
|
|
|
static void decode_vectors(COOKContext* q, int* category, |
|
float* quant_value_table, float* mlt_buffer){ |
|
/* A zero in this table means that the subband coefficient is |
|
random noise coded. */ |
|
int subband_coef_noise[SUBBAND_SIZE]; |
|
/* A zero in this table means that the subband coefficient is a |
|
positive multiplicator. */ |
|
int subband_coef_index[SUBBAND_SIZE]; |
|
int band, j; |
|
int index=0; |
|
|
|
for(band=0 ; band<q->total_subbands ; band++){ |
|
index = category[band]; |
|
if(category[band] < 7){ |
|
if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){ |
|
index=7; |
|
for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7; |
|
} |
|
} |
|
if(index==7) { |
|
memset(subband_coef_index, 0, sizeof(subband_coef_index)); |
|
memset(subband_coef_noise, 0, sizeof(subband_coef_noise)); |
|
} |
|
scalar_dequant(q, index, band, quant_value_table, subband_coef_index, |
|
subband_coef_noise, mlt_buffer); |
|
} |
|
|
|
if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){ |
|
return; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* function for decoding mono data |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param mlt_buffer1 pointer to left channel mlt coefficients |
|
* @param mlt_buffer2 pointer to right channel mlt coefficients |
|
*/ |
|
|
|
static void mono_decode(COOKContext *q, float* mlt_buffer) { |
|
|
|
int category_index[128]; |
|
float quant_value_table[102]; |
|
int quant_index_table[102]; |
|
int category[128]; |
|
|
|
memset(&category, 0, 128*sizeof(int)); |
|
memset(&quant_value_table, 0, 102*sizeof(int)); |
|
memset(&category_index, 0, 128*sizeof(int)); |
|
|
|
decode_envelope(q, quant_index_table); |
|
q->num_vectors = get_bits(&q->gb,q->log2_numvector_size); |
|
dequant_envelope(q, quant_index_table, quant_value_table); |
|
categorize(q, quant_index_table, category, category_index); |
|
expand_category(q, category, category_index); |
|
decode_vectors(q, category, quant_value_table, mlt_buffer); |
|
} |
|
|
|
|
|
/** |
|
* The modulated lapped transform, this takes transform coefficients |
|
* and transforms them into timedomain samples. This is done through |
|
* an FFT-based algorithm with pre- and postrotation steps. |
|
* A window and reorder step is also included. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to the mltcoefficients |
|
* @param outbuffer pointer to the timedomain buffer |
|
* @param mlt_tmp pointer to temporary storage space |
|
*/ |
|
|
|
static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer) |
|
{ |
|
int i; |
|
|
|
q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, outbuffer, inbuffer, q->mdct_tmp); |
|
|
|
for(i = 0; i < q->samples_per_channel; i++){ |
|
float tmp = outbuffer[i]; |
|
|
|
outbuffer[i] = q->mlt_window[i] * outbuffer[q->samples_per_channel + i]; |
|
outbuffer[q->samples_per_channel + i] = q->mlt_window[q->samples_per_channel - 1 - i] * -tmp; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* the actual requantization of the timedomain samples |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param buffer pointer to the timedomain buffer |
|
* @param gain_index index for the block multiplier |
|
* @param gain_index_next index for the next block multiplier |
|
*/ |
|
|
|
static void interpolate(COOKContext *q, float* buffer, |
|
int gain_index, int gain_index_next){ |
|
int i; |
|
float fc1, fc2; |
|
fc1 = q->pow2tab[gain_index+63]; |
|
|
|
if(gain_index == gain_index_next){ //static gain |
|
for(i=0 ; i<q->gain_size_factor ; i++){ |
|
buffer[i]*=fc1; |
|
} |
|
return; |
|
} else { //smooth gain |
|
fc2 = q->gain_table[11 + (gain_index_next-gain_index)]; |
|
for(i=0 ; i<q->gain_size_factor ; i++){ |
|
buffer[i]*=fc1; |
|
fc1*=fc2; |
|
} |
|
return; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* mlt overlapping and buffer management |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param gains_ptr current and previous gains |
|
* @param previous_buffer pointer to the previous buffer to be used for overlapping |
|
*/ |
|
|
|
static void gain_compensate(COOKContext *q, cook_gains *gains_ptr, |
|
float* previous_buffer) |
|
{ |
|
const float fc = q->pow2tab[gains_ptr->previous[0] + 63]; |
|
float *buffer = q->mono_mdct_output; |
|
int i; |
|
|
|
/* Overlap with the previous block. */ |
|
for(i=0 ; i<q->samples_per_channel ; i++) { |
|
buffer[i] *= fc; |
|
buffer[i] += previous_buffer[i]; |
|
} |
|
|
|
/* Apply gain profile */ |
|
for (i = 0; i < 8; i++) { |
|
if (gains_ptr->now[i] || gains_ptr->now[i + 1]) |
|
interpolate(q, &buffer[q->gain_size_factor * i], |
|
gains_ptr->now[i], gains_ptr->now[i + 1]); |
|
} |
|
|
|
/* Save away the current to be previous block. */ |
|
memcpy(previous_buffer, buffer+q->samples_per_channel, |
|
sizeof(float)*q->samples_per_channel); |
|
} |
|
|
|
|
|
/** |
|
* function for getting the jointstereo coupling information |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param decouple_tab decoupling array |
|
* |
|
*/ |
|
|
|
static void decouple_info(COOKContext *q, int* decouple_tab){ |
|
int length, i; |
|
|
|
if(get_bits1(&q->gb)) { |
|
if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; |
|
|
|
length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; |
|
for (i=0 ; i<length ; i++) { |
|
decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2); |
|
} |
|
return; |
|
} |
|
|
|
if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; |
|
|
|
length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; |
|
for (i=0 ; i<length ; i++) { |
|
decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits); |
|
} |
|
return; |
|
} |
|
|
|
|
|
/** |
|
* function for decoding joint stereo data |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param mlt_buffer1 pointer to left channel mlt coefficients |
|
* @param mlt_buffer2 pointer to right channel mlt coefficients |
|
*/ |
|
|
|
static void joint_decode(COOKContext *q, float* mlt_buffer1, |
|
float* mlt_buffer2) { |
|
int i,j; |
|
int decouple_tab[SUBBAND_SIZE]; |
|
float decode_buffer[1060]; |
|
int idx, cpl_tmp,tmp_idx; |
|
float f1,f2; |
|
float* cplscale; |
|
|
|
memset(decouple_tab, 0, sizeof(decouple_tab)); |
|
memset(decode_buffer, 0, sizeof(decode_buffer)); |
|
|
|
/* Make sure the buffers are zeroed out. */ |
|
memset(mlt_buffer1,0, 1024*sizeof(float)); |
|
memset(mlt_buffer2,0, 1024*sizeof(float)); |
|
decouple_info(q, decouple_tab); |
|
mono_decode(q, decode_buffer); |
|
|
|
/* The two channels are stored interleaved in decode_buffer. */ |
|
for (i=0 ; i<q->js_subband_start ; i++) { |
|
for (j=0 ; j<SUBBAND_SIZE ; j++) { |
|
mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; |
|
mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; |
|
} |
|
} |
|
|
|
/* When we reach js_subband_start (the higher frequencies) |
|
the coefficients are stored in a coupling scheme. */ |
|
idx = (1 << q->js_vlc_bits) - 1; |
|
for (i=q->js_subband_start ; i<q->subbands ; i++) { |
|
cpl_tmp = cplband[i]; |
|
idx -=decouple_tab[cpl_tmp]; |
|
cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table |
|
f1 = cplscale[decouple_tab[cpl_tmp]]; |
|
f2 = cplscale[idx-1]; |
|
for (j=0 ; j<SUBBAND_SIZE ; j++) { |
|
tmp_idx = ((q->js_subband_start + i)*20)+j; |
|
mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx]; |
|
mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx]; |
|
} |
|
idx = (1 << q->js_vlc_bits) - 1; |
|
} |
|
} |
|
|
|
/** |
|
* First part of subpacket decoding: |
|
* decode raw stream bytes and read gain info. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to raw stream data |
|
* @param gain_ptr array of current/prev gain pointers |
|
*/ |
|
|
|
static inline void |
|
decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer, |
|
cook_gains *gains_ptr) |
|
{ |
|
int offset; |
|
|
|
offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, |
|
q->bits_per_subpacket/8); |
|
init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, |
|
q->bits_per_subpacket); |
|
decode_gain_info(&q->gb, gains_ptr->now); |
|
|
|
/* Swap current and previous gains */ |
|
FFSWAP(int *, gains_ptr->now, gains_ptr->previous); |
|
} |
|
|
|
/** |
|
* Final part of subpacket decoding: |
|
* Apply modulated lapped transform, gain compensation, |
|
* clip and convert to integer. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param decode_buffer pointer to the mlt coefficients |
|
* @param gain_ptr array of current/prev gain pointers |
|
* @param previous_buffer pointer to the previous buffer to be used for overlapping |
|
* @param out pointer to the output buffer |
|
* @param chan 0: left or single channel, 1: right channel |
|
*/ |
|
|
|
static inline void |
|
mlt_compensate_output(COOKContext *q, float *decode_buffer, |
|
cook_gains *gains, float *previous_buffer, |
|
int16_t *out, int chan) |
|
{ |
|
int j; |
|
|
|
cook_imlt(q, decode_buffer, q->mono_mdct_output); |
|
gain_compensate(q, gains, previous_buffer); |
|
|
|
/* Clip and convert floats to 16 bits. |
|
*/ |
|
for (j = 0; j < q->samples_per_channel; j++) { |
|
out[chan + q->nb_channels * j] = |
|
av_clip(lrintf(q->mono_mdct_output[j]), -32768, 32767); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Cook subpacket decoding. This function returns one decoded subpacket, |
|
* usually 1024 samples per channel. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to the inbuffer |
|
* @param sub_packet_size subpacket size |
|
* @param outbuffer pointer to the outbuffer |
|
*/ |
|
|
|
|
|
static int decode_subpacket(COOKContext *q, uint8_t *inbuffer, |
|
int sub_packet_size, int16_t *outbuffer) { |
|
/* packet dump */ |
|
// for (i=0 ; i<sub_packet_size ; i++) { |
|
// av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]); |
|
// } |
|
// av_log(NULL, AV_LOG_ERROR, "\n"); |
|
|
|
decode_bytes_and_gain(q, inbuffer, &q->gains1); |
|
|
|
if (q->joint_stereo) { |
|
joint_decode(q, q->decode_buffer_1, q->decode_buffer_2); |
|
} else { |
|
mono_decode(q, q->decode_buffer_1); |
|
|
|
if (q->nb_channels == 2) { |
|
decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2); |
|
mono_decode(q, q->decode_buffer_2); |
|
} |
|
} |
|
|
|
mlt_compensate_output(q, q->decode_buffer_1, &q->gains1, |
|
q->mono_previous_buffer1, outbuffer, 0); |
|
|
|
if (q->nb_channels == 2) { |
|
if (q->joint_stereo) { |
|
mlt_compensate_output(q, q->decode_buffer_2, &q->gains1, |
|
q->mono_previous_buffer2, outbuffer, 1); |
|
} else { |
|
mlt_compensate_output(q, q->decode_buffer_2, &q->gains2, |
|
q->mono_previous_buffer2, outbuffer, 1); |
|
} |
|
} |
|
return q->samples_per_frame * sizeof(int16_t); |
|
} |
|
|
|
|
|
/** |
|
* Cook frame decoding |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static int cook_decode_frame(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
uint8_t *buf, int buf_size) { |
|
COOKContext *q = avctx->priv_data; |
|
|
|
if (buf_size < avctx->block_align) |
|
return buf_size; |
|
|
|
*data_size = decode_subpacket(q, buf, avctx->block_align, data); |
|
|
|
/* Discard the first two frames: no valid audio. */ |
|
if (avctx->frame_number < 2) *data_size = 0; |
|
|
|
return avctx->block_align; |
|
} |
|
|
|
#ifdef COOKDEBUG |
|
static void dump_cook_context(COOKContext *q) |
|
{ |
|
//int i=0; |
|
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b); |
|
av_log(NULL,AV_LOG_ERROR,"COOKextradata\n"); |
|
av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion); |
|
if (q->cookversion > STEREO) { |
|
PRINT("js_subband_start",q->js_subband_start); |
|
PRINT("js_vlc_bits",q->js_vlc_bits); |
|
} |
|
av_log(NULL,AV_LOG_ERROR,"COOKContext\n"); |
|
PRINT("nb_channels",q->nb_channels); |
|
PRINT("bit_rate",q->bit_rate); |
|
PRINT("sample_rate",q->sample_rate); |
|
PRINT("samples_per_channel",q->samples_per_channel); |
|
PRINT("samples_per_frame",q->samples_per_frame); |
|
PRINT("subbands",q->subbands); |
|
PRINT("random_state",q->random_state); |
|
PRINT("js_subband_start",q->js_subband_start); |
|
PRINT("log2_numvector_size",q->log2_numvector_size); |
|
PRINT("numvector_size",q->numvector_size); |
|
PRINT("total_subbands",q->total_subbands); |
|
} |
|
#endif |
|
|
|
/** |
|
* Cook initialization |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static int cook_decode_init(AVCodecContext *avctx) |
|
{ |
|
COOKContext *q = avctx->priv_data; |
|
uint8_t *edata_ptr = avctx->extradata; |
|
|
|
/* Take care of the codec specific extradata. */ |
|
if (avctx->extradata_size <= 0) { |
|
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n"); |
|
return -1; |
|
} else { |
|
/* 8 for mono, 16 for stereo, ? for multichannel |
|
Swap to right endianness so we don't need to care later on. */ |
|
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size); |
|
if (avctx->extradata_size >= 8){ |
|
q->cookversion = bytestream_get_be32(&edata_ptr); |
|
q->samples_per_frame = bytestream_get_be16(&edata_ptr); |
|
q->subbands = bytestream_get_be16(&edata_ptr); |
|
} |
|
if (avctx->extradata_size >= 16){ |
|
bytestream_get_be32(&edata_ptr); //Unknown unused |
|
q->js_subband_start = bytestream_get_be16(&edata_ptr); |
|
q->js_vlc_bits = bytestream_get_be16(&edata_ptr); |
|
} |
|
} |
|
|
|
/* Take data from the AVCodecContext (RM container). */ |
|
q->sample_rate = avctx->sample_rate; |
|
q->nb_channels = avctx->channels; |
|
q->bit_rate = avctx->bit_rate; |
|
|
|
/* Initialize state. */ |
|
q->random_state = 1; |
|
|
|
/* Initialize extradata related variables. */ |
|
q->samples_per_channel = q->samples_per_frame / q->nb_channels; |
|
q->bits_per_subpacket = avctx->block_align * 8; |
|
|
|
/* Initialize default data states. */ |
|
q->log2_numvector_size = 5; |
|
q->total_subbands = q->subbands; |
|
|
|
/* Initialize version-dependent variables */ |
|
av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion); |
|
q->joint_stereo = 0; |
|
switch (q->cookversion) { |
|
case MONO: |
|
if (q->nb_channels != 1) { |
|
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n"); |
|
return -1; |
|
} |
|
av_log(avctx,AV_LOG_DEBUG,"MONO\n"); |
|
break; |
|
case STEREO: |
|
if (q->nb_channels != 1) { |
|
q->bits_per_subpacket = q->bits_per_subpacket/2; |
|
} |
|
av_log(avctx,AV_LOG_DEBUG,"STEREO\n"); |
|
break; |
|
case JOINT_STEREO: |
|
if (q->nb_channels != 2) { |
|
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n"); |
|
return -1; |
|
} |
|
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n"); |
|
if (avctx->extradata_size >= 16){ |
|
q->total_subbands = q->subbands + q->js_subband_start; |
|
q->joint_stereo = 1; |
|
} |
|
if (q->samples_per_channel > 256) { |
|
q->log2_numvector_size = 6; |
|
} |
|
if (q->samples_per_channel > 512) { |
|
q->log2_numvector_size = 7; |
|
} |
|
break; |
|
case MC_COOK: |
|
av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n"); |
|
return -1; |
|
break; |
|
default: |
|
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n"); |
|
return -1; |
|
break; |
|
} |
|
|
|
/* Initialize variable relations */ |
|
q->numvector_size = (1 << q->log2_numvector_size); |
|
|
|
/* Generate tables */ |
|
init_rootpow2table(q); |
|
init_pow2table(q); |
|
init_gain_table(q); |
|
|
|
if (init_cook_vlc_tables(q) != 0) |
|
return -1; |
|
|
|
|
|
if(avctx->block_align >= UINT_MAX/2) |
|
return -1; |
|
|
|
/* Pad the databuffer with: |
|
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), |
|
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ |
|
if (q->nb_channels==2 && q->joint_stereo==0) { |
|
q->decoded_bytes_buffer = |
|
av_mallocz(avctx->block_align/2 |
|
+ DECODE_BYTES_PAD2(avctx->block_align/2) |
|
+ FF_INPUT_BUFFER_PADDING_SIZE); |
|
} else { |
|
q->decoded_bytes_buffer = |
|
av_mallocz(avctx->block_align |
|
+ DECODE_BYTES_PAD1(avctx->block_align) |
|
+ FF_INPUT_BUFFER_PADDING_SIZE); |
|
} |
|
if (q->decoded_bytes_buffer == NULL) |
|
return -1; |
|
|
|
q->gains1.now = q->gain_1; |
|
q->gains1.previous = q->gain_2; |
|
q->gains2.now = q->gain_3; |
|
q->gains2.previous = q->gain_4; |
|
|
|
/* Initialize transform. */ |
|
if ( init_cook_mlt(q) != 0 ) |
|
return -1; |
|
|
|
/* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
|
if (q->total_subbands > 53) { |
|
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n"); |
|
return -1; |
|
} |
|
if (q->subbands > 50) { |
|
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n"); |
|
return -1; |
|
} |
|
if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) { |
|
} else { |
|
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel); |
|
return -1; |
|
} |
|
if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) { |
|
av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits); |
|
return -1; |
|
} |
|
|
|
#ifdef COOKDEBUG |
|
dump_cook_context(q); |
|
#endif |
|
return 0; |
|
} |
|
|
|
|
|
AVCodec cook_decoder = |
|
{ |
|
.name = "cook", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_COOK, |
|
.priv_data_size = sizeof(COOKContext), |
|
.init = cook_decode_init, |
|
.close = cook_decode_close, |
|
.decode = cook_decode_frame, |
|
};
|
|
|