mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
9.7 KiB
335 lines
9.7 KiB
/* |
|
* LPC utility code |
|
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/common.h" |
|
#include "libavutil/lls.h" |
|
#include "libavutil/mem_internal.h" |
|
|
|
#define LPC_USE_DOUBLE |
|
#include "lpc.h" |
|
#include "libavutil/avassert.h" |
|
|
|
|
|
/** |
|
* Apply Welch window function to audio block |
|
*/ |
|
static void lpc_apply_welch_window_c(const int32_t *data, ptrdiff_t len, |
|
double *w_data) |
|
{ |
|
int i, n2; |
|
double w; |
|
double c; |
|
|
|
if (len == 1) { |
|
w_data[0] = 0.0; |
|
return; |
|
} |
|
|
|
n2 = (len >> 1); |
|
c = 2.0 / (len - 1.0); |
|
|
|
if (len & 1) { |
|
for(i=0; i<n2; i++) { |
|
w = c - i - 1.0; |
|
w = 1.0 - (w * w); |
|
w_data[i] = data[i] * w; |
|
w_data[len-1-i] = data[len-1-i] * w; |
|
} |
|
w_data[n2] = 0.0; |
|
return; |
|
} |
|
|
|
w_data+=n2; |
|
data+=n2; |
|
for(i=0; i<n2; i++) { |
|
w = c - n2 + i; |
|
w = 1.0 - (w * w); |
|
w_data[-i-1] = data[-i-1] * w; |
|
w_data[+i ] = data[+i ] * w; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate autocorrelation data from audio samples |
|
* A Welch window function is applied before calculation. |
|
*/ |
|
static void lpc_compute_autocorr_c(const double *data, ptrdiff_t len, int lag, |
|
double *autoc) |
|
{ |
|
int i, j; |
|
|
|
for(j=0; j<lag; j+=2){ |
|
double sum0 = 1.0, sum1 = 1.0; |
|
for(i=j; i<len; i++){ |
|
sum0 += data[i] * data[i-j]; |
|
sum1 += data[i] * data[i-j-1]; |
|
} |
|
autoc[j ] = sum0; |
|
autoc[j+1] = sum1; |
|
} |
|
|
|
if(j==lag){ |
|
double sum = 1.0; |
|
for(i=j-1; i<len; i+=2){ |
|
sum += data[i ] * data[i-j ] |
|
+ data[i+1] * data[i-j+1]; |
|
} |
|
autoc[j] = sum; |
|
} |
|
} |
|
|
|
/** |
|
* Quantize LPC coefficients |
|
*/ |
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
|
int32_t *lpc_out, int *shift, int min_shift, |
|
int max_shift, int zero_shift) |
|
{ |
|
int i; |
|
double cmax, error; |
|
int32_t qmax; |
|
int sh; |
|
|
|
/* define maximum levels */ |
|
qmax = (1 << (precision - 1)) - 1; |
|
|
|
/* find maximum coefficient value */ |
|
cmax = 0.0; |
|
for(i=0; i<order; i++) { |
|
cmax= FFMAX(cmax, fabs(lpc_in[i])); |
|
} |
|
|
|
/* if maximum value quantizes to zero, return all zeros */ |
|
if(cmax * (1 << max_shift) < 1.0) { |
|
*shift = zero_shift; |
|
memset(lpc_out, 0, sizeof(int32_t) * order); |
|
return; |
|
} |
|
|
|
/* calculate level shift which scales max coeff to available bits */ |
|
sh = max_shift; |
|
while((cmax * (1 << sh) > qmax) && (sh > min_shift)) { |
|
sh--; |
|
} |
|
|
|
/* since negative shift values are unsupported in decoder, scale down |
|
coefficients instead */ |
|
if(sh == 0 && cmax > qmax) { |
|
double scale = ((double)qmax) / cmax; |
|
for(i=0; i<order; i++) { |
|
lpc_in[i] *= scale; |
|
} |
|
} |
|
|
|
/* output quantized coefficients and level shift */ |
|
error=0; |
|
for(i=0; i<order; i++) { |
|
error -= lpc_in[i] * (1 << sh); |
|
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); |
|
error -= lpc_out[i]; |
|
} |
|
*shift = sh; |
|
} |
|
|
|
static int estimate_best_order(double *ref, int min_order, int max_order) |
|
{ |
|
int i, est; |
|
|
|
est = min_order; |
|
for(i=max_order-1; i>=min_order-1; i--) { |
|
if(ref[i] > 0.10) { |
|
est = i+1; |
|
break; |
|
} |
|
} |
|
return est; |
|
} |
|
|
|
int ff_lpc_calc_ref_coefs(LPCContext *s, |
|
const int32_t *samples, int order, double *ref) |
|
{ |
|
double autoc[MAX_LPC_ORDER + 1]; |
|
|
|
s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples); |
|
s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc); |
|
compute_ref_coefs(autoc, order, ref, NULL); |
|
|
|
return order; |
|
} |
|
|
|
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len, |
|
int order, double *ref) |
|
{ |
|
int i; |
|
double signal = 0.0f, avg_err = 0.0f; |
|
double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0}; |
|
const double a = 0.5f, b = 1.0f - a; |
|
|
|
/* Apply windowing */ |
|
for (i = 0; i <= len / 2; i++) { |
|
double weight = a - b*cos((2*M_PI*i)/(len - 1)); |
|
s->windowed_samples[i] = weight*samples[i]; |
|
s->windowed_samples[len-1-i] = weight*samples[len-1-i]; |
|
} |
|
|
|
s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc); |
|
signal = autoc[0]; |
|
compute_ref_coefs(autoc, order, ref, error); |
|
for (i = 0; i < order; i++) |
|
avg_err = (avg_err + error[i])/2.0f; |
|
return avg_err ? signal/avg_err : NAN; |
|
} |
|
|
|
/** |
|
* Calculate LPC coefficients for multiple orders |
|
* |
|
* @param lpc_type LPC method for determining coefficients, |
|
* see #FFLPCType for details |
|
*/ |
|
int ff_lpc_calc_coefs(LPCContext *s, |
|
const int32_t *samples, int blocksize, int min_order, |
|
int max_order, int precision, |
|
int32_t coefs[][MAX_LPC_ORDER], int *shift, |
|
enum FFLPCType lpc_type, int lpc_passes, |
|
int omethod, int min_shift, int max_shift, int zero_shift) |
|
{ |
|
double autoc[MAX_LPC_ORDER+1]; |
|
double ref[MAX_LPC_ORDER] = { 0 }; |
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int i, j, pass = 0; |
|
int opt_order; |
|
|
|
av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && |
|
lpc_type > FF_LPC_TYPE_FIXED); |
|
av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON); |
|
|
|
/* reinit LPC context if parameters have changed */ |
|
if (blocksize != s->blocksize || max_order != s->max_order || |
|
lpc_type != s->lpc_type) { |
|
ff_lpc_end(s); |
|
ff_lpc_init(s, blocksize, max_order, lpc_type); |
|
} |
|
|
|
if(lpc_passes <= 0) |
|
lpc_passes = 2; |
|
|
|
if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) { |
|
s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples); |
|
|
|
s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc); |
|
|
|
compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); |
|
|
|
for(i=0; i<max_order; i++) |
|
ref[i] = fabs(lpc[i][i]); |
|
|
|
pass++; |
|
} |
|
|
|
if (lpc_type == FF_LPC_TYPE_CHOLESKY) { |
|
LLSModel *m = s->lls_models; |
|
LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]); |
|
double av_uninit(weight); |
|
memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var)); |
|
|
|
/* Avoids initializing with an unused value when lpc_passes == 1 */ |
|
if (lpc_passes > 1) |
|
for(j=0; j<max_order; j++) |
|
m[0].coeff[max_order-1][j] = -lpc[max_order-1][j]; |
|
|
|
for(; pass<lpc_passes; pass++){ |
|
avpriv_init_lls(&m[pass&1], max_order); |
|
|
|
weight=0; |
|
for(i=max_order; i<blocksize; i++){ |
|
for(j=0; j<=max_order; j++) |
|
var[j]= samples[i-j]; |
|
|
|
if(pass){ |
|
double eval, inv, rinv; |
|
eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); |
|
eval= (512>>pass) + fabs(eval - var[0]); |
|
inv = 1/eval; |
|
rinv = sqrt(inv); |
|
for(j=0; j<=max_order; j++) |
|
var[j] *= rinv; |
|
weight += inv; |
|
}else |
|
weight++; |
|
|
|
m[pass&1].update_lls(&m[pass&1], var); |
|
} |
|
avpriv_solve_lls(&m[pass&1], 0.001, 0); |
|
} |
|
|
|
for(i=0; i<max_order; i++){ |
|
for(j=0; j<max_order; j++) |
|
lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; |
|
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; |
|
} |
|
for(i=max_order-1; i>0; i--) |
|
ref[i] = ref[i-1] - ref[i]; |
|
} |
|
|
|
opt_order = max_order; |
|
|
|
if(omethod == ORDER_METHOD_EST) { |
|
opt_order = estimate_best_order(ref, min_order, max_order); |
|
i = opt_order-1; |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], |
|
min_shift, max_shift, zero_shift); |
|
} else { |
|
for(i=min_order-1; i<max_order; i++) { |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], |
|
min_shift, max_shift, zero_shift); |
|
} |
|
} |
|
|
|
return opt_order; |
|
} |
|
|
|
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, |
|
enum FFLPCType lpc_type) |
|
{ |
|
s->blocksize = blocksize; |
|
s->max_order = max_order; |
|
s->lpc_type = lpc_type; |
|
|
|
s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) * |
|
sizeof(*s->windowed_samples)); |
|
if (!s->windowed_buffer) |
|
return AVERROR(ENOMEM); |
|
s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4); |
|
|
|
s->lpc_apply_welch_window = lpc_apply_welch_window_c; |
|
s->lpc_compute_autocorr = lpc_compute_autocorr_c; |
|
|
|
#if ARCH_X86 |
|
ff_lpc_init_x86(s); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
av_cold void ff_lpc_end(LPCContext *s) |
|
{ |
|
av_freep(&s->windowed_buffer); |
|
}
|
|
|