mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
731 lines
20 KiB
731 lines
20 KiB
/* |
|
* Ut Video encoder |
|
* Copyright (c) 2012 Jan Ekström |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Ut Video encoder |
|
*/ |
|
|
|
#include "libavutil/intreadwrite.h" |
|
#include "avcodec.h" |
|
#include "internal.h" |
|
#include "bytestream.h" |
|
#include "put_bits.h" |
|
#include "dsputil.h" |
|
#include "mathops.h" |
|
#include "utvideo.h" |
|
|
|
/* Compare huffentry symbols */ |
|
static int huff_cmp_sym(const void *a, const void *b) |
|
{ |
|
const HuffEntry *aa = a, *bb = b; |
|
return aa->sym - bb->sym; |
|
} |
|
|
|
static av_cold int utvideo_encode_close(AVCodecContext *avctx) |
|
{ |
|
UtvideoContext *c = avctx->priv_data; |
|
|
|
av_freep(&avctx->coded_frame); |
|
av_freep(&c->slice_bits); |
|
av_freep(&c->slice_buffer); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int utvideo_encode_init(AVCodecContext *avctx) |
|
{ |
|
UtvideoContext *c = avctx->priv_data; |
|
|
|
uint32_t original_format; |
|
|
|
c->avctx = avctx; |
|
c->frame_info_size = 4; |
|
|
|
switch (avctx->pix_fmt) { |
|
case PIX_FMT_RGB24: |
|
c->planes = 3; |
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'G'); |
|
original_format = UTVIDEO_RGB; |
|
break; |
|
case PIX_FMT_RGBA: |
|
c->planes = 4; |
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'A'); |
|
original_format = UTVIDEO_RGBA; |
|
break; |
|
case PIX_FMT_YUV420P: |
|
if (avctx->width & 1 || avctx->height & 1) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"4:2:0 video requires even width and height.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
c->planes = 3; |
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '0'); |
|
original_format = UTVIDEO_420; |
|
break; |
|
case PIX_FMT_YUV422P: |
|
if (avctx->width & 1) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"4:2:2 video requires even width.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
c->planes = 3; |
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '2'); |
|
original_format = UTVIDEO_422; |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", |
|
avctx->pix_fmt); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ff_dsputil_init(&c->dsp, avctx); |
|
|
|
/* Check the prediction method, and error out if unsupported */ |
|
if (avctx->prediction_method < 0 || avctx->prediction_method > 4) { |
|
av_log(avctx, AV_LOG_WARNING, |
|
"Prediction method %d is not supported in Ut Video.\n", |
|
avctx->prediction_method); |
|
return AVERROR_OPTION_NOT_FOUND; |
|
} |
|
|
|
if (avctx->prediction_method == FF_PRED_PLANE) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Plane prediction is not supported in Ut Video.\n"); |
|
return AVERROR_OPTION_NOT_FOUND; |
|
} |
|
|
|
/* Convert from libavcodec prediction type to Ut Video's */ |
|
c->frame_pred = ff_ut_pred_order[avctx->prediction_method]; |
|
|
|
if (c->frame_pred == PRED_GRADIENT) { |
|
av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n"); |
|
return AVERROR_OPTION_NOT_FOUND; |
|
} |
|
|
|
avctx->coded_frame = avcodec_alloc_frame(); |
|
|
|
if (!avctx->coded_frame) { |
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n"); |
|
utvideo_encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/* extradata size is 4 * 32bit */ |
|
avctx->extradata_size = 16; |
|
|
|
avctx->extradata = av_mallocz(avctx->extradata_size + |
|
FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
if (!avctx->extradata) { |
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); |
|
utvideo_encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
c->slice_buffer = av_malloc(avctx->width * avctx->height + |
|
FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
if (!c->slice_buffer) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n"); |
|
utvideo_encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/* |
|
* Set the version of the encoder. |
|
* Last byte is "implementation ID", which is |
|
* obtained from the creator of the format. |
|
* Libavcodec has been assigned with the ID 0xF0. |
|
*/ |
|
AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0)); |
|
|
|
/* |
|
* Set the "original format" |
|
* Not used for anything during decoding. |
|
*/ |
|
AV_WL32(avctx->extradata + 4, original_format); |
|
|
|
/* Write 4 as the 'frame info size' */ |
|
AV_WL32(avctx->extradata + 8, c->frame_info_size); |
|
|
|
/* |
|
* Set how many slices are going to be used. |
|
* Set one slice for now. |
|
*/ |
|
c->slices = 1; |
|
|
|
/* Set compression mode */ |
|
c->compression = COMP_HUFF; |
|
|
|
/* |
|
* Set the encoding flags: |
|
* - Slice count minus 1 |
|
* - Interlaced encoding mode flag, set to zero for now. |
|
* - Compression mode (none/huff) |
|
* And write the flags. |
|
*/ |
|
c->flags = (c->slices - 1) << 24; |
|
c->flags |= 0 << 11; // bit field to signal interlaced encoding mode |
|
c->flags |= c->compression; |
|
|
|
AV_WL32(avctx->extradata + 12, c->flags); |
|
|
|
return 0; |
|
} |
|
|
|
static void mangle_rgb_planes(uint8_t *src, int step, int stride, int width, |
|
int height) |
|
{ |
|
int i, j; |
|
uint8_t r, g, b; |
|
|
|
for (j = 0; j < height; j++) { |
|
for (i = 0; i < width * step; i += step) { |
|
r = src[i]; |
|
g = src[i + 1]; |
|
b = src[i + 2]; |
|
|
|
src[i] = r - g + 0x80; |
|
src[i + 2] = b - g + 0x80; |
|
} |
|
src += stride; |
|
} |
|
} |
|
|
|
/* Write data to a plane, no prediction applied */ |
|
static void write_plane(uint8_t *src, uint8_t *dst, int step, int stride, |
|
int width, int height) |
|
{ |
|
int i, j; |
|
|
|
for (j = 0; j < height; j++) { |
|
for (i = 0; i < width * step; i += step) |
|
*dst++ = src[i]; |
|
|
|
src += stride; |
|
} |
|
} |
|
|
|
/* Write data to a plane with left prediction */ |
|
static void left_predict(uint8_t *src, uint8_t *dst, int step, int stride, |
|
int width, int height) |
|
{ |
|
int i, j; |
|
uint8_t prev; |
|
|
|
prev = 0x80; /* Set the initial value */ |
|
for (j = 0; j < height; j++) { |
|
for (i = 0; i < width * step; i += step) { |
|
*dst++ = src[i] - prev; |
|
prev = src[i]; |
|
} |
|
src += stride; |
|
} |
|
} |
|
|
|
/* Write data to a plane with median prediction */ |
|
static void median_predict(uint8_t *src, uint8_t *dst, int step, int stride, |
|
int width, int height) |
|
{ |
|
int i, j; |
|
int A, B, C; |
|
uint8_t prev; |
|
|
|
/* First line uses left neighbour prediction */ |
|
prev = 0x80; /* Set the initial value */ |
|
for (i = 0; i < width * step; i += step) { |
|
*dst++ = src[i] - prev; |
|
prev = src[i]; |
|
} |
|
|
|
if (height == 1) |
|
return; |
|
|
|
src += stride; |
|
|
|
/* |
|
* Second line uses top prediction for the first sample, |
|
* and median for the rest. |
|
*/ |
|
C = src[-stride]; |
|
*dst++ = src[0] - C; |
|
A = src[0]; |
|
for (i = step; i < width * step; i += step) { |
|
B = src[i - stride]; |
|
*dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); |
|
C = B; |
|
A = src[i]; |
|
} |
|
|
|
src += stride; |
|
|
|
/* Rest of the coded part uses median prediction */ |
|
for (j = 2; j < height; j++) { |
|
for (i = 0; i < width * step; i += step) { |
|
B = src[i - stride]; |
|
*dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); |
|
C = B; |
|
A = src[i]; |
|
} |
|
src += stride; |
|
} |
|
} |
|
|
|
/* Count the usage of values in a plane */ |
|
static void count_usage(uint8_t *src, int width, |
|
int height, uint32_t *counts) |
|
{ |
|
int i, j; |
|
|
|
for (j = 0; j < height; j++) { |
|
for (i = 0; i < width; i++) { |
|
counts[src[i]]++; |
|
} |
|
src += width; |
|
} |
|
} |
|
|
|
static uint32_t add_weights(uint32_t w1, uint32_t w2) |
|
{ |
|
uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF); |
|
|
|
return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max); |
|
} |
|
|
|
static void up_heap(uint32_t val, uint32_t *heap, uint32_t *weights) |
|
{ |
|
uint32_t initial_val = heap[val]; |
|
|
|
while (weights[initial_val] < weights[heap[val >> 1]]) { |
|
heap[val] = heap[val >> 1]; |
|
val >>= 1; |
|
} |
|
|
|
heap[val] = initial_val; |
|
} |
|
|
|
static void down_heap(uint32_t nr_heap, uint32_t *heap, uint32_t *weights) |
|
{ |
|
uint32_t val = 1; |
|
uint32_t val2; |
|
uint32_t initial_val = heap[val]; |
|
|
|
while (1) { |
|
val2 = val << 1; |
|
|
|
if (val2 > nr_heap) |
|
break; |
|
|
|
if (val2 < nr_heap && weights[heap[val2 + 1]] < weights[heap[val2]]) |
|
val2++; |
|
|
|
if (weights[initial_val] < weights[heap[val2]]) |
|
break; |
|
|
|
heap[val] = heap[val2]; |
|
|
|
val = val2; |
|
} |
|
|
|
heap[val] = initial_val; |
|
} |
|
|
|
/* Calculate the huffman code lengths from value counts */ |
|
static void calculate_code_lengths(uint8_t *lengths, uint32_t *counts) |
|
{ |
|
uint32_t nr_nodes, nr_heap, node1, node2; |
|
int i, j; |
|
int32_t k; |
|
|
|
/* Heap and node entries start from 1 */ |
|
uint32_t weights[512]; |
|
uint32_t heap[512]; |
|
int32_t parents[512]; |
|
|
|
/* Set initial weights */ |
|
for (i = 0; i < 256; i++) |
|
weights[i + 1] = (counts[i] ? counts[i] : 1) << 8; |
|
|
|
nr_nodes = 256; |
|
nr_heap = 0; |
|
|
|
heap[0] = 0; |
|
weights[0] = 0; |
|
parents[0] = -2; |
|
|
|
/* Create initial nodes */ |
|
for (i = 1; i <= 256; i++) { |
|
parents[i] = -1; |
|
|
|
heap[++nr_heap] = i; |
|
up_heap(nr_heap, heap, weights); |
|
} |
|
|
|
/* Build the tree */ |
|
while (nr_heap > 1) { |
|
node1 = heap[1]; |
|
heap[1] = heap[nr_heap--]; |
|
|
|
down_heap(nr_heap, heap, weights); |
|
|
|
node2 = heap[1]; |
|
heap[1] = heap[nr_heap--]; |
|
|
|
down_heap(nr_heap, heap, weights); |
|
|
|
nr_nodes++; |
|
|
|
parents[node1] = parents[node2] = nr_nodes; |
|
weights[nr_nodes] = add_weights(weights[node1], weights[node2]); |
|
parents[nr_nodes] = -1; |
|
|
|
heap[++nr_heap] = nr_nodes; |
|
|
|
up_heap(nr_heap, heap, weights); |
|
} |
|
|
|
/* Generate lengths */ |
|
for (i = 1; i <= 256; i++) { |
|
j = 0; |
|
k = i; |
|
|
|
while (parents[k] >= 0) { |
|
k = parents[k]; |
|
j++; |
|
} |
|
|
|
lengths[i - 1] = j; |
|
} |
|
} |
|
|
|
/* Calculate the actual huffman codes from the code lengths */ |
|
static void calculate_codes(HuffEntry *he) |
|
{ |
|
int last, i; |
|
uint32_t code; |
|
|
|
qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len); |
|
|
|
last = 255; |
|
while (he[last].len == 255 && last) |
|
last--; |
|
|
|
code = 1; |
|
for (i = last; i >= 0; i--) { |
|
he[i].code = code >> (32 - he[i].len); |
|
code += 0x80000000u >> (he[i].len - 1); |
|
} |
|
|
|
qsort(he, 256, sizeof(*he), huff_cmp_sym); |
|
} |
|
|
|
/* Write huffman bit codes to a memory block */ |
|
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size, |
|
int width, int height, HuffEntry *he) |
|
{ |
|
PutBitContext pb; |
|
int i, j; |
|
int count; |
|
|
|
init_put_bits(&pb, dst, dst_size); |
|
|
|
/* Write the codes */ |
|
for (j = 0; j < height; j++) { |
|
for (i = 0; i < width; i++) |
|
put_bits(&pb, he[src[i]].len, he[src[i]].code); |
|
|
|
src += width; |
|
} |
|
|
|
/* Pad output to a 32bit boundary */ |
|
count = put_bits_count(&pb) & 0x1F; |
|
|
|
if (count) |
|
put_bits(&pb, 32 - count, 0); |
|
|
|
/* Get the amount of bits written */ |
|
count = put_bits_count(&pb); |
|
|
|
/* Flush the rest with zeroes */ |
|
flush_put_bits(&pb); |
|
|
|
return count; |
|
} |
|
|
|
static int encode_plane(AVCodecContext *avctx, uint8_t *src, |
|
uint8_t *dst, int step, int stride, |
|
int width, int height, PutByteContext *pb) |
|
{ |
|
UtvideoContext *c = avctx->priv_data; |
|
uint8_t lengths[256]; |
|
uint32_t counts[256] = { 0 }; |
|
|
|
HuffEntry he[256]; |
|
|
|
uint32_t offset = 0, slice_len = 0; |
|
int i, sstart, send = 0; |
|
int symbol; |
|
|
|
/* Do prediction / make planes */ |
|
switch (c->frame_pred) { |
|
case PRED_NONE: |
|
for (i = 0; i < c->slices; i++) { |
|
sstart = send; |
|
send = height * (i + 1) / c->slices; |
|
write_plane(src + sstart * stride, dst + sstart * width, |
|
step, stride, width, send - sstart); |
|
} |
|
break; |
|
case PRED_LEFT: |
|
for (i = 0; i < c->slices; i++) { |
|
sstart = send; |
|
send = height * (i + 1) / c->slices; |
|
left_predict(src + sstart * stride, dst + sstart * width, |
|
step, stride, width, send - sstart); |
|
} |
|
break; |
|
case PRED_MEDIAN: |
|
for (i = 0; i < c->slices; i++) { |
|
sstart = send; |
|
send = height * (i + 1) / c->slices; |
|
median_predict(src + sstart * stride, dst + sstart * width, |
|
step, stride, width, send - sstart); |
|
} |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n", |
|
c->frame_pred); |
|
return AVERROR_OPTION_NOT_FOUND; |
|
} |
|
|
|
/* Count the usage of values */ |
|
count_usage(dst, width, height, counts); |
|
|
|
/* Check for a special case where only one symbol was used */ |
|
for (symbol = 0; symbol < 256; symbol++) { |
|
/* If non-zero count is found, see if it matches width * height */ |
|
if (counts[symbol]) { |
|
/* Special case if only one symbol was used */ |
|
if (counts[symbol] == width * height) { |
|
/* |
|
* Write a zero for the single symbol |
|
* used in the plane, else 0xFF. |
|
*/ |
|
for (i = 0; i < 256; i++) { |
|
if (i == symbol) |
|
bytestream2_put_byte(pb, 0); |
|
else |
|
bytestream2_put_byte(pb, 0xFF); |
|
} |
|
|
|
/* Write zeroes for lengths */ |
|
for (i = 0; i < c->slices; i++) |
|
bytestream2_put_le32(pb, 0); |
|
|
|
/* And that's all for that plane folks */ |
|
return 0; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
/* Calculate huffman lengths */ |
|
calculate_code_lengths(lengths, counts); |
|
|
|
/* |
|
* Write the plane's header into the output packet: |
|
* - huffman code lengths (256 bytes) |
|
* - slice end offsets (gotten from the slice lengths) |
|
*/ |
|
for (i = 0; i < 256; i++) { |
|
bytestream2_put_byte(pb, lengths[i]); |
|
|
|
he[i].len = lengths[i]; |
|
he[i].sym = i; |
|
} |
|
|
|
/* Calculate the huffman codes themselves */ |
|
calculate_codes(he); |
|
|
|
send = 0; |
|
for (i = 0; i < c->slices; i++) { |
|
sstart = send; |
|
send = height * (i + 1) / c->slices; |
|
|
|
/* |
|
* Write the huffman codes to a buffer, |
|
* get the offset in bits and convert to bytes. |
|
*/ |
|
offset += write_huff_codes(dst + sstart * width, c->slice_bits, |
|
width * (send - sstart), width, |
|
send - sstart, he) >> 3; |
|
|
|
slice_len = offset - slice_len; |
|
|
|
/* Byteswap the written huffman codes */ |
|
c->dsp.bswap_buf((uint32_t *) c->slice_bits, |
|
(uint32_t *) c->slice_bits, |
|
slice_len >> 2); |
|
|
|
/* Write the offset to the stream */ |
|
bytestream2_put_le32(pb, offset); |
|
|
|
/* Seek to the data part of the packet */ |
|
bytestream2_seek_p(pb, 4 * (c->slices - i - 1) + |
|
offset - slice_len, SEEK_CUR); |
|
|
|
/* Write the slices' data into the output packet */ |
|
bytestream2_put_buffer(pb, c->slice_bits, slice_len); |
|
|
|
/* Seek back to the slice offsets */ |
|
bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset, |
|
SEEK_CUR); |
|
|
|
slice_len = offset; |
|
} |
|
|
|
/* And at the end seek to the end of written slice(s) */ |
|
bytestream2_seek_p(pb, offset, SEEK_CUR); |
|
|
|
return 0; |
|
} |
|
|
|
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *pic, int *got_packet) |
|
{ |
|
UtvideoContext *c = avctx->priv_data; |
|
PutByteContext pb; |
|
|
|
uint32_t frame_info; |
|
|
|
uint8_t *dst; |
|
|
|
int width = avctx->width, height = avctx->height; |
|
int i, ret = 0; |
|
|
|
/* Allocate a new packet if needed, and set it to the pointer dst */ |
|
ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) * |
|
c->planes + 4); |
|
|
|
if (ret < 0) |
|
return ret; |
|
|
|
dst = pkt->data; |
|
|
|
bytestream2_init_writer(&pb, dst, pkt->size); |
|
|
|
av_fast_malloc(&c->slice_bits, &c->slice_bits_size, |
|
width * height + FF_INPUT_BUFFER_PADDING_SIZE); |
|
|
|
if (!c->slice_bits) { |
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/* In case of RGB, mangle the planes to Ut Video's format */ |
|
if (avctx->pix_fmt == PIX_FMT_RGBA || avctx->pix_fmt == PIX_FMT_RGB24) |
|
mangle_rgb_planes(pic->data[0], c->planes, pic->linesize[0], width, |
|
height); |
|
|
|
/* Deal with the planes */ |
|
switch (avctx->pix_fmt) { |
|
case PIX_FMT_RGB24: |
|
case PIX_FMT_RGBA: |
|
for (i = 0; i < c->planes; i++) { |
|
ret = encode_plane(avctx, pic->data[0] + ff_ut_rgb_order[i], |
|
c->slice_buffer, c->planes, pic->linesize[0], |
|
width, height, &pb); |
|
|
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); |
|
return ret; |
|
} |
|
} |
|
break; |
|
case PIX_FMT_YUV422P: |
|
for (i = 0; i < c->planes; i++) { |
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, |
|
pic->linesize[i], width >> !!i, height, &pb); |
|
|
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); |
|
return ret; |
|
} |
|
} |
|
break; |
|
case PIX_FMT_YUV420P: |
|
for (i = 0; i < c->planes; i++) { |
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, |
|
pic->linesize[i], width >> !!i, height >> !!i, |
|
&pb); |
|
|
|
if (ret) { |
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); |
|
return ret; |
|
} |
|
} |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", |
|
avctx->pix_fmt); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* |
|
* Write frame information (LE 32bit unsigned) |
|
* into the output packet. |
|
* Contains the prediction method. |
|
*/ |
|
frame_info = c->frame_pred << 8; |
|
bytestream2_put_le32(&pb, frame_info); |
|
|
|
/* |
|
* At least currently Ut Video is IDR only. |
|
* Set flags accordingly. |
|
*/ |
|
avctx->coded_frame->reference = 0; |
|
avctx->coded_frame->key_frame = 1; |
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
|
|
|
pkt->size = bytestream2_tell_p(&pb); |
|
pkt->flags |= AV_PKT_FLAG_KEY; |
|
|
|
/* Packet should be done */ |
|
*got_packet = 1; |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ff_utvideo_encoder = { |
|
.name = "utvideo", |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = CODEC_ID_UTVIDEO, |
|
.priv_data_size = sizeof(UtvideoContext), |
|
.init = utvideo_encode_init, |
|
.encode2 = utvideo_encode_frame, |
|
.close = utvideo_encode_close, |
|
.pix_fmts = (const enum PixelFormat[]) { |
|
PIX_FMT_RGB24, PIX_FMT_RGBA, PIX_FMT_YUV422P, |
|
PIX_FMT_YUV420P, PIX_FMT_NONE |
|
}, |
|
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"), |
|
};
|
|
|