You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2491 lines
94 KiB

/*
* VVC CTU(Coding Tree Unit) parser
*
* Copyright (C) 2022 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavcodec/refstruct.h"
#include "vvc_cabac.h"
#include "vvc_ctu.h"
#include "vvc_inter.h"
#include "vvc_mvs.h"
#define PROF_TEMP_SIZE (PROF_BLOCK_SIZE) * sizeof(int16_t)
#define TAB_MSM(fc, depth, x, y) fc->tab.msm[(depth)][((y) >> 5) * fc->ps.pps->width32 + ((x) >> 5)]
#define TAB_ISPMF(fc, x, y) fc->tab.ispmf[((y) >> 6) * fc->ps.pps->width64 + ((x) >> 6)]
typedef enum VVCModeType {
MODE_TYPE_ALL,
MODE_TYPE_INTER,
MODE_TYPE_INTRA,
} VVCModeType;
static void set_tb_pos(const VVCFrameContext *fc, const TransformBlock *tb)
{
const int x_tb = tb->x0 >> MIN_TU_LOG2;
const int y_tb = tb->y0 >> MIN_TU_LOG2;
const int hs = fc->ps.sps->hshift[tb->c_idx];
const int vs = fc->ps.sps->vshift[tb->c_idx];
const int is_chroma = tb->c_idx != 0;
const int width = FFMAX(1, tb->tb_width >> (MIN_TU_LOG2 - hs));
const int end = y_tb + FFMAX(1, tb->tb_height >> (MIN_TU_LOG2 - vs));
for (int y = y_tb; y < end; y++) {
const int off = y * fc->ps.pps->min_tu_width + x_tb;
for (int i = 0; i < width; i++) {
fc->tab.tb_pos_x0[is_chroma][off + i] = tb->x0;
fc->tab.tb_pos_y0[is_chroma][off + i] = tb->y0;
}
memset(fc->tab.tb_width [is_chroma] + off, tb->tb_width, width);
memset(fc->tab.tb_height[is_chroma] + off, tb->tb_height, width);
}
}
static void set_tb_tab(uint8_t *tab, uint8_t v, const VVCFrameContext *fc,
const TransformBlock *tb)
{
const int width = tb->tb_width << fc->ps.sps->hshift[tb->c_idx];
const int height = tb->tb_height << fc->ps.sps->vshift[tb->c_idx];
for (int h = 0; h < height; h += MIN_TU_SIZE) {
const int y = (tb->y0 + h) >> MIN_TU_LOG2;
const int off = y * fc->ps.pps->min_tu_width + (tb->x0 >> MIN_TU_LOG2);
const int w = FFMAX(1, width >> MIN_TU_LOG2);
memset(tab + off, v, w);
}
}
// 8.7.1 Derivation process for quantization parameters
static int get_qp_y_pred(const VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const CodingUnit *cu = lc->cu;
const int ctb_log2_size = sps->ctb_log2_size_y;
const int ctb_size_mask = (1 << ctb_log2_size) - 1;
const int xQg = lc->parse.cu_qg_top_left_x;
const int yQg = lc->parse.cu_qg_top_left_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int x_cb = cu->x0 >> sps->min_cb_log2_size_y;
const int y_cb = cu->y0 >> sps->min_cb_log2_size_y;
const int x_ctb = cu->x0 >> ctb_log2_size;
const int y_ctb = cu->y0 >> ctb_log2_size;
const int in_same_ctb_a = ((xQg - 1) >> ctb_log2_size) == x_ctb && (yQg >> ctb_log2_size) == y_ctb;
const int in_same_ctb_b = (xQg >> ctb_log2_size) == x_ctb && ((yQg - 1) >> ctb_log2_size) == y_ctb;
int qPy_pred, qPy_a, qPy_b;
if (lc->na.cand_up) {
const int first_qg_in_ctu = !(xQg & ctb_size_mask) && !(yQg & ctb_size_mask);
const int qPy_up = fc->tab.qp[LUMA][x_cb + (y_cb - 1) * min_cb_width];
if (first_qg_in_ctu && pps->ctb_to_col_bd[xQg >> ctb_log2_size] == xQg)
return qPy_up;
}
// qPy_pred
qPy_pred = lc->ep->is_first_qg ? lc->sc->sh.slice_qp_y : lc->ep->qp_y;
// qPy_b
if (!lc->na.cand_up || !in_same_ctb_b)
qPy_b = qPy_pred;
else
qPy_b = fc->tab.qp[LUMA][x_cb + (y_cb - 1) * min_cb_width];
// qPy_a
if (!lc->na.cand_left || !in_same_ctb_a)
qPy_a = qPy_pred;
else
qPy_a = fc->tab.qp[LUMA][(x_cb - 1) + y_cb * min_cb_width];
av_assert2(qPy_a >= -fc->ps.sps->qp_bd_offset && qPy_a < 63);
av_assert2(qPy_b >= -fc->ps.sps->qp_bd_offset && qPy_b < 63);
return (qPy_a + qPy_b + 1) >> 1;
}
static void set_cb_tab(const VVCLocalContext *lc, uint8_t *tab, const uint8_t v)
{
const VVCFrameContext *fc = lc->fc;
const VVCPPS *pps = fc->ps.pps;
const CodingUnit *cu = lc->cu;
const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
const int x_cb = cu->x0 >> log2_min_cb_size;
const int y_cb = cu->y0 >> log2_min_cb_size;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
int x = y_cb * pps->min_cb_width + x_cb;
for (int y = 0; y < (cb_height >> log2_min_cb_size); y++) {
const int width = cb_width >> log2_min_cb_size;
memset(&tab[x], v, width);
x += pps->min_cb_width;
}
}
static int set_qp_y(VVCLocalContext *lc, const int x0, const int y0, const int has_qp_delta)
{
const VVCSPS *sps = lc->fc->ps.sps;
EntryPoint *ep = lc->ep;
CodingUnit *cu = lc->cu;
int cu_qp_delta = 0;
if (!lc->fc->ps.pps->r->pps_cu_qp_delta_enabled_flag) {
ep->qp_y = lc->sc->sh.slice_qp_y;
} else if (ep->is_first_qg || (lc->parse.cu_qg_top_left_x == x0 && lc->parse.cu_qg_top_left_y == y0)) {
ep->qp_y = get_qp_y_pred(lc);
ep->is_first_qg = 0;
}
if (has_qp_delta) {
const int cu_qp_delta_abs = ff_vvc_cu_qp_delta_abs(lc);
if (cu_qp_delta_abs)
cu_qp_delta = ff_vvc_cu_qp_delta_sign_flag(lc) ? -cu_qp_delta_abs : cu_qp_delta_abs;
if (cu_qp_delta > (31 + sps->qp_bd_offset / 2) || cu_qp_delta < -(32 + sps->qp_bd_offset / 2))
return AVERROR_INVALIDDATA;
lc->parse.is_cu_qp_delta_coded = 1;
if (cu_qp_delta) {
int off = sps->qp_bd_offset;
ep->qp_y = FFUMOD(ep->qp_y + cu_qp_delta + 64 + 2 * off, 64 + off) - off;
}
}
set_cb_tab(lc, lc->fc->tab.qp[LUMA], ep->qp_y);
cu->qp[LUMA] = ep->qp_y;
return 0;
}
static void set_qp_c_tab(const VVCLocalContext *lc, const TransformUnit *tu, const TransformBlock *tb)
{
const int is_jcbcr = tu->joint_cbcr_residual_flag && tu->coded_flag[CB] && tu->coded_flag[CR];
const int idx = is_jcbcr ? JCBCR : tb->c_idx;
set_tb_tab(lc->fc->tab.qp[tb->c_idx], lc->cu->qp[idx], lc->fc, tb);
}
static void set_qp_c(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
CodingUnit *cu = lc->cu;
const int x_center = cu->x0 + cu->cb_width / 2;
const int y_center = cu->y0 + cu->cb_height / 2;
const int single_tree = cu->tree_type == SINGLE_TREE;
const int qp_luma = (single_tree ? lc->ep->qp_y : ff_vvc_get_qPy(fc, x_center, y_center)) + sps->qp_bd_offset;
const int qp_chroma = av_clip(qp_luma, 0, MAX_QP + sps->qp_bd_offset);
const int sh_chroma_qp_offset[] = {
rsh->sh_cb_qp_offset,
rsh->sh_cr_qp_offset,
rsh->sh_joint_cbcr_qp_offset,
};
int qp;
for (int i = CB - 1; i < CR + sps->r->sps_joint_cbcr_enabled_flag; i++) {
qp = sps->chroma_qp_table[i][qp_chroma];
qp = qp + pps->chroma_qp_offset[i] + sh_chroma_qp_offset[i] + lc->parse.chroma_qp_offset[i];
qp = av_clip(qp, -sps->qp_bd_offset, MAX_QP) + sps->qp_bd_offset;
cu->qp[i + 1] = qp;
}
}
static TransformUnit* alloc_tu(VVCFrameContext *fc, CodingUnit *cu)
{
TransformUnit *tu = ff_refstruct_pool_get(fc->tu_pool);
if (!tu)
return NULL;
tu->next = NULL;
if (cu->tus.tail)
cu->tus.tail->next = tu;
else
cu->tus.head = tu;
cu->tus.tail = tu;
return tu;
}
static TransformUnit* add_tu(VVCFrameContext *fc, CodingUnit *cu, const int x0, const int y0, const int tu_width, const int tu_height)
{
TransformUnit *tu = alloc_tu(fc, cu);
if (!tu)
return NULL;
tu->x0 = x0;
tu->y0 = y0;
tu->width = tu_width;
tu->height = tu_height;
tu->joint_cbcr_residual_flag = 0;
memset(tu->coded_flag, 0, sizeof(tu->coded_flag));
tu->nb_tbs = 0;
return tu;
}
static TransformBlock* add_tb(TransformUnit *tu, VVCLocalContext *lc,
const int x0, const int y0, const int tb_width, const int tb_height, const int c_idx)
{
TransformBlock *tb;
tb = &tu->tbs[tu->nb_tbs++];
tb->has_coeffs = 0;
tb->x0 = x0;
tb->y0 = y0;
tb->tb_width = tb_width;
tb->tb_height = tb_height;
tb->log2_tb_width = av_log2(tb_width);
tb->log2_tb_height = av_log2(tb_height);
tb->max_scan_x = tb->max_scan_y = 0;
tb->min_scan_x = tb->min_scan_y = 0;
tb->c_idx = c_idx;
tb->ts = 0;
tb->coeffs = lc->coeffs;
lc->coeffs += tb_width * tb_height;
return tb;
}
static uint8_t tu_y_coded_flag_decode(VVCLocalContext *lc, const int is_sbt_not_coded,
const int sub_tu_index, const int is_isp, const int is_chroma_coded)
{
uint8_t tu_y_coded_flag = 0;
const VVCSPS *sps = lc->fc->ps.sps;
CodingUnit *cu = lc->cu;
if (!is_sbt_not_coded) {
int has_y_coded_flag = sub_tu_index < cu->num_intra_subpartitions - 1 || !lc->parse.infer_tu_cbf_luma;
if (!is_isp) {
const int is_large = cu->cb_width > sps->max_tb_size_y || cu->cb_height > sps->max_tb_size_y;
has_y_coded_flag = (cu->pred_mode == MODE_INTRA && !cu->act_enabled_flag) || is_chroma_coded || is_large;
}
tu_y_coded_flag = has_y_coded_flag ? ff_vvc_tu_y_coded_flag(lc) : 1;
}
if (is_isp)
lc->parse.infer_tu_cbf_luma = lc->parse.infer_tu_cbf_luma && !tu_y_coded_flag;
return tu_y_coded_flag;
}
static void chroma_qp_offset_decode(VVCLocalContext *lc, const int is_128, const int is_chroma_coded)
{
const VVCPPS *pps = lc->fc->ps.pps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
if ((is_128 || is_chroma_coded) &&
rsh->sh_cu_chroma_qp_offset_enabled_flag && !lc->parse.is_cu_chroma_qp_offset_coded) {
const int cu_chroma_qp_offset_flag = ff_vvc_cu_chroma_qp_offset_flag(lc);
if (cu_chroma_qp_offset_flag) {
int cu_chroma_qp_offset_idx = 0;
if (pps->r->pps_chroma_qp_offset_list_len_minus1 > 0)
cu_chroma_qp_offset_idx = ff_vvc_cu_chroma_qp_offset_idx(lc);
for (int i = CB - 1; i < JCBCR; i++)
lc->parse.chroma_qp_offset[i] = pps->chroma_qp_offset_list[cu_chroma_qp_offset_idx][i];
} else {
memset(lc->parse.chroma_qp_offset, 0, sizeof(lc->parse.chroma_qp_offset));
}
lc->parse.is_cu_chroma_qp_offset_coded = 1;
}
}
static int hls_transform_unit(VVCLocalContext *lc, int x0, int y0,int tu_width, int tu_height, int sub_tu_index, int ch_type)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
CodingUnit *cu = lc->cu;
TransformUnit *tu = add_tu(fc, cu, x0, y0, tu_width, tu_height);
const int min_cb_width = pps->min_cb_width;
const VVCTreeType tree_type = cu->tree_type;
const int is_128 = cu->cb_width > 64 || cu->cb_height > 64;
const int is_isp = cu->isp_split_type != ISP_NO_SPLIT;
const int is_isp_last_tu = is_isp && (sub_tu_index == cu->num_intra_subpartitions - 1);
const int is_sbt_not_coded = cu->sbt_flag &&
((sub_tu_index == 0 && cu->sbt_pos_flag) || (sub_tu_index == 1 && !cu->sbt_pos_flag));
const int chroma_available = tree_type != DUAL_TREE_LUMA && sps->r->sps_chroma_format_idc &&
(!is_isp || is_isp_last_tu);
int ret, xc, yc, wc, hc, is_chroma_coded;
if (!tu)
return AVERROR_INVALIDDATA;
if (tree_type == SINGLE_TREE && is_isp_last_tu) {
const int x_cu = x0 >> fc->ps.sps->min_cb_log2_size_y;
const int y_cu = y0 >> fc->ps.sps->min_cb_log2_size_y;
xc = SAMPLE_CTB(fc->tab.cb_pos_x[ch_type], x_cu, y_cu);
yc = SAMPLE_CTB(fc->tab.cb_pos_y[ch_type], x_cu, y_cu);
wc = SAMPLE_CTB(fc->tab.cb_width[ch_type], x_cu, y_cu);
hc = SAMPLE_CTB(fc->tab.cb_height[ch_type], x_cu, y_cu);
} else {
xc = x0, yc = y0, wc = tu_width, hc = tu_height;
}
if (chroma_available && !is_sbt_not_coded) {
tu->coded_flag[CB] = ff_vvc_tu_cb_coded_flag(lc);
tu->coded_flag[CR] = ff_vvc_tu_cr_coded_flag(lc, tu->coded_flag[CB]);
}
is_chroma_coded = chroma_available && (tu->coded_flag[CB] || tu->coded_flag[CR]);
if (tree_type != DUAL_TREE_CHROMA) {
int has_qp_delta;
tu->coded_flag[LUMA] = tu_y_coded_flag_decode(lc, is_sbt_not_coded, sub_tu_index, is_isp, is_chroma_coded);
has_qp_delta = (is_128 || tu->coded_flag[LUMA] || is_chroma_coded) &&
pps->r->pps_cu_qp_delta_enabled_flag && !lc->parse.is_cu_qp_delta_coded;
ret = set_qp_y(lc, x0, y0, has_qp_delta);
if (ret < 0)
return ret;
add_tb(tu, lc, x0, y0, tu_width, tu_height, LUMA);
}
if (tree_type != DUAL_TREE_LUMA) {
chroma_qp_offset_decode(lc, is_128, is_chroma_coded);
if (chroma_available) {
const int hs = sps->hshift[CHROMA];
const int vs = sps->vshift[CHROMA];
add_tb(tu, lc, xc, yc, wc >> hs, hc >> vs, CB);
add_tb(tu, lc, xc, yc, wc >> hs, hc >> vs, CR);
}
}
if (sps->r->sps_joint_cbcr_enabled_flag && ((cu->pred_mode == MODE_INTRA &&
(tu->coded_flag[CB] || tu->coded_flag[CR])) ||
(tu->coded_flag[CB] && tu->coded_flag[CR])) &&
chroma_available) {
tu->joint_cbcr_residual_flag = ff_vvc_tu_joint_cbcr_residual_flag(lc, tu->coded_flag[1], tu->coded_flag[2]);
}
for (int i = 0; i < tu->nb_tbs; i++) {
TransformBlock *tb = &tu->tbs[i];
const int is_chroma = tb->c_idx != LUMA;
tb->has_coeffs = tu->coded_flag[tb->c_idx];
if (tb->has_coeffs && is_chroma)
tb->has_coeffs = tb->c_idx == CB ? 1 : !(tu->coded_flag[CB] && tu->joint_cbcr_residual_flag);
if (tb->has_coeffs) {
tb->ts = cu->bdpcm_flag[tb->c_idx];
if (sps->r->sps_transform_skip_enabled_flag && !cu->bdpcm_flag[tb->c_idx] &&
tb->tb_width <= sps->max_ts_size && tb->tb_height <= sps->max_ts_size &&
!cu->sbt_flag && (is_chroma || !is_isp)) {
tb->ts = ff_vvc_transform_skip_flag(lc, is_chroma);
}
ret = ff_vvc_residual_coding(lc, tb);
if (ret < 0)
return ret;
set_tb_tab(fc->tab.tu_coded_flag[tb->c_idx], tu->coded_flag[tb->c_idx], fc, tb);
}
if (tb->c_idx != CR)
set_tb_pos(fc, tb);
if (tb->c_idx == CB)
set_tb_tab(fc->tab.tu_joint_cbcr_residual_flag, tu->joint_cbcr_residual_flag, fc, tb);
}
return 0;
}
static int hls_transform_tree(VVCLocalContext *lc, int x0, int y0,int tu_width, int tu_height, int ch_type)
{
const CodingUnit *cu = lc->cu;
const VVCSPS *sps = lc->fc->ps.sps;
int ret;
lc->parse.infer_tu_cbf_luma = 1;
if (cu->isp_split_type == ISP_NO_SPLIT && !cu->sbt_flag) {
if (tu_width > sps->max_tb_size_y || tu_height > sps->max_tb_size_y) {
const int ver_split_first = tu_width > sps->max_tb_size_y && tu_width > tu_height;
const int trafo_width = ver_split_first ? (tu_width / 2) : tu_width;
const int trafo_height = !ver_split_first ? (tu_height / 2) : tu_height;
#define TRANSFORM_TREE(x, y) do { \
ret = hls_transform_tree(lc, x, y, trafo_width, trafo_height, ch_type); \
if (ret < 0) \
return ret; \
} while (0)
TRANSFORM_TREE(x0, y0);
if (ver_split_first)
TRANSFORM_TREE(x0 + trafo_width, y0);
else
TRANSFORM_TREE(x0, y0 + trafo_height);
} else {
ret = hls_transform_unit(lc, x0, y0, tu_width, tu_height, 0, ch_type);
if (ret < 0)
return ret;
}
} else if (cu->sbt_flag) {
if (!cu->sbt_horizontal_flag) {
#define TRANSFORM_UNIT(x, width, idx) do { \
ret = hls_transform_unit(lc, x, y0, width, tu_height, idx, ch_type); \
if (ret < 0) \
return ret; \
} while (0)
const int trafo_width = tu_width * lc->parse.sbt_num_fourths_tb0 / 4;
TRANSFORM_UNIT(x0, trafo_width, 0);
TRANSFORM_UNIT(x0 + trafo_width, tu_width - trafo_width, 1);
#undef TRANSFORM_UNIT
} else {
#define TRANSFORM_UNIT(y, height, idx) do { \
ret = hls_transform_unit(lc, x0, y, tu_width, height, idx, ch_type); \
if (ret < 0) \
return ret; \
} while (0)
const int trafo_height = tu_height * lc->parse.sbt_num_fourths_tb0 / 4;
TRANSFORM_UNIT(y0, trafo_height, 0);
TRANSFORM_UNIT(y0 + trafo_height, tu_height - trafo_height, 1);
#undef TRANSFORM_UNIT
}
} else if (cu->isp_split_type == ISP_HOR_SPLIT) {
const int trafo_height = tu_height / cu->num_intra_subpartitions;
for (int i = 0; i < cu->num_intra_subpartitions; i++) {
ret = hls_transform_unit(lc, x0, y0 + trafo_height * i, tu_width, trafo_height, i, 0);
if (ret < 0)
return ret;
}
} else if (cu->isp_split_type == ISP_VER_SPLIT) {
const int trafo_width = tu_width / cu->num_intra_subpartitions;
for (int i = 0; i < cu->num_intra_subpartitions; i++) {
ret = hls_transform_unit(lc, x0 + trafo_width * i , y0, trafo_width, tu_height, i, 0);
if (ret < 0)
return ret;
}
}
return 0;
}
static int skipped_transform_tree(VVCLocalContext *lc, int x0, int y0,int tu_width, int tu_height)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
if (tu_width > sps->max_tb_size_y || tu_height > sps->max_tb_size_y) {
const int ver_split_first = tu_width > sps->max_tb_size_y && tu_width > tu_height;
const int trafo_width = ver_split_first ? (tu_width / 2) : tu_width;
const int trafo_height = !ver_split_first ? (tu_height / 2) : tu_height;
#define SKIPPED_TRANSFORM_TREE(x, y) do { \
int ret = skipped_transform_tree(lc, x, y, trafo_width, trafo_height); \
if (ret < 0) \
return ret; \
} while (0)
SKIPPED_TRANSFORM_TREE(x0, y0);
if (ver_split_first)
SKIPPED_TRANSFORM_TREE(x0 + trafo_width, y0);
else
SKIPPED_TRANSFORM_TREE(x0, y0 + trafo_height);
} else {
TransformUnit *tu = add_tu(fc, lc->cu, x0, y0, tu_width, tu_height);
const int c_end = sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : (LUMA + 1);
if (!tu)
return AVERROR_INVALIDDATA;
for (int i = LUMA; i < c_end; i++) {
TransformBlock *tb = add_tb(tu, lc, x0, y0, tu_width >> sps->hshift[i], tu_height >> sps->vshift[i], i);
if (i != CR)
set_tb_pos(fc, tb);
}
}
return 0;
}
//6.4.1 Allowed quad split process
//6.4.2 Allowed binary split process
//6.4.3 Allowed ternary split process
static void can_split(const VVCLocalContext *lc, int x0, int y0,int cb_width, int cb_height,
int mtt_depth, int depth_offset, int part_idx, VVCSplitMode last_split_mode,
VVCTreeType tree_type, VVCModeType mode_type, VVCAllowedSplit* split)
{
int min_qt_size, max_bt_size, max_tt_size, max_mtt_depth;
const VVCFrameContext *fc = lc->fc;
const VVCSH *sh = &lc->sc->sh;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int chroma = tree_type == DUAL_TREE_CHROMA;
int min_cb_size_y = sps->min_cb_size_y;
int *qt = &split->qt;
int *btv = &split->btv;
int *bth = &split->bth;
int *ttv = &split->ttv;
int *tth = &split->tth;
*qt = *bth = *btv = *tth = *ttv = 1;
if (mtt_depth)
*qt = 0;
min_qt_size = sh->min_qt_size[chroma];
if (cb_width <= min_qt_size)
*qt = 0;
if (chroma) {
int chroma_area = (cb_width >> sps->hshift[1]) * (cb_height >> sps->vshift[1]);
int chroma_width = cb_width >> sps->hshift[1];
if (chroma_width == 8)
*ttv = 0;
else if (chroma_width <= 4) {
if (chroma_width == 4)
*btv = 0;
*qt = 0;
}
if (mode_type == MODE_TYPE_INTRA)
*qt = *btv = *bth = *ttv = *tth = 0;
if (chroma_area <= 32) {
*ttv = *tth = 0;
if (chroma_area <= 16)
*btv = *bth = 0;
}
}
max_bt_size = sh->max_bt_size[chroma];
max_tt_size = sh->max_tt_size[chroma];
max_mtt_depth = sh->max_mtt_depth[chroma] + depth_offset;
if (mode_type == MODE_TYPE_INTER) {
int area = cb_width * cb_height;
if (area == 32)
*btv = *bth = 0;
else if (area == 64)
*ttv = *tth = 0;
}
if (cb_width <= 2 * min_cb_size_y) {
*ttv = 0;
if (cb_width <= min_cb_size_y)
*btv = 0;
}
if (cb_height <= 2 * min_cb_size_y) {
*tth = 0;
if (cb_height <= min_cb_size_y)
*bth = 0;
}
if (cb_width > max_bt_size || cb_height > max_bt_size)
*btv = *bth = 0;
max_tt_size = FFMIN(64, max_tt_size);
if (cb_width > max_tt_size || cb_height > max_tt_size)
*ttv = *tth = 0;
if (mtt_depth >= max_mtt_depth)
*btv = *bth = *ttv = *tth = 0;
if (x0 + cb_width > pps->width) {
*ttv = *tth = 0;
if (cb_height > 64)
*btv = 0;
if (y0 + cb_height <= pps->height)
*bth = 0;
else if (cb_width > min_qt_size)
*btv = *bth = 0;
}
if (y0 + cb_height > pps->height) {
*btv = *ttv = *tth = 0;
if (cb_width > 64)
*bth = 0;
}
if (mtt_depth > 0 && part_idx == 1) {
if (last_split_mode == SPLIT_TT_VER)
*btv = 0;
else if (last_split_mode == SPLIT_TT_HOR)
*bth = 0;
}
if (cb_width <= 64 && cb_height > 64)
*btv = 0;
if (cb_width > 64 && cb_height <= 64)
*bth = 0;
}
static int get_num_intra_subpartitions(enum IspType isp_split_type, int cb_width, int cb_height)
{
if (isp_split_type == ISP_NO_SPLIT)
return 1;
if ((cb_width == 4 && cb_height == 8) || (cb_width == 8 && cb_height == 4))
return 2;
return 4;
}
static int get_cclm_enabled(const VVCLocalContext *lc, const int x0, const int y0)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
int enabled = 0;
if (!sps->r->sps_cclm_enabled_flag)
return 0;
if (!sps->r->sps_qtbtt_dual_tree_intra_flag || !IS_I(lc->sc->sh.r) || sps->ctb_log2_size_y < 6)
return 1;
else {
const int x64 = x0 >> 6 << 6;
const int y64 = y0 >> 6 << 6;
const int y32 = y0 >> 5 << 5;
const int x64_cu = x64 >> fc->ps.sps->min_cb_log2_size_y;
const int y64_cu = y64 >> fc->ps.sps->min_cb_log2_size_y;
const int y32_cu = y32 >> fc->ps.sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int depth = SAMPLE_CTB(fc->tab.cqt_depth[1], x64_cu, y64_cu);
const int min_depth = fc->ps.sps->ctb_log2_size_y - 6;
const VVCSplitMode msm64 = (VVCSplitMode)TAB_MSM(fc, 0, x64, y64);
const VVCSplitMode msm32 = (VVCSplitMode)TAB_MSM(fc, 1, x64, y32);
enabled = SAMPLE_CTB(fc->tab.cb_width[1], x64_cu, y64_cu) == 64 &&
SAMPLE_CTB(fc->tab.cb_height[1], x64_cu, y64_cu) == 64;
enabled |= depth == min_depth && msm64 == SPLIT_BT_HOR &&
SAMPLE_CTB(fc->tab.cb_width[1], x64_cu, y32_cu) == 64 &&
SAMPLE_CTB(fc->tab.cb_height[1], x64_cu, y32_cu) == 32;
enabled |= depth > min_depth;
enabled |= depth == min_depth && msm64 == SPLIT_BT_HOR && msm32 == SPLIT_BT_VER;
if (enabled) {
const int w = SAMPLE_CTB(fc->tab.cb_width[0], x64_cu, y64_cu);
const int h = SAMPLE_CTB(fc->tab.cb_height[0], x64_cu, y64_cu);
const int depth0 = SAMPLE_CTB(fc->tab.cqt_depth[0], x64_cu, y64_cu);
if ((w == 64 && h == 64 && TAB_ISPMF(fc, x64, y64)) ||
((w < 64 || h < 64) && depth0 == min_depth))
return 0;
}
}
return enabled;
}
static int less(const void *a, const void *b)
{
return *(const int*)a - *(const int*)b;
}
//8.4.2 Derivation process for luma intra prediction mode
static enum IntraPredMode luma_intra_pred_mode(VVCLocalContext* lc, const int intra_subpartitions_mode_flag)
{
VVCFrameContext *fc = lc->fc;
CodingUnit *cu = lc->cu;
const int x0 = cu->x0;
const int y0 = cu->y0;
enum IntraPredMode pred;
int intra_luma_not_planar_flag = 1;
int intra_luma_mpm_remainder = 0;
int intra_luma_mpm_flag = 1;
int intra_luma_mpm_idx = 0;
if (!cu->intra_luma_ref_idx)
intra_luma_mpm_flag = ff_vvc_intra_luma_mpm_flag(lc);
if (intra_luma_mpm_flag) {
if (!cu->intra_luma_ref_idx)
intra_luma_not_planar_flag = ff_vvc_intra_luma_not_planar_flag(lc, intra_subpartitions_mode_flag);
if (intra_luma_not_planar_flag)
intra_luma_mpm_idx = ff_vvc_intra_luma_mpm_idx(lc);
} else {
intra_luma_mpm_remainder = ff_vvc_intra_luma_mpm_remainder(lc);
}
if (!intra_luma_not_planar_flag) {
pred = INTRA_PLANAR;
} else {
const VVCSPS *sps = fc->ps.sps;
const int x_a = (x0 - 1) >> sps->min_cb_log2_size_y;
const int y_a = (y0 + cu->cb_height - 1) >> sps->min_cb_log2_size_y;
const int x_b = (x0 + cu->cb_width - 1) >> sps->min_cb_log2_size_y;
const int y_b = (y0 - 1) >> sps->min_cb_log2_size_y;
int min_cb_width = fc->ps.pps->min_cb_width;
int x0b = av_mod_uintp2(x0, sps->ctb_log2_size_y);
int y0b = av_mod_uintp2(y0, sps->ctb_log2_size_y);
const int available_l = lc->ctb_left_flag || x0b;
const int available_u = lc->ctb_up_flag || y0b;
int a, b, cand[5];
if (!available_l || (SAMPLE_CTB(fc->tab.cpm[0], x_a, y_a) != MODE_INTRA) ||
SAMPLE_CTB(fc->tab.imf, x_a, y_a)) {
a = INTRA_PLANAR;
} else {
a = SAMPLE_CTB(fc->tab.ipm, x_a, y_a);
}
if (!available_u || (SAMPLE_CTB(fc->tab.cpm[0], x_b, y_b) != MODE_INTRA) ||
SAMPLE_CTB(fc->tab.imf, x_b, y_b) || !y0b) {
b = INTRA_PLANAR;
} else {
b = SAMPLE_CTB(fc->tab.ipm, x_b, y_b);
}
if (a == b && a > INTRA_DC) {
cand[0] = a;
cand[1] = 2 + ((a + 61) % 64);
cand[2] = 2 + ((a - 1) % 64);
cand[3] = 2 + ((a + 60) % 64);
cand[4] = 2 + (a % 64);
} else {
const int minab = FFMIN(a, b);
const int maxab = FFMAX(a, b);
if (a > INTRA_DC && b > INTRA_DC) {
const int diff = maxab - minab;
cand[0] = a;
cand[1] = b;
if (diff == 1) {
cand[2] = 2 + ((minab + 61) % 64);
cand[3] = 2 + ((maxab - 1) % 64);
cand[4] = 2 + ((minab + 60) % 64);
} else if (diff >= 62) {
cand[2] = 2 + ((minab - 1) % 64);
cand[3] = 2 + ((maxab + 61) % 64);
cand[4] = 2 + (minab % 64);
} else if (diff == 2) {
cand[2] = 2 + ((minab - 1) % 64);
cand[3] = 2 + ((minab + 61) % 64);
cand[4] = 2 + ((maxab - 1) % 64);
} else {
cand[2] = 2 + ((minab + 61) % 64);
cand[3] = 2 + ((minab - 1) % 64);
cand[4] = 2 + ((maxab + 61) % 64);
}
} else if (a > INTRA_DC || b > INTRA_DC) {
cand[0] = maxab;
cand[1] = 2 + ((maxab + 61 ) % 64);
cand[2] = 2 + ((maxab - 1) % 64);
cand[3] = 2 + ((maxab + 60 ) % 64);
cand[4] = 2 + (maxab % 64);
} else {
cand[0] = INTRA_DC;
cand[1] = INTRA_VERT;
cand[2] = INTRA_HORZ;
cand[3] = INTRA_VERT - 4;
cand[4] = INTRA_VERT + 4;
}
}
if (intra_luma_mpm_flag) {
pred = cand[intra_luma_mpm_idx];
} else {
qsort(cand, FF_ARRAY_ELEMS(cand), sizeof(cand[0]), less);
pred = intra_luma_mpm_remainder + 1;
for (int i = 0; i < FF_ARRAY_ELEMS(cand); i++) {
if (pred >= cand[i])
pred++;
}
}
}
return pred;
}
static int lfnst_idx_decode(VVCLocalContext *lc)
{
CodingUnit *cu = lc->cu;
const VVCTreeType tree_type = cu->tree_type;
const VVCSPS *sps = lc->fc->ps.sps;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
const TransformUnit *tu = cu->tus.head;
int lfnst_width, lfnst_height, min_lfnst;
int lfnst_idx = 0;
memset(cu->apply_lfnst_flag, 0, sizeof(cu->apply_lfnst_flag));
if (!sps->r->sps_lfnst_enabled_flag || cu->pred_mode != MODE_INTRA || FFMAX(cb_width, cb_height) > sps->max_tb_size_y)
return 0;
while (tu) {
for (int j = 0; j < tu->nb_tbs; j++) {
const TransformBlock *tb = tu->tbs + j;
if (tu->coded_flag[tb->c_idx] && tb->ts)
return 0;
}
tu = tu->next;
}
if (tree_type == DUAL_TREE_CHROMA) {
lfnst_width = cb_width >> sps->hshift[1];
lfnst_height = cb_height >> sps->vshift[1];
} else {
const int vs = cu->isp_split_type == ISP_VER_SPLIT;
const int hs = cu->isp_split_type == ISP_HOR_SPLIT;
lfnst_width = vs ? cb_width / cu->num_intra_subpartitions : cb_width;
lfnst_height = hs ? cb_height / cu->num_intra_subpartitions : cb_height;
}
min_lfnst = FFMIN(lfnst_width, lfnst_height);
if (tree_type != DUAL_TREE_CHROMA && cu->intra_mip_flag && min_lfnst < 16)
return 0;
if (min_lfnst >= 4) {
if ((cu->isp_split_type != ISP_NO_SPLIT || !lc->parse.lfnst_dc_only) && lc->parse.lfnst_zero_out_sig_coeff_flag)
lfnst_idx = ff_vvc_lfnst_idx(lc, tree_type != SINGLE_TREE);
}
if (lfnst_idx) {
cu->apply_lfnst_flag[LUMA] = tree_type != DUAL_TREE_CHROMA;
cu->apply_lfnst_flag[CB] = cu->apply_lfnst_flag[CR] = tree_type == DUAL_TREE_CHROMA;
}
return lfnst_idx;
}
static MtsIdx mts_idx_decode(VVCLocalContext *lc)
{
const CodingUnit *cu = lc->cu;
const VVCSPS *sps = lc->fc->ps.sps;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
const uint8_t transform_skip_flag = cu->tus.head->tbs[0].ts; //fix me
int mts_idx = MTS_DCT2_DCT2;
if (cu->tree_type != DUAL_TREE_CHROMA && !cu->lfnst_idx &&
!transform_skip_flag && FFMAX(cb_width, cb_height) <= 32 &&
cu->isp_split_type == ISP_NO_SPLIT && !cu->sbt_flag &&
lc->parse.mts_zero_out_sig_coeff_flag && !lc->parse.mts_dc_only) {
if ((cu->pred_mode == MODE_INTER && sps->r->sps_explicit_mts_inter_enabled_flag) ||
(cu->pred_mode == MODE_INTRA && sps->r->sps_explicit_mts_intra_enabled_flag)) {
mts_idx = ff_vvc_mts_idx(lc);
}
}
return mts_idx;
}
static enum IntraPredMode derive_center_luma_intra_pred_mode(const VVCFrameContext *fc, const VVCSPS *sps, const VVCPPS *pps, const CodingUnit *cu)
{
const int x_center = (cu->x0 + cu->cb_width / 2) >> sps->min_cb_log2_size_y;
const int y_center = (cu->y0 + cu->cb_height / 2) >> sps->min_cb_log2_size_y;
const int min_cb_width = pps->min_cb_width;
const int intra_mip_flag = SAMPLE_CTB(fc->tab.imf, x_center, y_center);
const int cu_pred_mode = SAMPLE_CTB(fc->tab.cpm[0], x_center, y_center);
const int intra_pred_mode_y = SAMPLE_CTB(fc->tab.ipm, x_center, y_center);
if (intra_mip_flag) {
if (cu->tree_type == SINGLE_TREE && sps->r->sps_chroma_format_idc == CHROMA_FORMAT_444)
return INTRA_INVALID;
return INTRA_PLANAR;
}
if (cu_pred_mode == MODE_IBC || cu_pred_mode == MODE_PLT)
return INTRA_DC;
return intra_pred_mode_y;
}
static void derive_chroma_intra_pred_mode(VVCLocalContext *lc,
const int cclm_mode_flag, const int cclm_mode_idx, const int intra_chroma_pred_mode)
{
const VVCFrameContext *fc = lc->fc;
CodingUnit *cu = lc->cu;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int x_cb = cu->x0 >> sps->min_cb_log2_size_y;
const int y_cb = cu->y0 >> sps->min_cb_log2_size_y;
const int min_cb_width = pps->min_cb_width;
const int intra_mip_flag = SAMPLE_CTB(fc->tab.imf, x_cb, y_cb);
enum IntraPredMode luma_intra_pred_mode = SAMPLE_CTB(fc->tab.ipm, x_cb, y_cb);
if (cu->tree_type == SINGLE_TREE && sps->r->sps_chroma_format_idc == CHROMA_FORMAT_444 &&
intra_chroma_pred_mode == 4 && intra_mip_flag) {
cu->mip_chroma_direct_flag = 1;
cu->intra_pred_mode_c = luma_intra_pred_mode;
return;
}
luma_intra_pred_mode = derive_center_luma_intra_pred_mode(fc, sps, pps, cu);
if (cu->act_enabled_flag) {
cu->intra_pred_mode_c = luma_intra_pred_mode;
return;
}
if (cclm_mode_flag) {
cu->intra_pred_mode_c = INTRA_LT_CCLM + cclm_mode_idx;
} else if (intra_chroma_pred_mode == 4){
cu->intra_pred_mode_c = luma_intra_pred_mode;
} else {
const static IntraPredMode pred_mode_c[][4 + 1] = {
{INTRA_VDIAG, INTRA_PLANAR, INTRA_PLANAR, INTRA_PLANAR, INTRA_PLANAR},
{INTRA_VERT, INTRA_VDIAG, INTRA_VERT, INTRA_VERT, INTRA_VERT},
{INTRA_HORZ, INTRA_HORZ, INTRA_VDIAG, INTRA_HORZ, INTRA_HORZ},
{INTRA_DC, INTRA_DC, INTRA_DC, INTRA_VDIAG, INTRA_DC},
};
const int modes[4] = {INTRA_PLANAR, INTRA_VERT, INTRA_HORZ, INTRA_DC};
int idx;
// This workaround is necessary to have 4:4:4 video decode correctly
// See VVC ticket https://jvet.hhi.fraunhofer.de/trac/vvc/ticket/1602
// and VTM source https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/blob/master/source/Lib/CommonLib/UnitTools.cpp#L736
if (cu->tree_type == SINGLE_TREE && sps->r->sps_chroma_format_idc == CHROMA_FORMAT_444 && intra_mip_flag) {
idx = 4;
} else {
for (idx = 0; idx < FF_ARRAY_ELEMS(modes); idx++) {
if (modes[idx] == luma_intra_pred_mode)
break;
}
}
cu->intra_pred_mode_c = pred_mode_c[intra_chroma_pred_mode][idx];
}
if (sps->r->sps_chroma_format_idc == CHROMA_FORMAT_422 && cu->intra_pred_mode_c <= INTRA_VDIAG) {
const static int mode_map_422[INTRA_VDIAG + 1] = {
0, 1, 61, 62, 63, 64, 65, 66, 2, 3, 5, 6, 8, 10, 12, 13,
14, 16, 18, 20, 22, 23, 24, 26, 28, 30, 31, 33, 34, 35, 36, 37,
38, 39, 40, 41, 41, 42, 43, 43, 44, 44, 45, 45, 46, 47, 48, 48,
49, 49, 50, 51, 51, 52, 52, 53, 54, 55, 55, 56, 56, 57, 57, 58,
59, 59, 60,
};
cu->intra_pred_mode_c = mode_map_422[cu->intra_pred_mode_c];
}
}
static void intra_luma_pred_modes(VVCLocalContext *lc)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
CodingUnit *cu = lc->cu;
const int log2_min_cb_size = sps->min_cb_log2_size_y;
const int x0 = cu->x0;
const int y0 = cu->y0;
const int x_cb = x0 >> log2_min_cb_size;
const int y_cb = y0 >> log2_min_cb_size;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
cu->intra_luma_ref_idx = 0;
if (sps->r->sps_bdpcm_enabled_flag && cb_width <= sps->max_ts_size && cb_height <= sps->max_ts_size)
cu->bdpcm_flag[LUMA] = ff_vvc_intra_bdpcm_luma_flag(lc);
if (cu->bdpcm_flag[LUMA]) {
cu->intra_pred_mode_y = ff_vvc_intra_bdpcm_luma_dir_flag(lc) ? INTRA_VERT : INTRA_HORZ;
} else {
if (sps->r->sps_mip_enabled_flag)
cu->intra_mip_flag = ff_vvc_intra_mip_flag(lc, fc->tab.imf);
if (cu->intra_mip_flag) {
int intra_mip_transposed_flag = ff_vvc_intra_mip_transposed_flag(lc);
int intra_mip_mode = ff_vvc_intra_mip_mode(lc);
int x = y_cb * pps->min_cb_width + x_cb;
for (int y = 0; y < (cb_height>>log2_min_cb_size); y++) {
int width = cb_width>>log2_min_cb_size;
memset(&fc->tab.imf[x], cu->intra_mip_flag, width);
fc->tab.imtf[x] = intra_mip_transposed_flag;
fc->tab.imm[x] = intra_mip_mode;
x += pps->min_cb_width;
}
cu->intra_pred_mode_y = intra_mip_mode;
} else {
int intra_subpartitions_mode_flag = 0;
if (sps->r->sps_mrl_enabled_flag && ((y0 % sps->ctb_size_y) > 0))
cu->intra_luma_ref_idx = ff_vvc_intra_luma_ref_idx(lc);
if (sps->r->sps_isp_enabled_flag && !cu->intra_luma_ref_idx &&
(cb_width <= sps->max_tb_size_y && cb_height <= sps->max_tb_size_y) &&
(cb_width * cb_height > MIN_TU_SIZE * MIN_TU_SIZE) &&
!cu->act_enabled_flag)
intra_subpartitions_mode_flag = ff_vvc_intra_subpartitions_mode_flag(lc);
if (!(x0 & 63) && !(y0 & 63))
TAB_ISPMF(fc, x0, y0) = intra_subpartitions_mode_flag;
cu->isp_split_type = ff_vvc_isp_split_type(lc, intra_subpartitions_mode_flag);
cu->num_intra_subpartitions = get_num_intra_subpartitions(cu->isp_split_type, cb_width, cb_height);
cu->intra_pred_mode_y = luma_intra_pred_mode(lc, intra_subpartitions_mode_flag);
}
}
set_cb_tab(lc, fc->tab.ipm, cu->intra_pred_mode_y);
}
static void intra_chroma_pred_modes(VVCLocalContext *lc)
{
const VVCSPS *sps = lc->fc->ps.sps;
CodingUnit *cu = lc->cu;
const int hs = sps->hshift[CHROMA];
const int vs = sps->vshift[CHROMA];
cu->mip_chroma_direct_flag = 0;
if (sps->r->sps_bdpcm_enabled_flag &&
(cu->cb_width >> hs) <= sps->max_ts_size &&
(cu->cb_height >> vs) <= sps->max_ts_size) {
cu->bdpcm_flag[CB] = cu->bdpcm_flag[CR] = ff_vvc_intra_bdpcm_chroma_flag(lc);
}
if (cu->bdpcm_flag[CHROMA]) {
cu->intra_pred_mode_c = ff_vvc_intra_bdpcm_chroma_dir_flag(lc) ? INTRA_VERT : INTRA_HORZ;
} else {
const int cclm_enabled = get_cclm_enabled(lc, cu->x0, cu->y0);
int cclm_mode_flag = 0;
int cclm_mode_idx = 0;
int intra_chroma_pred_mode = 0;
if (cclm_enabled)
cclm_mode_flag = ff_vvc_cclm_mode_flag(lc);
if (cclm_mode_flag)
cclm_mode_idx = ff_vvc_cclm_mode_idx(lc);
else
intra_chroma_pred_mode = ff_vvc_intra_chroma_pred_mode(lc);
derive_chroma_intra_pred_mode(lc, cclm_mode_flag, cclm_mode_idx, intra_chroma_pred_mode);
}
}
static PredMode pred_mode_decode(VVCLocalContext *lc,
const VVCTreeType tree_type,
const VVCModeType mode_type)
{
const VVCFrameContext *fc = lc->fc;
CodingUnit *cu = lc->cu;
const VVCSPS *sps = fc->ps.sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const int ch_type = tree_type == DUAL_TREE_CHROMA ? 1 : 0;
const int is_4x4 = cu->cb_width == 4 && cu->cb_height == 4;
int pred_mode_flag;
int pred_mode_ibc_flag;
PredMode pred_mode;
cu->skip_flag = 0;
if (!IS_I(rsh) || sps->r->sps_ibc_enabled_flag) {
const int is_128 = cu->cb_width == 128 || cu->cb_height == 128;
if (tree_type != DUAL_TREE_CHROMA &&
((!is_4x4 && mode_type != MODE_TYPE_INTRA) ||
(sps->r->sps_ibc_enabled_flag && !is_128))) {
cu->skip_flag = ff_vvc_cu_skip_flag(lc, fc->tab.skip);
}
if (is_4x4 || mode_type == MODE_TYPE_INTRA || IS_I(rsh)) {
pred_mode_flag = 1;
} else if (mode_type == MODE_TYPE_INTER || cu->skip_flag) {
pred_mode_flag = 0;
} else {
pred_mode_flag = ff_vvc_pred_mode_flag(lc, ch_type);
}
pred_mode = pred_mode_flag ? MODE_INTRA : MODE_INTER;
if (((IS_I(rsh) && !cu->skip_flag) ||
(!IS_I(rsh) && (pred_mode != MODE_INTRA ||
((is_4x4 || mode_type == MODE_TYPE_INTRA) && !cu->skip_flag)))) &&
!is_128 && mode_type != MODE_TYPE_INTER && sps->r->sps_ibc_enabled_flag &&
tree_type != DUAL_TREE_CHROMA) {
pred_mode_ibc_flag = ff_vvc_pred_mode_ibc_flag(lc, ch_type);
} else if (cu->skip_flag && (is_4x4 || mode_type == MODE_TYPE_INTRA)) {
pred_mode_ibc_flag = 1;
} else if (is_128 || mode_type == MODE_TYPE_INTER || tree_type == DUAL_TREE_CHROMA) {
pred_mode_ibc_flag = 0;
} else {
pred_mode_ibc_flag = (IS_I(rsh)) ? sps->r->sps_ibc_enabled_flag : 0;
}
if (pred_mode_ibc_flag)
pred_mode = MODE_IBC;
} else {
pred_mode_flag = is_4x4 || mode_type == MODE_TYPE_INTRA ||
mode_type != MODE_TYPE_INTER || IS_I(rsh);
pred_mode = pred_mode_flag ? MODE_INTRA : MODE_INTER;
}
return pred_mode;
}
static void sbt_info(VVCLocalContext *lc, const VVCSPS *sps)
{
CodingUnit *cu = lc->cu;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
if (cu->pred_mode == MODE_INTER && sps->r->sps_sbt_enabled_flag && !cu->ciip_flag
&& cb_width <= sps->max_tb_size_y && cb_height <= sps->max_tb_size_y) {
const int sbt_ver_h = cb_width >= 8;
const int sbt_hor_h = cb_height >= 8;
cu->sbt_flag = 0;
if (sbt_ver_h || sbt_hor_h)
cu->sbt_flag = ff_vvc_sbt_flag(lc);
if (cu->sbt_flag) {
const int sbt_ver_q = cb_width >= 16;
const int sbt_hor_q = cb_height >= 16;
int cu_sbt_quad_flag = 0;
if ((sbt_ver_h || sbt_hor_h) && (sbt_ver_q || sbt_hor_q))
cu_sbt_quad_flag = ff_vvc_sbt_quad_flag(lc);
if (cu_sbt_quad_flag) {
cu->sbt_horizontal_flag = sbt_hor_q;
if (sbt_ver_q && sbt_hor_q)
cu->sbt_horizontal_flag = ff_vvc_sbt_horizontal_flag(lc);
} else {
cu->sbt_horizontal_flag = sbt_hor_h;
if (sbt_ver_h && sbt_hor_h)
cu->sbt_horizontal_flag = ff_vvc_sbt_horizontal_flag(lc);
}
cu->sbt_pos_flag = ff_vvc_sbt_pos_flag(lc);
{
const int sbt_min = cu_sbt_quad_flag ? 1 : 2;
lc->parse.sbt_num_fourths_tb0 = cu->sbt_pos_flag ? (4 - sbt_min) : sbt_min;
}
}
}
}
static int skipped_transform_tree_unit(VVCLocalContext *lc)
{
const CodingUnit *cu = lc->cu;
int ret;
set_qp_y(lc, cu->x0, cu->y0, 0);
set_qp_c(lc);
ret = skipped_transform_tree(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (ret < 0)
return ret;
return 0;
}
static void set_cb_pos(const VVCFrameContext *fc, const CodingUnit *cu)
{
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int log2_min_cb_size = sps->min_cb_log2_size_y;
const int x_cb = cu->x0 >> log2_min_cb_size;
const int y_cb = cu->y0 >> log2_min_cb_size;
const int ch_type = cu->ch_type;
int x, y;
x = y_cb * pps->min_cb_width + x_cb;
for (y = 0; y < (cu->cb_height >> log2_min_cb_size); y++) {
const int width = cu->cb_width >> log2_min_cb_size;
for (int i = 0; i < width; i++) {
fc->tab.cb_pos_x[ch_type][x + i] = cu->x0;
fc->tab.cb_pos_y[ch_type][x + i] = cu->y0;
}
memset(&fc->tab.cb_width[ch_type][x], cu->cb_width, width);
memset(&fc->tab.cb_height[ch_type][x], cu->cb_height, width);
memset(&fc->tab.cqt_depth[ch_type][x], cu->cqt_depth, width);
x += pps->min_cb_width;
}
}
static CodingUnit* alloc_cu(VVCLocalContext *lc, const int x0, const int y0)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int rx = x0 >> sps->ctb_log2_size_y;
const int ry = y0 >> sps->ctb_log2_size_y;
CTU *ctu = fc->tab.ctus + ry * pps->ctb_width + rx;
CodingUnit *cu = ff_refstruct_pool_get(fc->cu_pool);
if (!cu)
return NULL;
cu->next = NULL;
if (lc->cu)
lc->cu->next = cu;
else
ctu->cus = cu;
lc->cu = cu;
return cu;
}
static CodingUnit* add_cu(VVCLocalContext *lc, const int x0, const int y0,
const int cb_width, const int cb_height, const int cqt_depth, const VVCTreeType tree_type)
{
VVCFrameContext *fc = lc->fc;
const int ch_type = tree_type == DUAL_TREE_CHROMA ? 1 : 0;
CodingUnit *cu = alloc_cu(lc, x0, y0);
if (!cu)
return NULL;
memset(&cu->pu, 0, sizeof(cu->pu));
lc->parse.prev_tu_cbf_y = 0;
cu->sbt_flag = 0;
cu->act_enabled_flag = 0;
cu->tree_type = tree_type;
cu->x0 = x0;
cu->y0 = y0;
cu->cb_width = cb_width;
cu->cb_height = cb_height;
cu->ch_type = ch_type;
cu->cqt_depth = cqt_depth;
cu->tus.head = cu->tus.tail = NULL;
cu->bdpcm_flag[LUMA] = cu->bdpcm_flag[CB] = cu->bdpcm_flag[CR] = 0;
cu->isp_split_type = ISP_NO_SPLIT;
cu->intra_mip_flag = 0;
cu->ciip_flag = 0;
cu->coded_flag = 1;
cu->num_intra_subpartitions = 1;
cu->pu.dmvr_flag = 0;
set_cb_pos(fc, cu);
return cu;
}
static void set_cu_tabs(const VVCLocalContext *lc, const CodingUnit *cu)
{
const VVCFrameContext *fc = lc->fc;
const TransformUnit *tu = cu->tus.head;
set_cb_tab(lc, fc->tab.cpm[cu->ch_type], cu->pred_mode);
if (cu->tree_type != DUAL_TREE_CHROMA)
set_cb_tab(lc, fc->tab.skip, cu->skip_flag);
while (tu) {
for (int j = 0; j < tu->nb_tbs; j++) {
const TransformBlock *tb = tu->tbs + j;
if (tb->c_idx != LUMA)
set_qp_c_tab(lc, tu, tb);
if (tb->c_idx != CR && cu->bdpcm_flag[tb->c_idx])
set_tb_tab(fc->tab.pcmf[tb->c_idx], 1, fc, tb);
}
tu = tu->next;
}
}
//8.5.2.7 Derivation process for merge motion vector difference
static void derive_mmvd(const VVCLocalContext *lc, MvField *mvf, const Mv *mmvd_offset)
{
const SliceContext *sc = lc->sc;
Mv mmvd[2];
if (mvf->pred_flag == PF_BI) {
const RefPicList *rpl = sc->rpl;
const int poc = lc->fc->ps.ph.poc;
const int diff[] = {
poc - rpl[0].list[mvf->ref_idx[0]],
poc - rpl[1].list[mvf->ref_idx[1]]
};
const int sign = FFSIGN(diff[0]) != FFSIGN(diff[1]);
if (diff[0] == diff[1]) {
mmvd[1] = mmvd[0] = *mmvd_offset;
}
else {
const int i = FFABS(diff[0]) < FFABS(diff[1]);
const int o = !i;
mmvd[i] = *mmvd_offset;
if (!rpl[0].isLongTerm[mvf->ref_idx[0]] && !rpl[1].isLongTerm[mvf->ref_idx[1]]) {
ff_vvc_mv_scale(&mmvd[o], mmvd_offset, diff[i], diff[o]);
}
else {
mmvd[o].x = sign ? -mmvd[i].x : mmvd[i].x;
mmvd[o].y = sign ? -mmvd[i].y : mmvd[i].y;
}
}
mvf->mv[0].x += mmvd[0].x;
mvf->mv[0].y += mmvd[0].y;
mvf->mv[1].x += mmvd[1].x;
mvf->mv[1].y += mmvd[1].y;
} else {
const int idx = mvf->pred_flag - PF_L0;
mvf->mv[idx].x += mmvd_offset->x;
mvf->mv[idx].y += mmvd_offset->y;
}
}
static void mvf_to_mi(const MvField *mvf, MotionInfo *mi)
{
mi->pred_flag = mvf->pred_flag;
mi->bcw_idx = mvf->bcw_idx;
mi->hpel_if_idx = mvf->hpel_if_idx;
for (int i = 0; i < 2; i++) {
const PredFlag mask = i + 1;
if (mvf->pred_flag & mask) {
mi->mv[i][0] = mvf->mv[i];
mi->ref_idx[i] = mvf->ref_idx[i];
}
}
}
static void mv_merge_refine_pred_flag(MvField *mvf, const int width, const int height)
{
if (mvf->pred_flag == PF_BI && (width + height) == 12) {
mvf->pred_flag = PF_L0;
mvf->bcw_idx = 0;
}
}
// subblock-based inter prediction data
static void merge_data_subblock(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCPH *ph = &fc->ps.ph;
CodingUnit* cu = lc->cu;
PredictionUnit *pu = &cu->pu;
int merge_subblock_idx = 0;
set_cb_tab(lc, fc->tab.msf, pu->merge_subblock_flag);
if (ph->max_num_subblock_merge_cand > 1) {
merge_subblock_idx = ff_vvc_merge_subblock_idx(lc, ph->max_num_subblock_merge_cand);
}
ff_vvc_sb_mv_merge_mode(lc, merge_subblock_idx, pu);
}
static void merge_data_regular(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPH *ph = &fc->ps.ph;
const CodingUnit* cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
int merge_idx = 0;
Mv mmvd_offset;
MvField mvf;
if (sps->r->sps_mmvd_enabled_flag)
pu->mmvd_merge_flag = ff_vvc_mmvd_merge_flag(lc);
if (pu->mmvd_merge_flag) {
int mmvd_cand_flag = 0;
if (sps->max_num_merge_cand > 1)
mmvd_cand_flag = ff_vvc_mmvd_cand_flag(lc);
ff_vvc_mmvd_offset_coding(lc, &mmvd_offset, ph->r->ph_mmvd_fullpel_only_flag);
merge_idx = mmvd_cand_flag;
} else if (sps->max_num_merge_cand > 1) {
merge_idx = ff_vvc_merge_idx(lc);
}
ff_vvc_luma_mv_merge_mode(lc, merge_idx, 0, &mvf);
if (pu->mmvd_merge_flag)
derive_mmvd(lc, &mvf, &mmvd_offset);
mv_merge_refine_pred_flag(&mvf, cu->cb_width, cu->cb_height);
ff_vvc_store_mvf(lc, &mvf);
mvf_to_mi(&mvf, &pu->mi);
}
static int ciip_flag_decode(VVCLocalContext *lc, const int ciip_avaiable, const int gpm_avaiable, const int is_128)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const CodingUnit *cu = lc->cu;
if (ciip_avaiable && gpm_avaiable)
return ff_vvc_ciip_flag(lc);
return sps->r->sps_ciip_enabled_flag && !cu->skip_flag &&
!is_128 && (cu->cb_width * cu->cb_height >= 64);
}
static void merge_data_gpm(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
PredictionUnit *pu = &lc->cu->pu;
int merge_gpm_idx[2];
pu->merge_gpm_flag = 1;
pu->gpm_partition_idx = ff_vvc_merge_gpm_partition_idx(lc);
merge_gpm_idx[0] = ff_vvc_merge_gpm_idx(lc, 0);
merge_gpm_idx[1] = 0;
if (sps->max_num_gpm_merge_cand > 2)
merge_gpm_idx[1] = ff_vvc_merge_gpm_idx(lc, 1);
ff_vvc_luma_mv_merge_gpm(lc, merge_gpm_idx, pu->gpm_mv);
ff_vvc_store_gpm_mvf(lc, pu);
}
static void merge_data_ciip(VVCLocalContext *lc)
{
const VVCFrameContext* fc = lc->fc;
const VVCSPS* sps = fc->ps.sps;
CodingUnit *cu = lc->cu;
MotionInfo *mi = &cu->pu.mi;
int merge_idx = 0;
MvField mvf;
if (sps->max_num_merge_cand > 1)
merge_idx = ff_vvc_merge_idx(lc);
ff_vvc_luma_mv_merge_mode(lc, merge_idx, 1, &mvf);
mv_merge_refine_pred_flag(&mvf, cu->cb_width, cu->cb_height);
ff_vvc_store_mvf(lc, &mvf);
mvf_to_mi(&mvf, mi);
cu->intra_pred_mode_y = cu->intra_pred_mode_c = INTRA_PLANAR;
cu->intra_luma_ref_idx = 0;
cu->intra_mip_flag = 0;
}
// block-based inter prediction data
static void merge_data_block(VVCLocalContext *lc)
{
const VVCFrameContext* fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
CodingUnit *cu = lc->cu;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
const int is_128 = cb_width == 128 || cb_height == 128;
const int ciip_avaiable = sps->r->sps_ciip_enabled_flag &&
!cu->skip_flag && (cb_width * cb_height >= 64);
const int gpm_avaiable = sps->r->sps_gpm_enabled_flag && IS_B(rsh) &&
(cb_width >= 8) && (cb_height >=8) &&
(cb_width < 8 * cb_height) && (cb_height < 8 *cb_width);
int regular_merge_flag = 1;
if (!is_128 && (ciip_avaiable || gpm_avaiable))
regular_merge_flag = ff_vvc_regular_merge_flag(lc, cu->skip_flag);
if (regular_merge_flag) {
merge_data_regular(lc);
} else {
cu->ciip_flag = ciip_flag_decode(lc, ciip_avaiable, gpm_avaiable, is_128);
if (cu->ciip_flag)
merge_data_ciip(lc);
else
merge_data_gpm(lc);
}
}
static int hls_merge_data(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const VVCPH *ph = &fc->ps.ph;
const CodingUnit *cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
pu->merge_gpm_flag = 0;
pu->mi.num_sb_x = pu->mi.num_sb_y = 1;
if (cu->pred_mode == MODE_IBC) {
avpriv_report_missing_feature(fc->log_ctx, "Intra Block Copy");
return AVERROR_PATCHWELCOME;
} else {
if (ph->max_num_subblock_merge_cand > 0 && cu->cb_width >= 8 && cu->cb_height >= 8)
pu->merge_subblock_flag = ff_vvc_merge_subblock_flag(lc);
if (pu->merge_subblock_flag)
merge_data_subblock(lc);
else
merge_data_block(lc);
}
return 0;
}
static void hls_mvd_coding(VVCLocalContext *lc, Mv* mvd)
{
int16_t mv[2];
for (int i = 0; i < 2; i++) {
mv[i] = ff_vvc_abs_mvd_greater0_flag(lc);
}
for (int i = 0; i < 2; i++) {
if (mv[i])
mv[i] += ff_vvc_abs_mvd_greater1_flag(lc);
}
for (int i = 0; i < 2; i++) {
if (mv[i] > 0) {
if (mv[i] == 2)
mv[i] += ff_vvc_abs_mvd_minus2(lc);
mv[i] = (1 - 2 * ff_vvc_mvd_sign_flag(lc)) * mv[i];
}
}
mvd->x = mv[0];
mvd->y = mv[1];
}
static int bcw_idx_decode(VVCLocalContext *lc, const MotionInfo *mi, const int cb_width, const int cb_height)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const VVCPH *ph = &fc->ps.ph;
const VVCSH *sh = &lc->sc->sh;
const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &ph->pwt : &sh->pwt;
int bcw_idx = 0;
if (sps->r->sps_bcw_enabled_flag && mi->pred_flag == PF_BI &&
!w->weight_flag[L0][LUMA][mi->ref_idx[0]] &&
!w->weight_flag[L1][LUMA][mi->ref_idx[1]] &&
!w->weight_flag[L0][CHROMA][mi->ref_idx[0]] &&
!w->weight_flag[L1][CHROMA][mi->ref_idx[1]] &&
cb_width * cb_height >= 256) {
bcw_idx = ff_vvc_bcw_idx(lc, ff_vvc_no_backward_pred_flag(lc));
}
return bcw_idx;
}
static int8_t ref_idx_decode(VVCLocalContext *lc, const VVCSH *sh, const int sym_mvd_flag, const int lx)
{
const H266RawSliceHeader *rsh = sh->r;
int ref_idx = 0;
if (rsh->num_ref_idx_active[lx] > 1 && !sym_mvd_flag)
ref_idx = ff_vvc_ref_idx_lx(lc, rsh->num_ref_idx_active[lx]);
else if (sym_mvd_flag)
ref_idx = sh->ref_idx_sym[lx];
return ref_idx;
}
static int mvds_decode(VVCLocalContext *lc, Mv mvds[2][MAX_CONTROL_POINTS],
const int num_cp_mv, const int lx)
{
const VVCFrameContext *fc = lc->fc;
const VVCPH *ph = &fc->ps.ph;
const PredictionUnit *pu = &lc->cu->pu;
const MotionInfo *mi = &pu->mi;
int has_no_zero_mvd = 0;
if (lx == L1 && ph->r->ph_mvd_l1_zero_flag && mi->pred_flag == PF_BI) {
for (int j = 0; j < num_cp_mv; j++)
AV_ZERO64(&mvds[lx][j]);
} else {
Mv *mvd0 = &mvds[lx][0];
if (lx == L1 && pu->sym_mvd_flag) {
mvd0->x = -mvds[L0][0].x;
mvd0->y = -mvds[L0][0].y;
} else {
hls_mvd_coding(lc, mvd0);
}
has_no_zero_mvd |= (mvd0->x || mvd0->y);
for (int j = 1; j < num_cp_mv; j++) {
Mv *mvd = &mvds[lx][j];
hls_mvd_coding(lc, mvd);
mvd->x += mvd0->x;
mvd->y += mvd0->y;
has_no_zero_mvd |= (mvd->x || mvd->y);
}
}
return has_no_zero_mvd;
}
static void mvp_add_difference(MotionInfo *mi, const int num_cp_mv,
const Mv mvds[2][MAX_CONTROL_POINTS], const int amvr_shift)
{
for (int i = 0; i < 2; i++) {
const PredFlag mask = i + PF_L0;
if (mi->pred_flag & mask) {
for (int j = 0; j < num_cp_mv; j++) {
const Mv *mvd = &mvds[i][j];
mi->mv[i][j].x += mvd->x * (1 << amvr_shift);
mi->mv[i][j].y += mvd->y * (1 << amvr_shift);
}
}
}
}
static int mvp_data(VVCLocalContext *lc)
{
const VVCFrameContext *fc = lc->fc;
const CodingUnit *cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
const VVCSPS *sps = fc->ps.sps;
const VVCPH *ph = &fc->ps.ph;
const VVCSH *sh = &lc->sc->sh;
const H266RawSliceHeader *rsh = sh->r;
MotionInfo *mi = &pu->mi;
const int cb_width = cu->cb_width;
const int cb_height = cu->cb_height;
int mvp_lx_flag[2] = {0};
int cu_affine_type_flag = 0;
int num_cp_mv;
int amvr_enabled, has_no_zero_mvd = 0, amvr_shift;
Mv mvds[2][MAX_CONTROL_POINTS];
mi->pred_flag = ff_vvc_pred_flag(lc, IS_B(rsh));
if (sps->r->sps_affine_enabled_flag && cb_width >= 16 && cb_height >= 16) {
pu->inter_affine_flag = ff_vvc_inter_affine_flag(lc);
set_cb_tab(lc, fc->tab.iaf, pu->inter_affine_flag);
if (sps->r->sps_6param_affine_enabled_flag && pu->inter_affine_flag)
cu_affine_type_flag = ff_vvc_cu_affine_type_flag(lc);
}
mi->motion_model_idc = pu->inter_affine_flag + cu_affine_type_flag;
num_cp_mv = mi->motion_model_idc + 1;
if (sps->r->sps_smvd_enabled_flag && !ph->r->ph_mvd_l1_zero_flag &&
mi->pred_flag == PF_BI && !pu->inter_affine_flag &&
sh->ref_idx_sym[0] > -1 && sh->ref_idx_sym[1] > -1)
pu->sym_mvd_flag = ff_vvc_sym_mvd_flag(lc);
for (int i = L0; i <= L1; i++) {
const PredFlag pred_flag = PF_L0 + !i;
if (mi->pred_flag != pred_flag) {
mi->ref_idx[i] = ref_idx_decode(lc, sh, pu->sym_mvd_flag, i);
has_no_zero_mvd |= mvds_decode(lc, mvds, num_cp_mv, i);
mvp_lx_flag[i] = ff_vvc_mvp_lx_flag(lc);
}
}
amvr_enabled = mi->motion_model_idc == MOTION_TRANSLATION ?
sps->r->sps_amvr_enabled_flag : sps->r->sps_affine_amvr_enabled_flag;
amvr_enabled &= has_no_zero_mvd;
amvr_shift = ff_vvc_amvr_shift(lc, pu->inter_affine_flag, cu->pred_mode, amvr_enabled);
mi->hpel_if_idx = amvr_shift == 3;
mi->bcw_idx = bcw_idx_decode(lc, mi, cb_width, cb_height);
if (mi->motion_model_idc)
ff_vvc_affine_mvp(lc, mvp_lx_flag, amvr_shift, mi);
else
ff_vvc_mvp(lc, mvp_lx_flag, amvr_shift, mi);
mvp_add_difference(mi, num_cp_mv, mvds, amvr_shift);
if (mi->motion_model_idc)
ff_vvc_store_sb_mvs(lc, pu);
else
ff_vvc_store_mv(lc, &pu->mi);
return 0;
}
// derive bdofFlag from 8.5.6 Decoding process for inter blocks
// derive dmvr from 8.5.1 General decoding process for coding units coded in inter prediction mode
static void derive_dmvr_bdof_flag(const VVCLocalContext *lc, PredictionUnit *pu)
{
const VVCFrameContext *fc = lc->fc;
const VVCPPS *pps = fc->ps.pps;
const VVCPH *ph = &fc->ps.ph;
const VVCSH *sh = &lc->sc->sh;
const int poc = ph->poc;
const RefPicList *rpl0 = lc->sc->rpl + L0;
const RefPicList *rpl1 = lc->sc->rpl + L1;
const int8_t *ref_idx = pu->mi.ref_idx;
const MotionInfo *mi = &pu->mi;
const CodingUnit *cu = lc->cu;
const PredWeightTable *w = pps->r->pps_wp_info_in_ph_flag ? &fc->ps.ph.pwt : &sh->pwt;
pu->bdof_flag = 0;
if (mi->pred_flag == PF_BI &&
(poc - rpl0->list[ref_idx[L0]] == rpl1->list[ref_idx[L1]] - poc) &&
!rpl0->isLongTerm[ref_idx[L0]] && !rpl1->isLongTerm[ref_idx[L1]] &&
!cu->ciip_flag &&
!mi->bcw_idx &&
!w->weight_flag[L0][LUMA][mi->ref_idx[L0]] && !w->weight_flag[L1][LUMA][mi->ref_idx[L1]] &&
!w->weight_flag[L0][CHROMA][mi->ref_idx[L0]] && !w->weight_flag[L1][CHROMA][mi->ref_idx[L1]] &&
cu->cb_width >= 8 && cu->cb_height >= 8 &&
(cu->cb_width * cu->cb_height >= 128)) {
// fixme: for RprConstraintsActiveFlag
if (!ph->r->ph_bdof_disabled_flag &&
mi->motion_model_idc == MOTION_TRANSLATION &&
!pu->merge_subblock_flag &&
!pu->sym_mvd_flag)
pu->bdof_flag = 1;
if (!ph->r->ph_dmvr_disabled_flag &&
pu->general_merge_flag &&
!pu->mmvd_merge_flag)
pu->dmvr_flag = 1;
}
}
// part of 8.5.1 General decoding process for coding units coded in inter prediction mode
static void refine_regular_subblock(const VVCLocalContext *lc)
{
const CodingUnit *cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
derive_dmvr_bdof_flag(lc, pu);
if (pu->dmvr_flag || pu->bdof_flag) {
pu->mi.num_sb_x = (cu->cb_width > 16) ? (cu->cb_width >> 4) : 1;
pu->mi.num_sb_y = (cu->cb_height > 16) ? (cu->cb_height >> 4) : 1;
}
}
static void fill_dmvr_info(const VVCFrameContext *fc, const int x0, const int y0,
const int width, const int height)
{
const VVCPPS *pps = fc->ps.pps;
const int w = width >> MIN_PU_LOG2;
for (int y = y0 >> MIN_PU_LOG2; y < (y0 + height) >> MIN_PU_LOG2; y++) {
const int idx = pps->min_pu_width * y + (x0 >> MIN_PU_LOG2);
const MvField *mvf = fc->tab.mvf + idx;
MvField *dmvr_mvf = fc->ref->tab_dmvr_mvf + idx;
memcpy(dmvr_mvf, mvf, sizeof(MvField) * w);
}
}
static int inter_data(VVCLocalContext *lc)
{
const CodingUnit *cu = lc->cu;
PredictionUnit *pu = &lc->cu->pu;
const MotionInfo *mi = &pu->mi;
int ret = 0;
pu->general_merge_flag = 1;
if (!cu->skip_flag)
pu->general_merge_flag = ff_vvc_general_merge_flag(lc);
if (pu->general_merge_flag) {
hls_merge_data(lc);
} else if (cu->pred_mode == MODE_IBC){
avpriv_report_missing_feature(lc->fc->log_ctx, "Intra Block Copy");
return AVERROR_PATCHWELCOME;
} else {
ret = mvp_data(lc);
}
if (!pu->merge_gpm_flag && !pu->inter_affine_flag && !pu->merge_subblock_flag) {
refine_regular_subblock(lc);
ff_vvc_update_hmvp(lc, mi);
}
if (!pu->dmvr_flag)
fill_dmvr_info(lc->fc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
return ret;
}
static int hls_coding_unit(VVCLocalContext *lc, int x0, int y0, int cb_width, int cb_height,
int cqt_depth, const VVCTreeType tree_type, VVCModeType mode_type)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const int hs = sps->hshift[CHROMA];
const int vs = sps->vshift[CHROMA];
const int is_128 = cb_width > 64 || cb_height > 64;
int pred_mode_plt_flag = 0;
int ret;
CodingUnit *cu = add_cu(lc, x0, y0, cb_width, cb_height, cqt_depth, tree_type);
if (!cu)
return AVERROR(ENOMEM);
ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height);
if (IS_I(rsh) && is_128)
mode_type = MODE_TYPE_INTRA;
cu->pred_mode = pred_mode_decode(lc, tree_type, mode_type);
if (cu->pred_mode == MODE_INTRA && sps->r->sps_palette_enabled_flag && !is_128 && !cu->skip_flag &&
mode_type != MODE_TYPE_INTER && ((cb_width * cb_height) >
(tree_type != DUAL_TREE_CHROMA ? 16 : (16 << hs << vs))) &&
(mode_type != MODE_TYPE_INTRA || tree_type != DUAL_TREE_CHROMA)) {
pred_mode_plt_flag = ff_vvc_pred_mode_plt_flag(lc);
if (pred_mode_plt_flag) {
avpriv_report_missing_feature(fc->log_ctx, "Palette");
return AVERROR_PATCHWELCOME;
}
}
if (cu->pred_mode == MODE_INTRA && sps->r->sps_act_enabled_flag && tree_type == SINGLE_TREE) {
avpriv_report_missing_feature(fc->log_ctx, "Adaptive Color Transform");
return AVERROR_PATCHWELCOME;
}
if (cu->pred_mode == MODE_INTRA || cu->pred_mode == MODE_PLT) {
if (tree_type == SINGLE_TREE || tree_type == DUAL_TREE_LUMA) {
if (pred_mode_plt_flag) {
avpriv_report_missing_feature(fc->log_ctx, "Palette");
return AVERROR_PATCHWELCOME;
} else {
intra_luma_pred_modes(lc);
}
ff_vvc_set_intra_mvf(lc);
}
if ((tree_type == SINGLE_TREE || tree_type == DUAL_TREE_CHROMA) && sps->r->sps_chroma_format_idc) {
if (pred_mode_plt_flag && tree_type == DUAL_TREE_CHROMA) {
avpriv_report_missing_feature(fc->log_ctx, "Palette");
return AVERROR_PATCHWELCOME;
} else if (!pred_mode_plt_flag) {
if (!cu->act_enabled_flag)
intra_chroma_pred_modes(lc);
}
}
} else if (tree_type != DUAL_TREE_CHROMA) { /* MODE_INTER or MODE_IBC */
if ((ret = inter_data(lc)) < 0)
return ret;
}
if (cu->pred_mode != MODE_INTRA && !pred_mode_plt_flag && !lc->cu->pu.general_merge_flag)
cu->coded_flag = ff_vvc_cu_coded_flag(lc);
else
cu->coded_flag = !(cu->skip_flag || pred_mode_plt_flag);
if (cu->coded_flag) {
sbt_info(lc, sps);
if (sps->r->sps_act_enabled_flag && cu->pred_mode != MODE_INTRA && tree_type == SINGLE_TREE) {
avpriv_report_missing_feature(fc->log_ctx, "Adaptive Color Transform");
return AVERROR_PATCHWELCOME;
}
lc->parse.lfnst_dc_only = 1;
lc->parse.lfnst_zero_out_sig_coeff_flag = 1;
lc->parse.mts_dc_only = 1;
lc->parse.mts_zero_out_sig_coeff_flag = 1;
ret = hls_transform_tree(lc, x0, y0, cb_width, cb_height, cu->ch_type);
if (ret < 0)
return ret;
cu->lfnst_idx = lfnst_idx_decode(lc);
cu->mts_idx = mts_idx_decode(lc);
set_qp_c(lc);
if (ret < 0)
return ret;
} else {
av_assert0(tree_type == SINGLE_TREE);
ret = skipped_transform_tree_unit(lc);
if (ret < 0)
return ret;
}
set_cu_tabs(lc, cu);
return 0;
}
static int derive_mode_type_condition(const VVCLocalContext *lc,
const VVCSplitMode split, const int cb_width, const int cb_height, const VVCModeType mode_type_curr)
{
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const VVCSPS *sps = lc->fc->ps.sps;
const int area = cb_width * cb_height;
if ((IS_I(rsh) && sps->r->sps_qtbtt_dual_tree_intra_flag) ||
mode_type_curr != MODE_TYPE_ALL || !sps->r->sps_chroma_format_idc ||
sps->r->sps_chroma_format_idc == CHROMA_FORMAT_444)
return 0;
if ((area == 64 && (split == SPLIT_QT || split == SPLIT_TT_HOR || split == SPLIT_TT_VER)) ||
(area == 32 && (split == SPLIT_BT_HOR || split == SPLIT_BT_VER)))
return 1;
if ((area == 64 && (split == SPLIT_BT_HOR || split == SPLIT_BT_VER) && sps->r->sps_chroma_format_idc == CHROMA_FORMAT_420) ||
(area == 128 && (split == SPLIT_TT_HOR || split == SPLIT_TT_VER) && sps->r->sps_chroma_format_idc == CHROMA_FORMAT_420) ||
(cb_width == 8 && split == SPLIT_BT_VER) || (cb_width == 16 && split == SPLIT_TT_VER))
return 1 + !IS_I(rsh);
return 0;
}
static VVCModeType mode_type_decode(VVCLocalContext *lc, const int x0, const int y0,
const int cb_width, const int cb_height, const VVCSplitMode split, const int ch_type,
const VVCModeType mode_type_curr)
{
VVCModeType mode_type;
const int mode_type_condition = derive_mode_type_condition(lc, split, cb_width, cb_height, mode_type_curr);
if (mode_type_condition == 1)
mode_type = MODE_TYPE_INTRA;
else if (mode_type_condition == 2) {
mode_type = ff_vvc_non_inter_flag(lc, x0, y0, ch_type) ? MODE_TYPE_INTRA : MODE_TYPE_INTER;
} else {
mode_type = mode_type_curr;
}
return mode_type;
}
static int hls_coding_tree(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset, int part_idx,
VVCSplitMode last_split_mode, VVCTreeType tree_type_curr, VVCModeType mode_type_curr);
static int coding_tree_btv(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type)
{
#define CODING_TREE(x, idx) do { \
ret = hls_coding_tree(lc, x, y0, cb_width / 2, cb_height, \
qg_on_y, qg_on_c, cb_sub_div + 1, cqt_depth, mtt_depth + 1, \
depth_offset, idx, SPLIT_BT_VER, tree_type, mode_type); \
if (ret < 0) \
return ret; \
} while (0);
const VVCPPS *pps = lc->fc->ps.pps;
const int x1 = x0 + cb_width / 2;
int ret = 0;
depth_offset += (x0 + cb_width > pps->width) ? 1 : 0;
CODING_TREE(x0, 0);
if (x1 < pps->width)
CODING_TREE(x1, 1);
return 0;
#undef CODING_TREE
}
static int coding_tree_bth(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type)
{
#define CODING_TREE(y, idx) do { \
ret = hls_coding_tree(lc, x0, y, cb_width , cb_height / 2, \
qg_on_y, qg_on_c, cb_sub_div + 1, cqt_depth, mtt_depth + 1, \
depth_offset, idx, SPLIT_BT_HOR, tree_type, mode_type); \
if (ret < 0) \
return ret; \
} while (0);
const VVCPPS *pps = lc->fc->ps.pps;
const int y1 = y0 + (cb_height / 2);
int ret = 0;
depth_offset += (y0 + cb_height > pps->height) ? 1 : 0;
CODING_TREE(y0, 0);
if (y1 < pps->height)
CODING_TREE(y1, 1);
return 0;
#undef CODING_TREE
}
static int coding_tree_ttv(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type)
{
#define CODING_TREE(x, w, sub_div, idx) do { \
ret = hls_coding_tree(lc, x, y0, w, cb_height, \
qg_on_y, qg_on_c, sub_div, cqt_depth, mtt_depth + 1, \
depth_offset, idx, SPLIT_TT_VER, tree_type, mode_type); \
if (ret < 0) \
return ret; \
} while (0);
const VVCSH *sh = &lc->sc->sh;
const int x1 = x0 + cb_width / 4;
const int x2 = x0 + cb_width * 3 / 4;
int ret;
qg_on_y = qg_on_y && (cb_sub_div + 2 <= sh->cu_qp_delta_subdiv);
qg_on_c = qg_on_c && (cb_sub_div + 2 <= sh->cu_chroma_qp_offset_subdiv);
CODING_TREE(x0, cb_width / 4, cb_sub_div + 2, 0);
CODING_TREE(x1, cb_width / 2, cb_sub_div + 1, 1);
CODING_TREE(x2, cb_width / 4, cb_sub_div + 2, 2);
return 0;
#undef CODING_TREE
}
static int coding_tree_tth(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type)
{
#define CODING_TREE(y, h, sub_div, idx) do { \
ret = hls_coding_tree(lc, x0, y, cb_width, h, \
qg_on_y, qg_on_c, sub_div, cqt_depth, mtt_depth + 1, \
depth_offset, idx, SPLIT_TT_HOR, tree_type, mode_type); \
if (ret < 0) \
return ret; \
} while (0);
const VVCSH *sh = &lc->sc->sh;
const int y1 = y0 + (cb_height / 4);
const int y2 = y0 + (3 * cb_height / 4);
int ret;
qg_on_y = qg_on_y && (cb_sub_div + 2 <= sh->cu_qp_delta_subdiv);
qg_on_c = qg_on_c && (cb_sub_div + 2 <= sh->cu_chroma_qp_offset_subdiv);
CODING_TREE(y0, cb_height / 4, cb_sub_div + 2, 0);
CODING_TREE(y1, cb_height / 2, cb_sub_div + 1, 1);
CODING_TREE(y2, cb_height / 4, cb_sub_div + 2, 2);
return 0;
#undef CODING_TREE
}
static int coding_tree_qt(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type)
{
#define CODING_TREE(x, y, idx) do { \
ret = hls_coding_tree(lc, x, y, cb_width / 2, cb_height / 2, \
qg_on_y, qg_on_c, cb_sub_div + 2, cqt_depth + 1, 0, 0, \
idx, SPLIT_QT, tree_type, mode_type); \
if (ret < 0) \
return ret; \
} while (0);
const VVCPPS *pps = lc->fc->ps.pps;
const int x1 = x0 + cb_width / 2;
const int y1 = y0 + cb_height / 2;
int ret = 0;
CODING_TREE(x0, y0, 0);
if (x1 < pps->width)
CODING_TREE(x1, y0, 1);
if (y1 < pps->height)
CODING_TREE(x0, y1, 2);
if (x1 < pps->width &&
y1 < pps->height)
CODING_TREE(x1, y1, 3);
return 0;
#undef CODING_TREE
}
typedef int (*coding_tree_fn)(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset,
VVCTreeType tree_type, VVCModeType mode_type);
const static coding_tree_fn coding_tree[] = {
coding_tree_tth,
coding_tree_bth,
coding_tree_ttv,
coding_tree_btv,
coding_tree_qt,
};
static int hls_coding_tree(VVCLocalContext *lc,
int x0, int y0, int cb_width, int cb_height, int qg_on_y, int qg_on_c,
int cb_sub_div, int cqt_depth, int mtt_depth, int depth_offset, int part_idx,
VVCSplitMode last_split_mode, VVCTreeType tree_type_curr, VVCModeType mode_type_curr)
{
VVCFrameContext *fc = lc->fc;
const VVCPPS *pps = fc->ps.pps;
const VVCSH *sh = &lc->sc->sh;
const H266RawSliceHeader *rsh = sh->r;
const int ch_type = tree_type_curr == DUAL_TREE_CHROMA;
int ret;
VVCAllowedSplit allowed;
if (pps->r->pps_cu_qp_delta_enabled_flag && qg_on_y && cb_sub_div <= sh->cu_qp_delta_subdiv) {
lc->parse.is_cu_qp_delta_coded = 0;
lc->parse.cu_qg_top_left_x = x0;
lc->parse.cu_qg_top_left_y = y0;
}
if (rsh->sh_cu_chroma_qp_offset_enabled_flag && qg_on_c &&
cb_sub_div <= sh->cu_chroma_qp_offset_subdiv) {
lc->parse.is_cu_chroma_qp_offset_coded = 0;
memset(lc->parse.chroma_qp_offset, 0, sizeof(lc->parse.chroma_qp_offset));
}
can_split(lc, x0, y0, cb_width, cb_height, mtt_depth, depth_offset, part_idx,
last_split_mode, tree_type_curr, mode_type_curr, &allowed);
if (ff_vvc_split_cu_flag(lc, x0, y0, cb_width, cb_height, ch_type, &allowed)) {
VVCSplitMode split = ff_vvc_split_mode(lc, x0, y0, cb_width, cb_height, cqt_depth, mtt_depth, ch_type, &allowed);
VVCModeType mode_type = mode_type_decode(lc, x0, y0, cb_width, cb_height, split, ch_type, mode_type_curr);
VVCTreeType tree_type = (mode_type == MODE_TYPE_INTRA) ? DUAL_TREE_LUMA : tree_type_curr;
if (split != SPLIT_QT) {
if (!(x0 & 31) && !(y0 & 31) && mtt_depth <= 1)
TAB_MSM(fc, mtt_depth, x0, y0) = split;
}
ret = coding_tree[split - 1](lc, x0, y0, cb_width, cb_height, qg_on_y, qg_on_c,
cb_sub_div, cqt_depth, mtt_depth, depth_offset, tree_type, mode_type);
if (ret < 0)
return ret;
if (mode_type_curr == MODE_TYPE_ALL && mode_type == MODE_TYPE_INTRA) {
ret = hls_coding_tree(lc, x0, y0, cb_width, cb_height, 0, qg_on_c, cb_sub_div,
cqt_depth, mtt_depth, 0, 0, split, DUAL_TREE_CHROMA, mode_type);
if (ret < 0)
return ret;
}
} else {
ret = hls_coding_unit(lc, x0, y0, cb_width, cb_height, cqt_depth, tree_type_curr, mode_type_curr);
if (ret < 0)
return ret;
}
return 0;
}
static int dual_tree_implicit_qt_split(VVCLocalContext *lc,
const int x0, const int y0, const int cb_size, const int cqt_depth)
{
const VVCSH *sh = &lc->sc->sh;
const H266RawSliceHeader *rsh = sh->r;
const VVCPPS *pps = lc->fc->ps.pps;
const int cb_subdiv = 2 * cqt_depth;
int ret;
if (cb_size > 64) {
#define DUAL_TREE(x, y) do { \
ret = dual_tree_implicit_qt_split(lc, x, y, cb_size / 2, cqt_depth + 1); \
if (ret < 0) \
return ret; \
} while (0)
const int x1 = x0 + (cb_size / 2);
const int y1 = y0 + (cb_size / 2);
if (pps->r->pps_cu_qp_delta_enabled_flag && cb_subdiv <= sh->cu_qp_delta_subdiv) {
lc->parse.is_cu_qp_delta_coded = 0;
lc->parse.cu_qg_top_left_x = x0;
lc->parse.cu_qg_top_left_y = y0;
}
if (rsh->sh_cu_chroma_qp_offset_enabled_flag && cb_subdiv <= sh->cu_chroma_qp_offset_subdiv) {
lc->parse.is_cu_chroma_qp_offset_coded = 0;
memset(lc->parse.chroma_qp_offset, 0, sizeof(lc->parse.chroma_qp_offset));
}
DUAL_TREE(x0, y0);
if (x1 < pps->width)
DUAL_TREE(x1, y0);
if (y1 < pps->height)
DUAL_TREE(x0, y1);
if (x1 < pps->width && y1 < pps->height)
DUAL_TREE(x1, y1);
#undef DUAL_TREE
} else {
#define CODING_TREE(tree_type) do { \
const int qg_on_y = tree_type == DUAL_TREE_LUMA; \
ret = hls_coding_tree(lc, x0, y0, cb_size, cb_size, qg_on_y, !qg_on_y, \
cb_subdiv, cqt_depth, 0, 0, 0, SPLIT_NONE, tree_type, MODE_TYPE_ALL); \
if (ret < 0) \
return ret; \
} while (0)
CODING_TREE(DUAL_TREE_LUMA);
CODING_TREE(DUAL_TREE_CHROMA);
#undef CODING_TREE
}
return 0;
}
#define SET_SAO(elem, value) \
do { \
if (!sao_merge_up_flag && !sao_merge_left_flag) \
sao->elem = value; \
else if (sao_merge_left_flag) \
sao->elem = CTB(fc->tab.sao, rx-1, ry).elem; \
else if (sao_merge_up_flag) \
sao->elem = CTB(fc->tab.sao, rx, ry-1).elem; \
else \
sao->elem = 0; \
} while (0)
static void hls_sao(VVCLocalContext *lc, const int rx, const int ry)
{
VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
int sao_merge_left_flag = 0;
int sao_merge_up_flag = 0;
SAOParams *sao = &CTB(fc->tab.sao, rx, ry);
int c_idx, i;
if (rsh->sh_sao_luma_used_flag || rsh->sh_sao_chroma_used_flag) {
if (rx > 0) {
if (lc->ctb_left_flag)
sao_merge_left_flag = ff_vvc_sao_merge_flag_decode(lc);
}
if (ry > 0 && !sao_merge_left_flag) {
if (lc->ctb_up_flag)
sao_merge_up_flag = ff_vvc_sao_merge_flag_decode(lc);
}
}
for (c_idx = 0; c_idx < (fc->ps.sps->r->sps_chroma_format_idc ? 3 : 1); c_idx++) {
const int sao_used_flag = !c_idx ? rsh->sh_sao_luma_used_flag : rsh->sh_sao_chroma_used_flag;
if (!sao_used_flag) {
sao->type_idx[c_idx] = SAO_NOT_APPLIED;
continue;
}
if (c_idx == 2) {
sao->type_idx[2] = sao->type_idx[1];
sao->eo_class[2] = sao->eo_class[1];
} else {
SET_SAO(type_idx[c_idx], ff_vvc_sao_type_idx_decode(lc));
}
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
continue;
for (i = 0; i < 4; i++)
SET_SAO(offset_abs[c_idx][i], ff_vvc_sao_offset_abs_decode(lc));
if (sao->type_idx[c_idx] == SAO_BAND) {
for (i = 0; i < 4; i++) {
if (sao->offset_abs[c_idx][i]) {
SET_SAO(offset_sign[c_idx][i],
ff_vvc_sao_offset_sign_decode(lc));
} else {
sao->offset_sign[c_idx][i] = 0;
}
}
SET_SAO(band_position[c_idx], ff_vvc_sao_band_position_decode(lc));
} else if (c_idx != 2) {
SET_SAO(eo_class[c_idx], ff_vvc_sao_eo_class_decode(lc));
}
// Inferred parameters
sao->offset_val[c_idx][0] = 0;
for (i = 0; i < 4; i++) {
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
if (sao->type_idx[c_idx] == SAO_EDGE) {
if (i > 1)
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
} else if (sao->offset_sign[c_idx][i]) {
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
}
sao->offset_val[c_idx][i + 1] *= 1 << (fc->ps.sps->bit_depth - FFMIN(10, fc->ps.sps->bit_depth));
}
}
}
static void alf_params(VVCLocalContext *lc, const int rx, const int ry)
{
const VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *sh = lc->sc->sh.r;
ALFParams *alf = &CTB(fc->tab.alf, rx, ry);
alf->ctb_flag[LUMA] = alf->ctb_flag[CB] = alf->ctb_flag[CR] = 0;
if (sh->sh_alf_enabled_flag) {
alf->ctb_flag[LUMA] = ff_vvc_alf_ctb_flag(lc, rx, ry, LUMA);
if (alf->ctb_flag[LUMA]) {
uint8_t alf_use_aps_flag = 0;
if (sh->sh_num_alf_aps_ids_luma > 0)
alf_use_aps_flag = ff_vvc_alf_use_aps_flag(lc);
if (alf_use_aps_flag) {
alf->ctb_filt_set_idx_y = 16;
if (sh->sh_num_alf_aps_ids_luma > 1)
alf->ctb_filt_set_idx_y += ff_vvc_alf_luma_prev_filter_idx(lc);
} else {
alf->ctb_filt_set_idx_y = ff_vvc_alf_luma_fixed_filter_idx(lc);
}
}
for (int c_idx = CB; c_idx <= CR; c_idx++) {
const uint8_t alf_enabled_flag =
c_idx == CB ? sh->sh_alf_cb_enabled_flag : sh->sh_alf_cr_enabled_flag;
if (alf_enabled_flag) {
const VVCALF *aps = fc->ps.alf_list[sh->sh_alf_aps_id_chroma];
alf->ctb_flag[c_idx] = ff_vvc_alf_ctb_flag(lc, rx, ry, c_idx);
alf->alf_ctb_filter_alt_idx[c_idx - 1] = 0;
if (alf->ctb_flag[c_idx] && aps->num_chroma_filters > 1)
alf->alf_ctb_filter_alt_idx[c_idx - 1] = ff_vvc_alf_ctb_filter_alt_idx(lc, c_idx, aps->num_chroma_filters);
}
}
}
if (fc->ps.sps->r->sps_ccalf_enabled_flag) {
const uint8_t cc_enabled[] = { sh->sh_alf_cc_cb_enabled_flag, sh->sh_alf_cc_cr_enabled_flag };
const uint8_t cc_aps_id[] = { sh->sh_alf_cc_cb_aps_id, sh->sh_alf_cc_cr_aps_id };
for (int i = 0; i < 2; i++) {
alf->ctb_cc_idc[i] = 0;
if (cc_enabled[i]) {
const VVCALF *aps = fc->ps.alf_list[cc_aps_id[i]];
alf->ctb_cc_idc[i] = ff_vvc_alf_ctb_cc_idc(lc, rx, ry, i, aps->num_cc_filters[i]);
}
}
}
}
static void deblock_params(VVCLocalContext *lc, const int rx, const int ry)
{
VVCFrameContext *fc = lc->fc;
const VVCSH *sh = &lc->sc->sh;
CTB(fc->tab.deblock, rx, ry) = sh->deblock;
}
static int hls_coding_tree_unit(VVCLocalContext *lc,
const int x0, const int y0, const int ctu_idx, const int rx, const int ry)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const VVCSH *sh = &lc->sc->sh;
const H266RawSliceHeader *rsh = sh->r;
const unsigned int ctb_size = sps->ctb_size_y;
int ret = 0;
memset(lc->parse.chroma_qp_offset, 0, sizeof(lc->parse.chroma_qp_offset));
hls_sao(lc, x0 >> sps->ctb_log2_size_y, y0 >> sps->ctb_log2_size_y);
alf_params(lc, x0 >> sps->ctb_log2_size_y, y0 >> sps->ctb_log2_size_y);
deblock_params(lc, x0 >> sps->ctb_log2_size_y, y0 >> sps->ctb_log2_size_y);
if (IS_I(rsh) && sps->r->sps_qtbtt_dual_tree_intra_flag)
ret = dual_tree_implicit_qt_split(lc, x0, y0, ctb_size, 0);
else
ret = hls_coding_tree(lc, x0, y0, ctb_size, ctb_size,
1, 1, 0, 0, 0, 0, 0, SPLIT_NONE, SINGLE_TREE, MODE_TYPE_ALL);
if (ret < 0)
return ret;
if (rx == pps->ctb_to_col_bd[rx + 1] - 1) {
if (ctu_idx == sh->num_ctus_in_curr_slice - 1) {
const int end_of_slice_one_bit = ff_vvc_end_of_slice_flag_decode(lc);
if (!end_of_slice_one_bit)
return AVERROR_INVALIDDATA;
} else {
if (ry == pps->ctb_to_row_bd[ry + 1] - 1) {
const int end_of_tile_one_bit = ff_vvc_end_of_tile_one_bit(lc);
if (!end_of_tile_one_bit)
return AVERROR_INVALIDDATA;
} else {
if (fc->ps.sps->r->sps_entropy_coding_sync_enabled_flag) {
const int end_of_subset_one_bit = ff_vvc_end_of_subset_one_bit(lc);
if (!end_of_subset_one_bit)
return AVERROR_INVALIDDATA;
}
}
}
}
return 0;
}
static int has_inter_luma(const CodingUnit *cu)
{
return cu->pred_mode != MODE_INTRA && cu->pred_mode != MODE_PLT && cu->tree_type != DUAL_TREE_CHROMA;
}
static int pred_get_y(const int y0, const Mv *mv, const int height)
{
return FFMAX(0, y0 + (mv->y >> 4) + height);
}
static void cu_get_max_y(const CodingUnit *cu, int max_y[2][VVC_MAX_REF_ENTRIES], const VVCFrameContext *fc)
{
const PredictionUnit *pu = &cu->pu;
if (pu->merge_gpm_flag) {
for (int i = 0; i < FF_ARRAY_ELEMS(pu->gpm_mv); i++) {
const MvField *mvf = pu->gpm_mv + i;
const int lx = mvf->pred_flag - PF_L0;
const int idx = mvf->ref_idx[lx];
const int y = pred_get_y(cu->y0, mvf->mv + lx, cu->cb_height);
max_y[lx][idx] = FFMAX(max_y[lx][idx], y);
}
} else {
const MotionInfo *mi = &pu->mi;
const int max_dmvr_off = (!pu->inter_affine_flag && pu->dmvr_flag) ? 2 : 0;
const int sbw = cu->cb_width / mi->num_sb_x;
const int sbh = cu->cb_height / mi->num_sb_y;
for (int sby = 0; sby < mi->num_sb_y; sby++) {
for (int sbx = 0; sbx < mi->num_sb_x; sbx++) {
const int x0 = cu->x0 + sbx * sbw;
const int y0 = cu->y0 + sby * sbh;
const MvField *mvf = ff_vvc_get_mvf(fc, x0, y0);
for (int lx = 0; lx < 2; lx++) {
const PredFlag mask = 1 << lx;
if (mvf->pred_flag & mask) {
const int idx = mvf->ref_idx[lx];
const int y = pred_get_y(y0, mvf->mv + lx, sbh);
max_y[lx][idx] = FFMAX(max_y[lx][idx], y + max_dmvr_off);
}
}
}
}
}
}
static void ctu_get_pred(VVCLocalContext *lc, const int rs)
{
const VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
CTU *ctu = fc->tab.ctus + rs;
const CodingUnit *cu = ctu->cus;
if (IS_I(rsh))
return;
for (int lx = 0; lx < 2; lx++)
memset(ctu->max_y[lx], -1, sizeof(ctu->max_y[0][0]) * rsh->num_ref_idx_active[lx]);
while (cu) {
if (has_inter_luma(cu)) {
cu_get_max_y(cu, ctu->max_y, fc);
ctu->has_dmvr |= cu->pu.dmvr_flag;
}
cu = cu->next;
}
ctu->max_y_idx[0] = ctu->max_y_idx[1] = 0;
}
int ff_vvc_coding_tree_unit(VVCLocalContext *lc,
const int ctu_idx, const int rs, const int rx, const int ry)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int x_ctb = rx << sps->ctb_log2_size_y;
const int y_ctb = ry << sps->ctb_log2_size_y;
const int ctb_size = 1 << sps->ctb_log2_size_y << sps->ctb_log2_size_y;
EntryPoint* ep = lc->ep;
int ret;
if (rx == pps->ctb_to_col_bd[rx]) {
//fix me for ibc
ep->num_hmvp = 0;
ep->is_first_qg = ry == pps->ctb_to_row_bd[ry] || !ctu_idx;
}
lc->coeffs = fc->tab.coeffs + rs * ctb_size * VVC_MAX_SAMPLE_ARRAYS;
lc->cu = NULL;
ff_vvc_cabac_init(lc, ctu_idx, rx, ry);
ff_vvc_decode_neighbour(lc, x_ctb, y_ctb, rx, ry, rs);
ret = hls_coding_tree_unit(lc, x_ctb, y_ctb, ctu_idx, rx, ry);
if (ret < 0)
return ret;
ctu_get_pred(lc, rs);
return 0;
}
void ff_vvc_decode_neighbour(VVCLocalContext *lc, const int x_ctb, const int y_ctb,
const int rx, const int ry, const int rs)
{
VVCFrameContext *fc = lc->fc;
const int ctb_size = fc->ps.sps->ctb_size_y;
lc->end_of_tiles_x = fc->ps.sps->width;
lc->end_of_tiles_y = fc->ps.sps->height;
if (fc->ps.pps->ctb_to_col_bd[rx] != fc->ps.pps->ctb_to_col_bd[rx + 1])
lc->end_of_tiles_x = FFMIN(x_ctb + ctb_size, lc->end_of_tiles_x);
if (fc->ps.pps->ctb_to_row_bd[ry] != fc->ps.pps->ctb_to_row_bd[ry + 1])
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, lc->end_of_tiles_y);
lc->boundary_flags = 0;
if (rx > 0 && fc->ps.pps->ctb_to_col_bd[rx] != fc->ps.pps->ctb_to_col_bd[rx - 1])
lc->boundary_flags |= BOUNDARY_LEFT_TILE;
if (rx > 0 && fc->tab.slice_idx[rs] != fc->tab.slice_idx[rs - 1])
lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
if (ry > 0 && fc->ps.pps->ctb_to_row_bd[ry] != fc->ps.pps->ctb_to_row_bd[ry - 1])
lc->boundary_flags |= BOUNDARY_UPPER_TILE;
if (ry > 0 && fc->tab.slice_idx[rs] != fc->tab.slice_idx[rs - fc->ps.pps->ctb_width])
lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
lc->ctb_left_flag = rx > 0 && !(lc->boundary_flags & BOUNDARY_LEFT_TILE);
lc->ctb_up_flag = ry > 0 && !(lc->boundary_flags & BOUNDARY_UPPER_TILE) && !(lc->boundary_flags & BOUNDARY_UPPER_SLICE);
lc->ctb_up_right_flag = lc->ctb_up_flag && (fc->ps.pps->ctb_to_col_bd[rx] == fc->ps.pps->ctb_to_col_bd[rx + 1]) &&
(fc->ps.pps->ctb_to_row_bd[ry] == fc->ps.pps->ctb_to_row_bd[ry - 1]);
lc->ctb_up_left_flag = lc->ctb_left_flag && lc->ctb_up_flag;
}
void ff_vvc_set_neighbour_available(VVCLocalContext *lc,
const int x0, const int y0, const int w, const int h)
{
const int log2_ctb_size = lc->fc->ps.sps->ctb_log2_size_y;
const int x0b = av_mod_uintp2(x0, log2_ctb_size);
const int y0b = av_mod_uintp2(y0, log2_ctb_size);
lc->na.cand_up = (lc->ctb_up_flag || y0b);
lc->na.cand_left = (lc->ctb_left_flag || x0b);
lc->na.cand_up_left = (x0b || y0b) ? lc->na.cand_left && lc->na.cand_up : lc->ctb_up_left_flag;
lc->na.cand_up_right_sap =
(x0b + w == 1 << log2_ctb_size) ? lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
lc->na.cand_up_right = lc->na.cand_up_right_sap && (x0 + w) < lc->end_of_tiles_x;
}
void ff_vvc_ctu_free_cus(CTU *ctu)
{
CodingUnit **cus = &ctu->cus;
while (*cus) {
CodingUnit *cu = *cus;
TransformUnit **head = &cu->tus.head;
*cus = cu->next;
while (*head) {
TransformUnit *tu = *head;
*head = tu->next;
ff_refstruct_unref(&tu);
}
cu->tus.tail = NULL;
ff_refstruct_unref(&cu);
}
}
int ff_vvc_get_qPy(const VVCFrameContext *fc, const int xc, const int yc)
{
const int min_cb_log2_size_y = fc->ps.sps->min_cb_log2_size_y;
const int x = xc >> min_cb_log2_size_y;
const int y = yc >> min_cb_log2_size_y;
return fc->tab.qp[LUMA][x + y * fc->ps.pps->min_cb_width];
}
void ff_vvc_ep_init_stat_coeff(EntryPoint *ep,
const int bit_depth, const int persistent_rice_adaptation_enabled_flag)
{
for (size_t i = 0; i < FF_ARRAY_ELEMS(ep->stat_coeff); ++i) {
ep->stat_coeff[i] =
persistent_rice_adaptation_enabled_flag ? 2 * (av_log2(bit_depth - 10)) : 0;
}
}