You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1149 lines
38 KiB

/*
* Nvidia CUVID decoder
* Copyright (c) 2016 Timo Rothenpieler <timo@rothenpieler.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "compat/cuda/dynlink_loader.h"
#include "libavutil/buffer.h"
#include "libavutil/mathematics.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_cuda_internal.h"
#include "libavutil/fifo.h"
#include "libavutil/log.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "decode.h"
#include "internal.h"
typedef struct CuvidContext
{
AVClass *avclass;
CUvideodecoder cudecoder;
CUvideoparser cuparser;
char *cu_gpu;
int nb_surfaces;
int drop_second_field;
char *crop_expr;
char *resize_expr;
struct {
int left;
int top;
int right;
int bottom;
} crop;
struct {
int width;
int height;
} resize;
AVBufferRef *hwdevice;
AVBufferRef *hwframe;
AVBSFContext *bsf;
AVFifoBuffer *frame_queue;
int deint_mode;
int deint_mode_current;
int64_t prev_pts;
int internal_error;
int decoder_flushing;
cudaVideoCodec codec_type;
cudaVideoChromaFormat chroma_format;
CUVIDDECODECAPS caps8, caps10, caps12;
CUVIDPARSERPARAMS cuparseinfo;
CUVIDEOFORMATEX cuparse_ext;
CudaFunctions *cudl;
CuvidFunctions *cvdl;
} CuvidContext;
typedef struct CuvidParsedFrame
{
CUVIDPARSERDISPINFO dispinfo;
int second_field;
int is_deinterlacing;
} CuvidParsedFrame;
static int check_cu(AVCodecContext *avctx, CUresult err, const char *func)
{
CuvidContext *ctx = avctx->priv_data;
const char *err_name;
const char *err_string;
av_log(avctx, AV_LOG_TRACE, "Calling %s\n", func);
if (err == CUDA_SUCCESS)
return 0;
ctx->cudl->cuGetErrorName(err, &err_name);
ctx->cudl->cuGetErrorString(err, &err_string);
av_log(avctx, AV_LOG_ERROR, "%s failed", func);
if (err_name && err_string)
av_log(avctx, AV_LOG_ERROR, " -> %s: %s", err_name, err_string);
av_log(avctx, AV_LOG_ERROR, "\n");
return AVERROR_EXTERNAL;
}
#define CHECK_CU(x) check_cu(avctx, (x), #x)
static int CUDAAPI cuvid_handle_video_sequence(void *opaque, CUVIDEOFORMAT* format)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
AVHWFramesContext *hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
CUVIDDECODECAPS *caps = NULL;
CUVIDDECODECREATEINFO cuinfo;
int surface_fmt;
int old_width = avctx->width;
int old_height = avctx->height;
enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA,
AV_PIX_FMT_NONE, // Will be updated below
AV_PIX_FMT_NONE };
av_log(avctx, AV_LOG_TRACE, "pfnSequenceCallback, progressive_sequence=%d\n", format->progressive_sequence);
memset(&cuinfo, 0, sizeof(cuinfo));
ctx->internal_error = 0;
avctx->coded_width = cuinfo.ulWidth = format->coded_width;
avctx->coded_height = cuinfo.ulHeight = format->coded_height;
// apply cropping
cuinfo.display_area.left = format->display_area.left + ctx->crop.left;
cuinfo.display_area.top = format->display_area.top + ctx->crop.top;
cuinfo.display_area.right = format->display_area.right - ctx->crop.right;
cuinfo.display_area.bottom = format->display_area.bottom - ctx->crop.bottom;
// width and height need to be set before calling ff_get_format
if (ctx->resize_expr) {
avctx->width = ctx->resize.width;
avctx->height = ctx->resize.height;
} else {
avctx->width = cuinfo.display_area.right - cuinfo.display_area.left;
avctx->height = cuinfo.display_area.bottom - cuinfo.display_area.top;
}
// target width/height need to be multiples of two
cuinfo.ulTargetWidth = avctx->width = (avctx->width + 1) & ~1;
cuinfo.ulTargetHeight = avctx->height = (avctx->height + 1) & ~1;
// aspect ratio conversion, 1:1, depends on scaled resolution
cuinfo.target_rect.left = 0;
cuinfo.target_rect.top = 0;
cuinfo.target_rect.right = cuinfo.ulTargetWidth;
cuinfo.target_rect.bottom = cuinfo.ulTargetHeight;
switch (format->bit_depth_luma_minus8) {
case 0: // 8-bit
pix_fmts[1] = AV_PIX_FMT_NV12;
caps = &ctx->caps8;
break;
case 2: // 10-bit
pix_fmts[1] = AV_PIX_FMT_P010;
caps = &ctx->caps10;
break;
case 4: // 12-bit
pix_fmts[1] = AV_PIX_FMT_P016;
caps = &ctx->caps12;
break;
default:
break;
}
if (!caps || !caps->bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "unsupported bit depth: %d\n",
format->bit_depth_luma_minus8 + 8);
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
surface_fmt = ff_get_format(avctx, pix_fmts);
if (surface_fmt < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", surface_fmt);
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
av_log(avctx, AV_LOG_VERBOSE, "Formats: Original: %s | HW: %s | SW: %s\n",
av_get_pix_fmt_name(avctx->pix_fmt),
av_get_pix_fmt_name(surface_fmt),
av_get_pix_fmt_name(avctx->sw_pix_fmt));
avctx->pix_fmt = surface_fmt;
// Update our hwframe ctx, as the get_format callback might have refreshed it!
if (avctx->hw_frames_ctx) {
av_buffer_unref(&ctx->hwframe);
ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx);
if (!ctx->hwframe) {
ctx->internal_error = AVERROR(ENOMEM);
return 0;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
}
ff_set_sar(avctx, av_div_q(
(AVRational){ format->display_aspect_ratio.x, format->display_aspect_ratio.y },
(AVRational){ avctx->width, avctx->height }));
ctx->deint_mode_current = format->progressive_sequence
? cudaVideoDeinterlaceMode_Weave
: ctx->deint_mode;
if (!format->progressive_sequence && ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave)
avctx->flags |= AV_CODEC_FLAG_INTERLACED_DCT;
else
avctx->flags &= ~AV_CODEC_FLAG_INTERLACED_DCT;
if (format->video_signal_description.video_full_range_flag)
avctx->color_range = AVCOL_RANGE_JPEG;
else
avctx->color_range = AVCOL_RANGE_MPEG;
avctx->color_primaries = format->video_signal_description.color_primaries;
avctx->color_trc = format->video_signal_description.transfer_characteristics;
avctx->colorspace = format->video_signal_description.matrix_coefficients;
if (format->bitrate)
avctx->bit_rate = format->bitrate;
if (format->frame_rate.numerator && format->frame_rate.denominator) {
avctx->framerate.num = format->frame_rate.numerator;
avctx->framerate.den = format->frame_rate.denominator;
}
if (ctx->cudecoder
&& avctx->coded_width == format->coded_width
&& avctx->coded_height == format->coded_height
&& avctx->width == old_width
&& avctx->height == old_height
&& ctx->chroma_format == format->chroma_format
&& ctx->codec_type == format->codec)
return 1;
if (ctx->cudecoder) {
av_log(avctx, AV_LOG_TRACE, "Re-initializing decoder\n");
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder));
if (ctx->internal_error < 0)
return 0;
ctx->cudecoder = NULL;
}
if (hwframe_ctx->pool && (
hwframe_ctx->width < avctx->width ||
hwframe_ctx->height < avctx->height ||
hwframe_ctx->format != AV_PIX_FMT_CUDA ||
hwframe_ctx->sw_format != avctx->sw_pix_fmt)) {
av_log(avctx, AV_LOG_ERROR, "AVHWFramesContext is already initialized with incompatible parameters\n");
av_log(avctx, AV_LOG_DEBUG, "width: %d <-> %d\n", hwframe_ctx->width, avctx->width);
av_log(avctx, AV_LOG_DEBUG, "height: %d <-> %d\n", hwframe_ctx->height, avctx->height);
av_log(avctx, AV_LOG_DEBUG, "format: %s <-> cuda\n", av_get_pix_fmt_name(hwframe_ctx->format));
av_log(avctx, AV_LOG_DEBUG, "sw_format: %s <-> %s\n",
av_get_pix_fmt_name(hwframe_ctx->sw_format), av_get_pix_fmt_name(avctx->sw_pix_fmt));
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
if (format->chroma_format != cudaVideoChromaFormat_420) {
av_log(avctx, AV_LOG_ERROR, "Chroma formats other than 420 are not supported\n");
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
ctx->chroma_format = format->chroma_format;
cuinfo.CodecType = ctx->codec_type = format->codec;
cuinfo.ChromaFormat = format->chroma_format;
switch (avctx->sw_pix_fmt) {
case AV_PIX_FMT_NV12:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_NV12;
break;
case AV_PIX_FMT_P010:
case AV_PIX_FMT_P016:
cuinfo.OutputFormat = cudaVideoSurfaceFormat_P016;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Output formats other than NV12, P010 or P016 are not supported\n");
ctx->internal_error = AVERROR(EINVAL);
return 0;
}
cuinfo.ulNumDecodeSurfaces = ctx->nb_surfaces;
cuinfo.ulNumOutputSurfaces = 1;
cuinfo.ulCreationFlags = cudaVideoCreate_PreferCUVID;
cuinfo.bitDepthMinus8 = format->bit_depth_luma_minus8;
cuinfo.DeinterlaceMode = ctx->deint_mode_current;
if (ctx->deint_mode_current != cudaVideoDeinterlaceMode_Weave && !ctx->drop_second_field)
avctx->framerate = av_mul_q(avctx->framerate, (AVRational){2, 1});
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidCreateDecoder(&ctx->cudecoder, &cuinfo));
if (ctx->internal_error < 0)
return 0;
if (!hwframe_ctx->pool) {
hwframe_ctx->format = AV_PIX_FMT_CUDA;
hwframe_ctx->sw_format = avctx->sw_pix_fmt;
hwframe_ctx->width = avctx->width;
hwframe_ctx->height = avctx->height;
if ((ctx->internal_error = av_hwframe_ctx_init(ctx->hwframe)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_init failed\n");
return 0;
}
}
return 1;
}
static int CUDAAPI cuvid_handle_picture_decode(void *opaque, CUVIDPICPARAMS* picparams)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
av_log(avctx, AV_LOG_TRACE, "pfnDecodePicture\n");
ctx->internal_error = CHECK_CU(ctx->cvdl->cuvidDecodePicture(ctx->cudecoder, picparams));
if (ctx->internal_error < 0)
return 0;
return 1;
}
static int CUDAAPI cuvid_handle_picture_display(void *opaque, CUVIDPARSERDISPINFO* dispinfo)
{
AVCodecContext *avctx = opaque;
CuvidContext *ctx = avctx->priv_data;
CuvidParsedFrame parsed_frame = { { 0 } };
parsed_frame.dispinfo = *dispinfo;
ctx->internal_error = 0;
if (ctx->deint_mode_current == cudaVideoDeinterlaceMode_Weave) {
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
} else {
parsed_frame.is_deinterlacing = 1;
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
if (!ctx->drop_second_field) {
parsed_frame.second_field = 1;
av_fifo_generic_write(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
}
}
return 1;
}
static int cuvid_is_buffer_full(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
return (av_fifo_size(ctx->frame_queue) / sizeof(CuvidParsedFrame)) + 2 > ctx->nb_surfaces;
}
static int cuvid_decode_packet(AVCodecContext *avctx, const AVPacket *avpkt)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUVIDSOURCEDATAPACKET cupkt;
AVPacket filter_packet = { 0 };
AVPacket filtered_packet = { 0 };
int ret = 0, eret = 0, is_flush = ctx->decoder_flushing;
av_log(avctx, AV_LOG_TRACE, "cuvid_decode_packet\n");
if (is_flush && avpkt && avpkt->size)
return AVERROR_EOF;
if (cuvid_is_buffer_full(avctx) && avpkt && avpkt->size)
return AVERROR(EAGAIN);
if (ctx->bsf && avpkt && avpkt->size) {
if ((ret = av_packet_ref(&filter_packet, avpkt)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_packet_ref failed\n");
return ret;
}
if ((ret = av_bsf_send_packet(ctx->bsf, &filter_packet)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_bsf_send_packet failed\n");
av_packet_unref(&filter_packet);
return ret;
}
if ((ret = av_bsf_receive_packet(ctx->bsf, &filtered_packet)) < 0) {
av_log(avctx, AV_LOG_ERROR, "av_bsf_receive_packet failed\n");
return ret;
}
avpkt = &filtered_packet;
}
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0) {
av_packet_unref(&filtered_packet);
return ret;
}
memset(&cupkt, 0, sizeof(cupkt));
if (avpkt && avpkt->size) {
cupkt.payload_size = avpkt->size;
cupkt.payload = avpkt->data;
if (avpkt->pts != AV_NOPTS_VALUE) {
cupkt.flags = CUVID_PKT_TIMESTAMP;
if (avctx->pkt_timebase.num && avctx->pkt_timebase.den)
cupkt.timestamp = av_rescale_q(avpkt->pts, avctx->pkt_timebase, (AVRational){1, 10000000});
else
cupkt.timestamp = avpkt->pts;
}
} else {
cupkt.flags = CUVID_PKT_ENDOFSTREAM;
ctx->decoder_flushing = 1;
}
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &cupkt));
av_packet_unref(&filtered_packet);
if (ret < 0)
goto error;
// cuvidParseVideoData doesn't return an error just because stuff failed...
if (ctx->internal_error) {
av_log(avctx, AV_LOG_ERROR, "cuvid decode callback error\n");
ret = ctx->internal_error;
goto error;
}
error:
eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (eret < 0)
return eret;
else if (ret < 0)
return ret;
else if (is_flush)
return AVERROR_EOF;
else
return 0;
}
static int cuvid_output_frame(AVCodecContext *avctx, AVFrame *frame)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUdeviceptr mapped_frame = 0;
int ret = 0, eret = 0;
av_log(avctx, AV_LOG_TRACE, "cuvid_output_frame\n");
if (ctx->decoder_flushing) {
ret = cuvid_decode_packet(avctx, NULL);
if (ret < 0 && ret != AVERROR_EOF)
return ret;
}
if (!cuvid_is_buffer_full(avctx)) {
AVPacket pkt = {0};
ret = ff_decode_get_packet(avctx, &pkt);
if (ret < 0 && ret != AVERROR_EOF)
return ret;
ret = cuvid_decode_packet(avctx, &pkt);
av_packet_unref(&pkt);
// cuvid_is_buffer_full() should avoid this.
if (ret == AVERROR(EAGAIN))
ret = AVERROR_EXTERNAL;
if (ret < 0 && ret != AVERROR_EOF)
return ret;
}
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
return ret;
if (av_fifo_size(ctx->frame_queue)) {
CuvidParsedFrame parsed_frame;
CUVIDPROCPARAMS params;
unsigned int pitch = 0;
int offset = 0;
int i;
av_fifo_generic_read(ctx->frame_queue, &parsed_frame, sizeof(CuvidParsedFrame), NULL);
memset(&params, 0, sizeof(params));
params.progressive_frame = parsed_frame.dispinfo.progressive_frame;
params.second_field = parsed_frame.second_field;
params.top_field_first = parsed_frame.dispinfo.top_field_first;
ret = CHECK_CU(ctx->cvdl->cuvidMapVideoFrame(ctx->cudecoder, parsed_frame.dispinfo.picture_index, &mapped_frame, &pitch, &params));
if (ret < 0)
goto error;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
ret = av_hwframe_get_buffer(ctx->hwframe, frame, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_get_buffer failed\n");
goto error;
}
ret = ff_decode_frame_props(avctx, frame);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_decode_frame_props failed\n");
goto error;
}
for (i = 0; i < 2; i++) {
CUDA_MEMCPY2D cpy = {
.srcMemoryType = CU_MEMORYTYPE_DEVICE,
.dstMemoryType = CU_MEMORYTYPE_DEVICE,
.srcDevice = mapped_frame,
.dstDevice = (CUdeviceptr)frame->data[i],
.srcPitch = pitch,
.dstPitch = frame->linesize[i],
.srcY = offset,
.WidthInBytes = FFMIN(pitch, frame->linesize[i]),
.Height = avctx->height >> (i ? 1 : 0),
};
ret = CHECK_CU(ctx->cudl->cuMemcpy2D(&cpy));
if (ret < 0)
goto error;
offset += avctx->height;
}
} else if (avctx->pix_fmt == AV_PIX_FMT_NV12 ||
avctx->pix_fmt == AV_PIX_FMT_P010 ||
avctx->pix_fmt == AV_PIX_FMT_P016) {
AVFrame *tmp_frame = av_frame_alloc();
if (!tmp_frame) {
av_log(avctx, AV_LOG_ERROR, "av_frame_alloc failed\n");
ret = AVERROR(ENOMEM);
goto error;
}
tmp_frame->format = AV_PIX_FMT_CUDA;
tmp_frame->hw_frames_ctx = av_buffer_ref(ctx->hwframe);
tmp_frame->data[0] = (uint8_t*)mapped_frame;
tmp_frame->linesize[0] = pitch;
tmp_frame->data[1] = (uint8_t*)(mapped_frame + avctx->height * pitch);
tmp_frame->linesize[1] = pitch;
tmp_frame->width = avctx->width;
tmp_frame->height = avctx->height;
ret = ff_get_buffer(avctx, frame, 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_buffer failed\n");
av_frame_free(&tmp_frame);
goto error;
}
ret = av_hwframe_transfer_data(frame, tmp_frame, 0);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_transfer_data failed\n");
av_frame_free(&tmp_frame);
goto error;
}
av_frame_free(&tmp_frame);
} else {
ret = AVERROR_BUG;
goto error;
}
frame->width = avctx->width;
frame->height = avctx->height;
if (avctx->pkt_timebase.num && avctx->pkt_timebase.den)
frame->pts = av_rescale_q(parsed_frame.dispinfo.timestamp, (AVRational){1, 10000000}, avctx->pkt_timebase);
else
frame->pts = parsed_frame.dispinfo.timestamp;
if (parsed_frame.second_field) {
if (ctx->prev_pts == INT64_MIN) {
ctx->prev_pts = frame->pts;
frame->pts += (avctx->pkt_timebase.den * avctx->framerate.den) / (avctx->pkt_timebase.num * avctx->framerate.num);
} else {
int pts_diff = (frame->pts - ctx->prev_pts) / 2;
ctx->prev_pts = frame->pts;
frame->pts += pts_diff;
}
}
/* CUVIDs opaque reordering breaks the internal pkt logic.
* So set pkt_pts and clear all the other pkt_ fields.
*/
#if FF_API_PKT_PTS
FF_DISABLE_DEPRECATION_WARNINGS
frame->pkt_pts = frame->pts;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
frame->pkt_pos = -1;
frame->pkt_duration = 0;
frame->pkt_size = -1;
frame->interlaced_frame = !parsed_frame.is_deinterlacing && !parsed_frame.dispinfo.progressive_frame;
if (frame->interlaced_frame)
frame->top_field_first = parsed_frame.dispinfo.top_field_first;
} else if (ctx->decoder_flushing) {
ret = AVERROR_EOF;
} else {
ret = AVERROR(EAGAIN);
}
error:
if (mapped_frame)
eret = CHECK_CU(ctx->cvdl->cuvidUnmapVideoFrame(ctx->cudecoder, mapped_frame));
eret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (eret < 0)
return eret;
else
return ret;
}
static int cuvid_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
{
CuvidContext *ctx = avctx->priv_data;
AVFrame *frame = data;
int ret = 0;
av_log(avctx, AV_LOG_TRACE, "cuvid_decode_frame\n");
if (ctx->deint_mode_current != cudaVideoDeinterlaceMode_Weave) {
av_log(avctx, AV_LOG_ERROR, "Deinterlacing is not supported via the old API\n");
return AVERROR(EINVAL);
}
if (!ctx->decoder_flushing) {
ret = cuvid_decode_packet(avctx, avpkt);
if (ret < 0)
return ret;
}
ret = cuvid_output_frame(avctx, frame);
if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
*got_frame = 0;
} else if (ret < 0) {
return ret;
} else {
*got_frame = 1;
}
return 0;
}
static av_cold int cuvid_decode_end(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
av_fifo_freep(&ctx->frame_queue);
if (ctx->bsf)
av_bsf_free(&ctx->bsf);
if (ctx->cuparser)
ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser);
if (ctx->cudecoder)
ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder);
ctx->cudl = NULL;
av_buffer_unref(&ctx->hwframe);
av_buffer_unref(&ctx->hwdevice);
cuvid_free_functions(&ctx->cvdl);
return 0;
}
static int cuvid_test_capabilities(AVCodecContext *avctx,
const CUVIDPARSERPARAMS *cuparseinfo,
int probed_width,
int probed_height,
int bit_depth)
{
CuvidContext *ctx = avctx->priv_data;
CUVIDDECODECAPS *caps;
int res8 = 0, res10 = 0, res12 = 0;
ctx->caps8.eCodecType = ctx->caps10.eCodecType = ctx->caps12.eCodecType
= cuparseinfo->CodecType;
ctx->caps8.eChromaFormat = ctx->caps10.eChromaFormat = ctx->caps12.eChromaFormat
= cudaVideoChromaFormat_420;
ctx->caps8.nBitDepthMinus8 = 0;
ctx->caps10.nBitDepthMinus8 = 2;
ctx->caps12.nBitDepthMinus8 = 4;
res8 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps8));
res10 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps10));
res12 = CHECK_CU(ctx->cvdl->cuvidGetDecoderCaps(&ctx->caps12));
av_log(avctx, AV_LOG_VERBOSE, "CUVID capabilities for %s:\n", avctx->codec->name);
av_log(avctx, AV_LOG_VERBOSE, "8 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps8.bIsSupported, ctx->caps8.nMinWidth, ctx->caps8.nMaxWidth, ctx->caps8.nMinHeight, ctx->caps8.nMaxHeight);
av_log(avctx, AV_LOG_VERBOSE, "10 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps10.bIsSupported, ctx->caps10.nMinWidth, ctx->caps10.nMaxWidth, ctx->caps10.nMinHeight, ctx->caps10.nMaxHeight);
av_log(avctx, AV_LOG_VERBOSE, "12 bit: supported: %d, min_width: %d, max_width: %d, min_height: %d, max_height: %d\n",
ctx->caps12.bIsSupported, ctx->caps12.nMinWidth, ctx->caps12.nMaxWidth, ctx->caps12.nMinHeight, ctx->caps12.nMaxHeight);
switch (bit_depth) {
case 10:
caps = &ctx->caps10;
if (res10 < 0)
return res10;
break;
case 12:
caps = &ctx->caps12;
if (res12 < 0)
return res12;
break;
default:
caps = &ctx->caps8;
if (res8 < 0)
return res8;
}
if (!ctx->caps8.bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "Codec %s is not supported.\n", avctx->codec->name);
return AVERROR(EINVAL);
}
if (!caps->bIsSupported) {
av_log(avctx, AV_LOG_ERROR, "Bit depth %d is not supported.\n", bit_depth);
return AVERROR(EINVAL);
}
if (probed_width > caps->nMaxWidth || probed_width < caps->nMinWidth) {
av_log(avctx, AV_LOG_ERROR, "Video width %d not within range from %d to %d\n",
probed_width, caps->nMinWidth, caps->nMaxWidth);
return AVERROR(EINVAL);
}
if (probed_height > caps->nMaxHeight || probed_height < caps->nMinHeight) {
av_log(avctx, AV_LOG_ERROR, "Video height %d not within range from %d to %d\n",
probed_height, caps->nMinHeight, caps->nMaxHeight);
return AVERROR(EINVAL);
}
return 0;
}
static av_cold int cuvid_decode_init(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
AVCUDADeviceContext *device_hwctx;
AVHWDeviceContext *device_ctx;
AVHWFramesContext *hwframe_ctx;
CUVIDSOURCEDATAPACKET seq_pkt;
CUcontext cuda_ctx = NULL;
CUcontext dummy;
const AVBitStreamFilter *bsf;
int ret = 0;
enum AVPixelFormat pix_fmts[3] = { AV_PIX_FMT_CUDA,
AV_PIX_FMT_NV12,
AV_PIX_FMT_NONE };
int probed_width = avctx->coded_width ? avctx->coded_width : 1280;
int probed_height = avctx->coded_height ? avctx->coded_height : 720;
int probed_bit_depth = 8;
const AVPixFmtDescriptor *probe_desc = av_pix_fmt_desc_get(avctx->pix_fmt);
if (probe_desc && probe_desc->nb_components)
probed_bit_depth = probe_desc->comp[0].depth;
// Accelerated transcoding scenarios with 'ffmpeg' require that the
// pix_fmt be set to AV_PIX_FMT_CUDA early. The sw_pix_fmt, and the
// pix_fmt for non-accelerated transcoding, do not need to be correct
// but need to be set to something. We arbitrarily pick NV12.
ret = ff_get_format(avctx, pix_fmts);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "ff_get_format failed: %d\n", ret);
return ret;
}
avctx->pix_fmt = ret;
if (ctx->resize_expr && sscanf(ctx->resize_expr, "%dx%d",
&ctx->resize.width, &ctx->resize.height) != 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid resize expressions\n");
ret = AVERROR(EINVAL);
goto error;
}
if (ctx->crop_expr && sscanf(ctx->crop_expr, "%dx%dx%dx%d",
&ctx->crop.top, &ctx->crop.bottom,
&ctx->crop.left, &ctx->crop.right) != 4) {
av_log(avctx, AV_LOG_ERROR, "Invalid cropping expressions\n");
ret = AVERROR(EINVAL);
goto error;
}
ret = cuvid_load_functions(&ctx->cvdl);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed loading nvcuvid.\n");
goto error;
}
ctx->frame_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(CuvidParsedFrame));
if (!ctx->frame_queue) {
ret = AVERROR(ENOMEM);
goto error;
}
if (avctx->hw_frames_ctx) {
ctx->hwframe = av_buffer_ref(avctx->hw_frames_ctx);
if (!ctx->hwframe) {
ret = AVERROR(ENOMEM);
goto error;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
ctx->hwdevice = av_buffer_ref(hwframe_ctx->device_ref);
if (!ctx->hwdevice) {
ret = AVERROR(ENOMEM);
goto error;
}
} else {
if (avctx->hw_device_ctx) {
ctx->hwdevice = av_buffer_ref(avctx->hw_device_ctx);
if (!ctx->hwdevice) {
ret = AVERROR(ENOMEM);
goto error;
}
} else {
ret = av_hwdevice_ctx_create(&ctx->hwdevice, AV_HWDEVICE_TYPE_CUDA, ctx->cu_gpu, NULL, 0);
if (ret < 0)
goto error;
}
ctx->hwframe = av_hwframe_ctx_alloc(ctx->hwdevice);
if (!ctx->hwframe) {
av_log(avctx, AV_LOG_ERROR, "av_hwframe_ctx_alloc failed\n");
ret = AVERROR(ENOMEM);
goto error;
}
hwframe_ctx = (AVHWFramesContext*)ctx->hwframe->data;
}
device_ctx = hwframe_ctx->device_ctx;
device_hwctx = device_ctx->hwctx;
cuda_ctx = device_hwctx->cuda_ctx;
ctx->cudl = device_hwctx->internal->cuda_dl;
memset(&ctx->cuparseinfo, 0, sizeof(ctx->cuparseinfo));
memset(&ctx->cuparse_ext, 0, sizeof(ctx->cuparse_ext));
memset(&seq_pkt, 0, sizeof(seq_pkt));
ctx->cuparseinfo.pExtVideoInfo = &ctx->cuparse_ext;
switch (avctx->codec->id) {
#if CONFIG_H264_CUVID_DECODER
case AV_CODEC_ID_H264:
ctx->cuparseinfo.CodecType = cudaVideoCodec_H264;
break;
#endif
#if CONFIG_HEVC_CUVID_DECODER
case AV_CODEC_ID_HEVC:
ctx->cuparseinfo.CodecType = cudaVideoCodec_HEVC;
break;
#endif
#if CONFIG_MJPEG_CUVID_DECODER
case AV_CODEC_ID_MJPEG:
ctx->cuparseinfo.CodecType = cudaVideoCodec_JPEG;
break;
#endif
#if CONFIG_MPEG1_CUVID_DECODER
case AV_CODEC_ID_MPEG1VIDEO:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG1;
break;
#endif
#if CONFIG_MPEG2_CUVID_DECODER
case AV_CODEC_ID_MPEG2VIDEO:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG2;
break;
#endif
#if CONFIG_MPEG4_CUVID_DECODER
case AV_CODEC_ID_MPEG4:
ctx->cuparseinfo.CodecType = cudaVideoCodec_MPEG4;
break;
#endif
#if CONFIG_VP8_CUVID_DECODER
case AV_CODEC_ID_VP8:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VP8;
break;
#endif
#if CONFIG_VP9_CUVID_DECODER
case AV_CODEC_ID_VP9:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VP9;
break;
#endif
#if CONFIG_VC1_CUVID_DECODER
case AV_CODEC_ID_VC1:
ctx->cuparseinfo.CodecType = cudaVideoCodec_VC1;
break;
#endif
default:
av_log(avctx, AV_LOG_ERROR, "Invalid CUVID codec!\n");
return AVERROR_BUG;
}
if (avctx->codec->id == AV_CODEC_ID_H264 || avctx->codec->id == AV_CODEC_ID_HEVC) {
if (avctx->codec->id == AV_CODEC_ID_H264)
bsf = av_bsf_get_by_name("h264_mp4toannexb");
else
bsf = av_bsf_get_by_name("hevc_mp4toannexb");
if (!bsf) {
ret = AVERROR_BSF_NOT_FOUND;
goto error;
}
if (ret = av_bsf_alloc(bsf, &ctx->bsf)) {
goto error;
}
if (((ret = avcodec_parameters_from_context(ctx->bsf->par_in, avctx)) < 0) || ((ret = av_bsf_init(ctx->bsf)) < 0)) {
av_bsf_free(&ctx->bsf);
goto error;
}
ctx->cuparse_ext.format.seqhdr_data_length = ctx->bsf->par_out->extradata_size;
memcpy(ctx->cuparse_ext.raw_seqhdr_data,
ctx->bsf->par_out->extradata,
FFMIN(sizeof(ctx->cuparse_ext.raw_seqhdr_data), ctx->bsf->par_out->extradata_size));
} else if (avctx->extradata_size > 0) {
ctx->cuparse_ext.format.seqhdr_data_length = avctx->extradata_size;
memcpy(ctx->cuparse_ext.raw_seqhdr_data,
avctx->extradata,
FFMIN(sizeof(ctx->cuparse_ext.raw_seqhdr_data), avctx->extradata_size));
}
ctx->cuparseinfo.ulMaxNumDecodeSurfaces = ctx->nb_surfaces;
ctx->cuparseinfo.ulMaxDisplayDelay = 4;
ctx->cuparseinfo.pUserData = avctx;
ctx->cuparseinfo.pfnSequenceCallback = cuvid_handle_video_sequence;
ctx->cuparseinfo.pfnDecodePicture = cuvid_handle_picture_decode;
ctx->cuparseinfo.pfnDisplayPicture = cuvid_handle_picture_display;
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
goto error;
ret = cuvid_test_capabilities(avctx, &ctx->cuparseinfo,
probed_width,
probed_height,
probed_bit_depth);
if (ret < 0)
goto error;
ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo));
if (ret < 0)
goto error;
seq_pkt.payload = ctx->cuparse_ext.raw_seqhdr_data;
seq_pkt.payload_size = ctx->cuparse_ext.format.seqhdr_data_length;
if (seq_pkt.payload && seq_pkt.payload_size) {
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt));
if (ret < 0)
goto error;
}
ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (ret < 0)
goto error;
ctx->prev_pts = INT64_MIN;
if (!avctx->pkt_timebase.num || !avctx->pkt_timebase.den)
av_log(avctx, AV_LOG_WARNING, "Invalid pkt_timebase, passing timestamps as-is.\n");
return 0;
error:
cuvid_decode_end(avctx);
return ret;
}
static void cuvid_flush(AVCodecContext *avctx)
{
CuvidContext *ctx = avctx->priv_data;
AVHWDeviceContext *device_ctx = (AVHWDeviceContext*)ctx->hwdevice->data;
AVCUDADeviceContext *device_hwctx = device_ctx->hwctx;
CUcontext dummy, cuda_ctx = device_hwctx->cuda_ctx;
CUVIDSOURCEDATAPACKET seq_pkt = { 0 };
int ret;
ret = CHECK_CU(ctx->cudl->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
goto error;
av_fifo_freep(&ctx->frame_queue);
ctx->frame_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(CuvidParsedFrame));
if (!ctx->frame_queue) {
av_log(avctx, AV_LOG_ERROR, "Failed to recreate frame queue on flush\n");
return;
}
if (ctx->cudecoder) {
ctx->cvdl->cuvidDestroyDecoder(ctx->cudecoder);
ctx->cudecoder = NULL;
}
if (ctx->cuparser) {
ctx->cvdl->cuvidDestroyVideoParser(ctx->cuparser);
ctx->cuparser = NULL;
}
ret = CHECK_CU(ctx->cvdl->cuvidCreateVideoParser(&ctx->cuparser, &ctx->cuparseinfo));
if (ret < 0)
goto error;
seq_pkt.payload = ctx->cuparse_ext.raw_seqhdr_data;
seq_pkt.payload_size = ctx->cuparse_ext.format.seqhdr_data_length;
if (seq_pkt.payload && seq_pkt.payload_size) {
ret = CHECK_CU(ctx->cvdl->cuvidParseVideoData(ctx->cuparser, &seq_pkt));
if (ret < 0)
goto error;
}
ret = CHECK_CU(ctx->cudl->cuCtxPopCurrent(&dummy));
if (ret < 0)
goto error;
ctx->prev_pts = INT64_MIN;
ctx->decoder_flushing = 0;
return;
error:
av_log(avctx, AV_LOG_ERROR, "CUDA reinit on flush failed\n");
}
#define OFFSET(x) offsetof(CuvidContext, x)
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption options[] = {
{ "deint", "Set deinterlacing mode", OFFSET(deint_mode), AV_OPT_TYPE_INT, { .i64 = cudaVideoDeinterlaceMode_Weave }, cudaVideoDeinterlaceMode_Weave, cudaVideoDeinterlaceMode_Adaptive, VD, "deint" },
{ "weave", "Weave deinterlacing (do nothing)", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Weave }, 0, 0, VD, "deint" },
{ "bob", "Bob deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Bob }, 0, 0, VD, "deint" },
{ "adaptive", "Adaptive deinterlacing", 0, AV_OPT_TYPE_CONST, { .i64 = cudaVideoDeinterlaceMode_Adaptive }, 0, 0, VD, "deint" },
{ "gpu", "GPU to be used for decoding", OFFSET(cu_gpu), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ "surfaces", "Maximum surfaces to be used for decoding", OFFSET(nb_surfaces), AV_OPT_TYPE_INT, { .i64 = 25 }, 0, INT_MAX, VD },
{ "drop_second_field", "Drop second field when deinterlacing", OFFSET(drop_second_field), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VD },
{ "crop", "Crop (top)x(bottom)x(left)x(right)", OFFSET(crop_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ "resize", "Resize (width)x(height)", OFFSET(resize_expr), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VD },
{ NULL }
};
#define DEFINE_CUVID_CODEC(x, X) \
static const AVClass x##_cuvid_class = { \
.class_name = #x "_cuvid", \
.item_name = av_default_item_name, \
.option = options, \
.version = LIBAVUTIL_VERSION_INT, \
}; \
AVHWAccel ff_##x##_cuvid_hwaccel = { \
.name = #x "_cuvid", \
.type = AVMEDIA_TYPE_VIDEO, \
.id = AV_CODEC_ID_##X, \
.pix_fmt = AV_PIX_FMT_CUDA, \
}; \
AVCodec ff_##x##_cuvid_decoder = { \
.name = #x "_cuvid", \
.long_name = NULL_IF_CONFIG_SMALL("Nvidia CUVID " #X " decoder"), \
.type = AVMEDIA_TYPE_VIDEO, \
.id = AV_CODEC_ID_##X, \
.priv_data_size = sizeof(CuvidContext), \
.priv_class = &x##_cuvid_class, \
.init = cuvid_decode_init, \
.close = cuvid_decode_end, \
.decode = cuvid_decode_frame, \
.receive_frame = cuvid_output_frame, \
.flush = cuvid_flush, \
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_AVOID_PROBING, \
.pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_CUDA, \
AV_PIX_FMT_NV12, \
AV_PIX_FMT_P010, \
AV_PIX_FMT_P016, \
AV_PIX_FMT_NONE }, \
};
#if CONFIG_HEVC_CUVID_DECODER
DEFINE_CUVID_CODEC(hevc, HEVC)
#endif
#if CONFIG_H264_CUVID_DECODER
DEFINE_CUVID_CODEC(h264, H264)
#endif
#if CONFIG_MJPEG_CUVID_DECODER
DEFINE_CUVID_CODEC(mjpeg, MJPEG)
#endif
#if CONFIG_MPEG1_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg1, MPEG1VIDEO)
#endif
#if CONFIG_MPEG2_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg2, MPEG2VIDEO)
#endif
#if CONFIG_MPEG4_CUVID_DECODER
DEFINE_CUVID_CODEC(mpeg4, MPEG4)
#endif
#if CONFIG_VP8_CUVID_DECODER
DEFINE_CUVID_CODEC(vp8, VP8)
#endif
#if CONFIG_VP9_CUVID_DECODER
DEFINE_CUVID_CODEC(vp9, VP9)
#endif
#if CONFIG_VC1_CUVID_DECODER
DEFINE_CUVID_CODEC(vc1, VC1)
#endif