mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
510 lines
14 KiB
510 lines
14 KiB
/* |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#ifndef AVUTIL_FRAME_H |
|
#define AVUTIL_FRAME_H |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavcodec/version.h" |
|
|
|
#include "avutil.h" |
|
#include "buffer.h" |
|
#include "dict.h" |
|
#include "rational.h" |
|
#include "samplefmt.h" |
|
|
|
enum AVFrameSideDataType { |
|
/** |
|
* The data is the AVPanScan struct defined in libavcodec. |
|
*/ |
|
AV_FRAME_DATA_PANSCAN, |
|
/** |
|
* ATSC A53 Part 4 Closed Captions. |
|
* A53 CC bitstream is stored as uint8_t in AVFrameSideData.data. |
|
* The number of bytes of CC data is AVFrameSideData.size. |
|
*/ |
|
AV_FRAME_DATA_A53_CC, |
|
}; |
|
|
|
typedef struct AVFrameSideData { |
|
enum AVFrameSideDataType type; |
|
uint8_t *data; |
|
int size; |
|
AVDictionary *metadata; |
|
} AVFrameSideData; |
|
|
|
/** |
|
* This structure describes decoded (raw) audio or video data. |
|
* |
|
* AVFrame must be allocated using av_frame_alloc(). Not that this only |
|
* allocates the AVFrame itself, the buffers for the data must be managed |
|
* through other means (see below). |
|
* AVFrame must be freed with av_frame_free(). |
|
* |
|
* AVFrame is typically allocated once and then reused multiple times to hold |
|
* different data (e.g. a single AVFrame to hold frames received from a |
|
* decoder). In such a case, av_frame_unref() will free any references held by |
|
* the frame and reset it to its original clean state before it |
|
* is reused again. |
|
* |
|
* The data described by an AVFrame is usually reference counted through the |
|
* AVBuffer API. The underlying buffer references are stored in AVFrame.buf / |
|
* AVFrame.extended_buf. An AVFrame is considered to be reference counted if at |
|
* least one reference is set, i.e. if AVFrame.buf[0] != NULL. In such a case, |
|
* every single data plane must be contained in one of the buffers in |
|
* AVFrame.buf or AVFrame.extended_buf. |
|
* There may be a single buffer for all the data, or one separate buffer for |
|
* each plane, or anything in between. |
|
* |
|
* sizeof(AVFrame) is not a part of the public ABI, so new fields may be added |
|
* to the end with a minor bump. |
|
*/ |
|
typedef struct AVFrame { |
|
#define AV_NUM_DATA_POINTERS 8 |
|
/** |
|
* pointer to the picture/channel planes. |
|
* This might be different from the first allocated byte |
|
*/ |
|
uint8_t *data[AV_NUM_DATA_POINTERS]; |
|
|
|
/** |
|
* For video, size in bytes of each picture line. |
|
* For audio, size in bytes of each plane. |
|
* |
|
* For audio, only linesize[0] may be set. For planar audio, each channel |
|
* plane must be the same size. |
|
* |
|
* @note The linesize may be larger than the size of usable data -- there |
|
* may be extra padding present for performance reasons. |
|
*/ |
|
int linesize[AV_NUM_DATA_POINTERS]; |
|
|
|
/** |
|
* pointers to the data planes/channels. |
|
* |
|
* For video, this should simply point to data[]. |
|
* |
|
* For planar audio, each channel has a separate data pointer, and |
|
* linesize[0] contains the size of each channel buffer. |
|
* For packed audio, there is just one data pointer, and linesize[0] |
|
* contains the total size of the buffer for all channels. |
|
* |
|
* Note: Both data and extended_data should always be set in a valid frame, |
|
* but for planar audio with more channels that can fit in data, |
|
* extended_data must be used in order to access all channels. |
|
*/ |
|
uint8_t **extended_data; |
|
|
|
/** |
|
* width and height of the video frame |
|
*/ |
|
int width, height; |
|
|
|
/** |
|
* number of audio samples (per channel) described by this frame |
|
*/ |
|
int nb_samples; |
|
|
|
/** |
|
* format of the frame, -1 if unknown or unset |
|
* Values correspond to enum AVPixelFormat for video frames, |
|
* enum AVSampleFormat for audio) |
|
*/ |
|
int format; |
|
|
|
/** |
|
* 1 -> keyframe, 0-> not |
|
*/ |
|
int key_frame; |
|
|
|
/** |
|
* Picture type of the frame. |
|
*/ |
|
enum AVPictureType pict_type; |
|
|
|
#if FF_API_AVFRAME_LAVC |
|
attribute_deprecated |
|
uint8_t *base[AV_NUM_DATA_POINTERS]; |
|
#endif |
|
|
|
/** |
|
* Sample aspect ratio for the video frame, 0/1 if unknown/unspecified. |
|
*/ |
|
AVRational sample_aspect_ratio; |
|
|
|
/** |
|
* Presentation timestamp in time_base units (time when frame should be shown to user). |
|
*/ |
|
int64_t pts; |
|
|
|
/** |
|
* PTS copied from the AVPacket that was decoded to produce this frame. |
|
*/ |
|
int64_t pkt_pts; |
|
|
|
/** |
|
* DTS copied from the AVPacket that triggered returning this frame. |
|
*/ |
|
int64_t pkt_dts; |
|
|
|
/** |
|
* picture number in bitstream order |
|
*/ |
|
int coded_picture_number; |
|
/** |
|
* picture number in display order |
|
*/ |
|
int display_picture_number; |
|
|
|
/** |
|
* quality (between 1 (good) and FF_LAMBDA_MAX (bad)) |
|
*/ |
|
int quality; |
|
|
|
#if FF_API_AVFRAME_LAVC |
|
attribute_deprecated |
|
int reference; |
|
|
|
/** |
|
* QP table |
|
*/ |
|
attribute_deprecated |
|
int8_t *qscale_table; |
|
/** |
|
* QP store stride |
|
*/ |
|
attribute_deprecated |
|
int qstride; |
|
|
|
attribute_deprecated |
|
int qscale_type; |
|
|
|
/** |
|
* mbskip_table[mb]>=1 if MB didn't change |
|
* stride= mb_width = (width+15)>>4 |
|
*/ |
|
attribute_deprecated |
|
uint8_t *mbskip_table; |
|
|
|
/** |
|
* motion vector table |
|
* @code |
|
* example: |
|
* int mv_sample_log2= 4 - motion_subsample_log2; |
|
* int mb_width= (width+15)>>4; |
|
* int mv_stride= (mb_width << mv_sample_log2) + 1; |
|
* motion_val[direction][x + y*mv_stride][0->mv_x, 1->mv_y]; |
|
* @endcode |
|
*/ |
|
attribute_deprecated |
|
int16_t (*motion_val[2])[2]; |
|
|
|
/** |
|
* macroblock type table |
|
* mb_type_base + mb_width + 2 |
|
*/ |
|
attribute_deprecated |
|
uint32_t *mb_type; |
|
|
|
/** |
|
* DCT coefficients |
|
*/ |
|
attribute_deprecated |
|
short *dct_coeff; |
|
|
|
/** |
|
* motion reference frame index |
|
* the order in which these are stored can depend on the codec. |
|
*/ |
|
attribute_deprecated |
|
int8_t *ref_index[2]; |
|
#endif |
|
|
|
/** |
|
* for some private data of the user |
|
*/ |
|
void *opaque; |
|
|
|
/** |
|
* error |
|
*/ |
|
uint64_t error[AV_NUM_DATA_POINTERS]; |
|
|
|
#if FF_API_AVFRAME_LAVC |
|
attribute_deprecated |
|
int type; |
|
#endif |
|
|
|
/** |
|
* When decoding, this signals how much the picture must be delayed. |
|
* extra_delay = repeat_pict / (2*fps) |
|
*/ |
|
int repeat_pict; |
|
|
|
/** |
|
* The content of the picture is interlaced. |
|
*/ |
|
int interlaced_frame; |
|
|
|
/** |
|
* If the content is interlaced, is top field displayed first. |
|
*/ |
|
int top_field_first; |
|
|
|
/** |
|
* Tell user application that palette has changed from previous frame. |
|
*/ |
|
int palette_has_changed; |
|
|
|
#if FF_API_AVFRAME_LAVC |
|
attribute_deprecated |
|
int buffer_hints; |
|
|
|
/** |
|
* Pan scan. |
|
*/ |
|
attribute_deprecated |
|
struct AVPanScan *pan_scan; |
|
#endif |
|
|
|
/** |
|
* reordered opaque 64bit (generally an integer or a double precision float |
|
* PTS but can be anything). |
|
* The user sets AVCodecContext.reordered_opaque to represent the input at |
|
* that time, |
|
* the decoder reorders values as needed and sets AVFrame.reordered_opaque |
|
* to exactly one of the values provided by the user through AVCodecContext.reordered_opaque |
|
* @deprecated in favor of pkt_pts |
|
*/ |
|
int64_t reordered_opaque; |
|
|
|
#if FF_API_AVFRAME_LAVC |
|
/** |
|
* @deprecated this field is unused |
|
*/ |
|
attribute_deprecated void *hwaccel_picture_private; |
|
|
|
attribute_deprecated |
|
struct AVCodecContext *owner; |
|
attribute_deprecated |
|
void *thread_opaque; |
|
|
|
/** |
|
* log2 of the size of the block which a single vector in motion_val represents: |
|
* (4->16x16, 3->8x8, 2-> 4x4, 1-> 2x2) |
|
*/ |
|
attribute_deprecated |
|
uint8_t motion_subsample_log2; |
|
#endif |
|
|
|
/** |
|
* Sample rate of the audio data. |
|
*/ |
|
int sample_rate; |
|
|
|
/** |
|
* Channel layout of the audio data. |
|
*/ |
|
uint64_t channel_layout; |
|
|
|
/** |
|
* AVBuffer references backing the data for this frame. If all elements of |
|
* this array are NULL, then this frame is not reference counted. |
|
* |
|
* There may be at most one AVBuffer per data plane, so for video this array |
|
* always contains all the references. For planar audio with more than |
|
* AV_NUM_DATA_POINTERS channels, there may be more buffers than can fit in |
|
* this array. Then the extra AVBufferRef pointers are stored in the |
|
* extended_buf array. |
|
*/ |
|
AVBufferRef *buf[AV_NUM_DATA_POINTERS]; |
|
|
|
/** |
|
* For planar audio which requires more than AV_NUM_DATA_POINTERS |
|
* AVBufferRef pointers, this array will hold all the references which |
|
* cannot fit into AVFrame.buf. |
|
* |
|
* Note that this is different from AVFrame.extended_data, which always |
|
* contains all the pointers. This array only contains the extra pointers, |
|
* which cannot fit into AVFrame.buf. |
|
* |
|
* This array is always allocated using av_malloc() by whoever constructs |
|
* the frame. It is freed in av_frame_unref(). |
|
*/ |
|
AVBufferRef **extended_buf; |
|
/** |
|
* Number of elements in extended_buf. |
|
*/ |
|
int nb_extended_buf; |
|
|
|
AVFrameSideData **side_data; |
|
int nb_side_data; |
|
|
|
/** |
|
* The frame data may be corrupted, e.g. due to decoding errors. |
|
*/ |
|
#define AV_FRAME_FLAG_CORRUPT (1 << 0) |
|
|
|
/** |
|
* Frame flags, a combination of AV_FRAME_FLAG_* |
|
*/ |
|
int flags; |
|
} AVFrame; |
|
|
|
/** |
|
* Allocate an AVFrame and set its fields to default values. The resulting |
|
* struct must be freed using av_frame_free(). |
|
* |
|
* @return An AVFrame filled with default values or NULL on failure. |
|
* |
|
* @note this only allocates the AVFrame itself, not the data buffers. Those |
|
* must be allocated through other means, e.g. with av_frame_get_buffer() or |
|
* manually. |
|
*/ |
|
AVFrame *av_frame_alloc(void); |
|
|
|
/** |
|
* Free the frame and any dynamically allocated objects in it, |
|
* e.g. extended_data. If the frame is reference counted, it will be |
|
* unreferenced first. |
|
* |
|
* @param frame frame to be freed. The pointer will be set to NULL. |
|
*/ |
|
void av_frame_free(AVFrame **frame); |
|
|
|
/** |
|
* Setup a new reference to the data described by an given frame. |
|
* |
|
* Copy frame properties from src to dst and create a new reference for each |
|
* AVBufferRef from src. |
|
* |
|
* If src is not reference counted, new buffers are allocated and the data is |
|
* copied. |
|
* |
|
* @return 0 on success, a negative AVERROR on error |
|
*/ |
|
int av_frame_ref(AVFrame *dst, const AVFrame *src); |
|
|
|
/** |
|
* Create a new frame that references the same data as src. |
|
* |
|
* This is a shortcut for av_frame_alloc()+av_frame_ref(). |
|
* |
|
* @return newly created AVFrame on success, NULL on error. |
|
*/ |
|
AVFrame *av_frame_clone(const AVFrame *src); |
|
|
|
/** |
|
* Unreference all the buffers referenced by frame and reset the frame fields. |
|
*/ |
|
void av_frame_unref(AVFrame *frame); |
|
|
|
/** |
|
* Move everythnig contained in src to dst and reset src. |
|
*/ |
|
void av_frame_move_ref(AVFrame *dst, AVFrame *src); |
|
|
|
/** |
|
* Allocate new buffer(s) for audio or video data. |
|
* |
|
* The following fields must be set on frame before calling this function: |
|
* - format (pixel format for video, sample format for audio) |
|
* - width and height for video |
|
* - nb_samples and channel_layout for audio |
|
* |
|
* This function will fill AVFrame.data and AVFrame.buf arrays and, if |
|
* necessary, allocate and fill AVFrame.extended_data and AVFrame.extended_buf. |
|
* For planar formats, one buffer will be allocated for each plane. |
|
* |
|
* @param frame frame in which to store the new buffers. |
|
* @param align required buffer size alignment |
|
* |
|
* @return 0 on success, a negative AVERROR on error. |
|
*/ |
|
int av_frame_get_buffer(AVFrame *frame, int align); |
|
|
|
/** |
|
* Check if the frame data is writable. |
|
* |
|
* @return A positive value if the frame data is writable (which is true if and |
|
* only if each of the underlying buffers has only one reference, namely the one |
|
* stored in this frame). Return 0 otherwise. |
|
* |
|
* If 1 is returned the answer is valid until av_buffer_ref() is called on any |
|
* of the underlying AVBufferRefs (e.g. through av_frame_ref() or directly). |
|
* |
|
* @see av_frame_make_writable(), av_buffer_is_writable() |
|
*/ |
|
int av_frame_is_writable(AVFrame *frame); |
|
|
|
/** |
|
* Ensure that the frame data is writable, avoiding data copy if possible. |
|
* |
|
* Do nothing if the frame is writable, allocate new buffers and copy the data |
|
* if it is not. |
|
* |
|
* @return 0 on success, a negative AVERROR on error. |
|
* |
|
* @see av_frame_is_writable(), av_buffer_is_writable(), |
|
* av_buffer_make_writable() |
|
*/ |
|
int av_frame_make_writable(AVFrame *frame); |
|
|
|
/** |
|
* Copy only "metadata" fields from src to dst. |
|
* |
|
* Metadata for the purpose of this function are those fields that do not affect |
|
* the data layout in the buffers. E.g. pts, sample rate (for audio) or sample |
|
* aspect ratio (for video), but not width/height or channel layout. |
|
* Side data is also copied. |
|
*/ |
|
int av_frame_copy_props(AVFrame *dst, const AVFrame *src); |
|
|
|
/** |
|
* Get the buffer reference a given data plane is stored in. |
|
* |
|
* @param plane index of the data plane of interest in frame->extended_data. |
|
* |
|
* @return the buffer reference that contains the plane or NULL if the input |
|
* frame is not valid. |
|
*/ |
|
AVBufferRef *av_frame_get_plane_buffer(AVFrame *frame, int plane); |
|
|
|
/** |
|
* Add a new side data to a frame. |
|
* |
|
* @param frame a frame to which the side data should be added |
|
* @param type type of the added side data |
|
* @param size size of the side data |
|
* |
|
* @return newly added side data on success, NULL on error |
|
*/ |
|
AVFrameSideData *av_frame_new_side_data(AVFrame *frame, |
|
enum AVFrameSideDataType type, |
|
int size); |
|
|
|
/** |
|
* @return a pointer to the side data of a given type on success, NULL if there |
|
* is no side data with such type in this frame. |
|
*/ |
|
AVFrameSideData *av_frame_get_side_data(const AVFrame *frame, |
|
enum AVFrameSideDataType type); |
|
|
|
#endif /* AVUTIL_FRAME_H */
|
|
|