960 lines
32 KiB

/*
* Rate control for video encoders
*
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Rate control for video encoders.
*/
#include "libavutil/intmath.h"
#include "avcodec.h"
#include "dsputil.h"
#include "ratecontrol.h"
#include "mpegvideo.h"
#include "libavutil/eval.h"
#undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
#include <assert.h>
#ifndef M_E
#define M_E 2.718281828
#endif
static int init_pass2(MpegEncContext *s);
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
void ff_write_pass1_stats(MpegEncContext *s){
snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
}
static inline double qp2bits(RateControlEntry *rce, double qp){
if(qp<=0.0){
av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
}
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
}
static inline double bits2qp(RateControlEntry *rce, double bits){
if(bits<0.9){
av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
}
return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
}
int ff_rate_control_init(MpegEncContext *s)
{
RateControlContext *rcc= &s->rc_context;
int i, res;
static const char * const const_names[]={
"PI",
"E",
"iTex",
"pTex",
"tex",
"mv",
"fCode",
"iCount",
"mcVar",
"var",
"isI",
"isP",
"isB",
"avgQP",
"qComp",
/* "lastIQP",
"lastPQP",
"lastBQP",
"nextNonBQP",*/
"avgIITex",
"avgPITex",
"avgPPTex",
"avgBPTex",
"avgTex",
NULL
};
static double (* const func1[])(void *, double)={
(void *)bits2qp,
(void *)qp2bits,
NULL
};
static const char * const func1_names[]={
"bits2qp",
"qp2bits",
NULL
};
emms_c();
res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
if (res < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
return res;
}
for(i=0; i<5; i++){
rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
rcc->pred[i].count= 1.0;
rcc->pred[i].decay= 0.4;
rcc->i_cplx_sum [i]=
rcc->p_cplx_sum [i]=
rcc->mv_bits_sum[i]=
rcc->qscale_sum [i]=
rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
}
rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
if(s->flags&CODEC_FLAG_PASS2){
int i;
char *p;
/* find number of pics */
p= s->avctx->stats_in;
for(i=-1; p; i++){
p= strchr(p+1, ';');
}
i+= s->max_b_frames;
if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
return -1;
rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
rcc->num_entries= i;
/* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
for(i=0; i<rcc->num_entries; i++){
RateControlEntry *rce= &rcc->entry[i];
rce->pict_type= rce->new_pict_type=FF_P_TYPE;
rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
rce->misc_bits= s->mb_num + 10;
rce->mb_var_sum= s->mb_num*100;
}
/* read stats */
p= s->avctx->stats_in;
for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
RateControlEntry *rce;
int picture_number;
int e;
char *next;
next= strchr(p, ';');
if(next){
(*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
next++;
}
e= sscanf(p, " in:%d ", &picture_number);
assert(picture_number >= 0);
assert(picture_number < rcc->num_entries);
rce= &rcc->entry[picture_number];
e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
&rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
&rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
if(e!=14){
av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
return -1;
}
p= next;
}
if(init_pass2(s) < 0) return -1;
//FIXME maybe move to end
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
#if CONFIG_LIBXVID
return ff_xvid_rate_control_init(s);
#else
av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
return -1;
#endif
}
}
if(!(s->flags&CODEC_FLAG_PASS2)){
rcc->short_term_qsum=0.001;
rcc->short_term_qcount=0.001;
rcc->pass1_rc_eq_output_sum= 0.001;
rcc->pass1_wanted_bits=0.001;
if(s->avctx->qblur > 1.0){
av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
return -1;
}
/* init stuff with the user specified complexity */
if(s->avctx->rc_initial_cplx){
for(i=0; i<60*30; i++){
double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
RateControlEntry rce;
if (i%((s->gop_size+3)/4)==0) rce.pict_type= FF_I_TYPE;
else if(i%(s->max_b_frames+1)) rce.pict_type= FF_B_TYPE;
else rce.pict_type= FF_P_TYPE;
rce.new_pict_type= rce.pict_type;
rce.mc_mb_var_sum= bits*s->mb_num/100000;
rce.mb_var_sum = s->mb_num;
rce.qscale = FF_QP2LAMBDA * 2;
rce.f_code = 2;
rce.b_code = 1;
rce.misc_bits= 1;
if(s->pict_type== FF_I_TYPE){
rce.i_count = s->mb_num;
rce.i_tex_bits= bits;
rce.p_tex_bits= 0;
rce.mv_bits= 0;
}else{
rce.i_count = 0; //FIXME we do know this approx
rce.i_tex_bits= 0;
rce.p_tex_bits= bits*0.9;
rce.mv_bits= bits*0.1;
}
rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
rcc->frame_count[rce.pict_type] ++;
get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
}
}
}
return 0;
}
void ff_rate_control_uninit(MpegEncContext *s)
{
RateControlContext *rcc= &s->rc_context;
emms_c();
av_expr_free(rcc->rc_eq_eval);
av_freep(&rcc->entry);
#if CONFIG_LIBXVID
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
ff_xvid_rate_control_uninit(s);
#endif
}
int ff_vbv_update(MpegEncContext *s, int frame_size){
RateControlContext *rcc= &s->rc_context;
const double fps= 1/av_q2d(s->avctx->time_base);
const int buffer_size= s->avctx->rc_buffer_size;
const double min_rate= s->avctx->rc_min_rate/fps;
const double max_rate= s->avctx->rc_max_rate/fps;
//printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
if(buffer_size){
int left;
rcc->buffer_index-= frame_size;
if(rcc->buffer_index < 0){
av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
rcc->buffer_index= 0;
}
left= buffer_size - rcc->buffer_index - 1;
rcc->buffer_index += av_clip(left, min_rate, max_rate);
if(rcc->buffer_index > buffer_size){
int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
stuffing=4;
rcc->buffer_index -= 8*stuffing;
if(s->avctx->debug & FF_DEBUG_RC)
av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
return stuffing;
}
}
return 0;
}
/**
* modifies the bitrate curve from pass1 for one frame
*/
static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
RateControlContext *rcc= &s->rc_context;
AVCodecContext *a= s->avctx;
double q, bits;
const int pict_type= rce->new_pict_type;
const double mb_num= s->mb_num;
int i;
double const_values[]={
M_PI,
M_E,
rce->i_tex_bits*rce->qscale,
rce->p_tex_bits*rce->qscale,
(rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
rce->mv_bits/mb_num,
rce->pict_type == FF_B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
rce->i_count/mb_num,
rce->mc_mb_var_sum/mb_num,
rce->mb_var_sum/mb_num,
rce->pict_type == FF_I_TYPE,
rce->pict_type == FF_P_TYPE,
rce->pict_type == FF_B_TYPE,
rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
a->qcompress,
/* rcc->last_qscale_for[FF_I_TYPE],
rcc->last_qscale_for[FF_P_TYPE],
rcc->last_qscale_for[FF_B_TYPE],
rcc->next_non_b_qscale,*/
rcc->i_cplx_sum[FF_I_TYPE] / (double)rcc->frame_count[FF_I_TYPE],
rcc->i_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
rcc->p_cplx_sum[FF_P_TYPE] / (double)rcc->frame_count[FF_P_TYPE],
rcc->p_cplx_sum[FF_B_TYPE] / (double)rcc->frame_count[FF_B_TYPE],
(rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
0
};
bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
if (isnan(bits)) {
av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
return -1;
}
rcc->pass1_rc_eq_output_sum+= bits;
bits*=rate_factor;
if(bits<0.0) bits=0.0;
bits+= 1.0; //avoid 1/0 issues
/* user override */
for(i=0; i<s->avctx->rc_override_count; i++){
RcOverride *rco= s->avctx->rc_override;
if(rco[i].start_frame > frame_num) continue;
if(rco[i].end_frame < frame_num) continue;
if(rco[i].qscale)
bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
else
bits*= rco[i].quality_factor;
}
q= bits2qp(rce, bits);
/* I/B difference */
if (pict_type==FF_I_TYPE && s->avctx->i_quant_factor<0.0)
q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
else if(pict_type==FF_B_TYPE && s->avctx->b_quant_factor<0.0)
q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
if(q<1) q=1;
return q;
}
static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
RateControlContext *rcc= &s->rc_context;
AVCodecContext *a= s->avctx;
const int pict_type= rce->new_pict_type;
const double last_p_q = rcc->last_qscale_for[FF_P_TYPE];
const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
if (pict_type==FF_I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==FF_P_TYPE))
q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
else if(pict_type==FF_B_TYPE && a->b_quant_factor>0.0)
q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
if(q<1) q=1;
/* last qscale / qdiff stuff */
if(rcc->last_non_b_pict_type==pict_type || pict_type!=FF_I_TYPE){
double last_q= rcc->last_qscale_for[pict_type];
const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
if (q > last_q + maxdiff) q= last_q + maxdiff;
else if(q < last_q - maxdiff) q= last_q - maxdiff;
}
rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
if(pict_type!=FF_B_TYPE)
rcc->last_non_b_pict_type= pict_type;
return q;
}
/**
* gets the qmin & qmax for pict_type
*/
static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
int qmin= s->avctx->lmin;
int qmax= s->avctx->lmax;
assert(qmin <= qmax);
if(pict_type==FF_B_TYPE){
qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
}else if(pict_type==FF_I_TYPE){
qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
}
qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
if(qmax<qmin) qmax= qmin;
*qmin_ret= qmin;
*qmax_ret= qmax;
}
static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
RateControlContext *rcc= &s->rc_context;
int qmin, qmax;
const int pict_type= rce->new_pict_type;
const double buffer_size= s->avctx->rc_buffer_size;
const double fps= 1/av_q2d(s->avctx->time_base);
const double min_rate= s->avctx->rc_min_rate / fps;
const double max_rate= s->avctx->rc_max_rate / fps;
get_qminmax(&qmin, &qmax, s, pict_type);
/* modulation */
if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==FF_P_TYPE)
q*= s->avctx->rc_qmod_amp;
//printf("q:%f\n", q);
/* buffer overflow/underflow protection */
if(buffer_size){
double expected_size= rcc->buffer_index;
double q_limit;
if(min_rate){
double d= 2*(buffer_size - expected_size)/buffer_size;
if(d>1.0) d=1.0;
else if(d<0.0001) d=0.0001;
q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
if(q > q_limit){
if(s->avctx->debug&FF_DEBUG_RC){
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
}
q= q_limit;
}
}
if(max_rate){
double d= 2*expected_size/buffer_size;
if(d>1.0) d=1.0;
else if(d<0.0001) d=0.0001;
q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
if(q < q_limit){
if(s->avctx->debug&FF_DEBUG_RC){
av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
}
q= q_limit;
}
}
}
//printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
if (q<qmin) q=qmin;
else if(q>qmax) q=qmax;
}else{
double min2= log(qmin);
double max2= log(qmax);
q= log(q);
q= (q - min2)/(max2-min2) - 0.5;
q*= -4.0;
q= 1.0/(1.0 + exp(q));
q= q*(max2-min2) + min2;
q= exp(q);
}
return q;
}
//----------------------------------
// 1 Pass Code
static double predict_size(Predictor *p, double q, double var)
{
return p->coeff*var / (q*p->count);
}
/*
static double predict_qp(Predictor *p, double size, double var)
{
//printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
return p->coeff*var / (size*p->count);
}
*/
static void update_predictor(Predictor *p, double q, double var, double size)
{
double new_coeff= size*q / (var + 1);
if(var<10) return;
p->count*= p->decay;
p->coeff*= p->decay;
p->count++;
p->coeff+= new_coeff;
}
static void adaptive_quantization(MpegEncContext *s, double q){
int i;
const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
const float p_masking = s->avctx->p_masking;
const float border_masking = s->avctx->border_masking;
float bits_sum= 0.0;
float cplx_sum= 0.0;
float cplx_tab[s->mb_num];
float bits_tab[s->mb_num];
const int qmin= s->avctx->mb_lmin;
const int qmax= s->avctx->mb_lmax;
Picture * const pic= &s->current_picture;
const int mb_width = s->mb_width;
const int mb_height = s->mb_height;
for(i=0; i<s->mb_num; i++){
const int mb_xy= s->mb_index2xy[i];
float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
float spat_cplx= sqrt(pic->mb_var[mb_xy]);
const int lumi= pic->mb_mean[mb_xy];
float bits, cplx, factor;
int mb_x = mb_xy % s->mb_stride;
int mb_y = mb_xy / s->mb_stride;
int mb_distance;
float mb_factor = 0.0;
#if 0
if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
#endif
if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
cplx= spat_cplx;
factor= 1.0 + p_masking;
}else{
cplx= temp_cplx;
factor= pow(temp_cplx, - temp_cplx_masking);
}
factor*=pow(spat_cplx, - spatial_cplx_masking);
if(lumi>127)
factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
else
factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
if(mb_x < mb_width/5){
mb_distance = mb_width/5 - mb_x;
mb_factor = (float)mb_distance / (float)(mb_width/5);
}else if(mb_x > 4*mb_width/5){
mb_distance = mb_x - 4*mb_width/5;
mb_factor = (float)mb_distance / (float)(mb_width/5);
}
if(mb_y < mb_height/5){
mb_distance = mb_height/5 - mb_y;
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
}else if(mb_y > 4*mb_height/5){
mb_distance = mb_y - 4*mb_height/5;
mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
}
factor*= 1.0 - border_masking*mb_factor;
if(factor<0.00001) factor= 0.00001;
bits= cplx*factor;
cplx_sum+= cplx;
bits_sum+= bits;
cplx_tab[i]= cplx;
bits_tab[i]= bits;
}
/* handle qmin/qmax clipping */
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
float factor= bits_sum/cplx_sum;
for(i=0; i<s->mb_num; i++){
float newq= q*cplx_tab[i]/bits_tab[i];
newq*= factor;
if (newq > qmax){
bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i]*q/qmax;
}
else if(newq < qmin){
bits_sum -= bits_tab[i];
cplx_sum -= cplx_tab[i]*q/qmin;
}
}
if(bits_sum < 0.001) bits_sum= 0.001;
if(cplx_sum < 0.001) cplx_sum= 0.001;
}
for(i=0; i<s->mb_num; i++){
const int mb_xy= s->mb_index2xy[i];
float newq= q*cplx_tab[i]/bits_tab[i];
int intq;
if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
newq*= bits_sum/cplx_sum;
}
intq= (int)(newq + 0.5);
if (intq > qmax) intq= qmax;
else if(intq < qmin) intq= qmin;
//if(i%s->mb_width==0) printf("\n");
//printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
s->lambda_table[mb_xy]= intq;
}
}
void ff_get_2pass_fcode(MpegEncContext *s){
RateControlContext *rcc= &s->rc_context;
int picture_number= s->picture_number;
RateControlEntry *rce;
rce= &rcc->entry[picture_number];
s->f_code= rce->f_code;
s->b_code= rce->b_code;
}
//FIXME rd or at least approx for dquant
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
{
float q;
int qmin, qmax;
float br_compensation;
double diff;
double short_term_q;
double fps;
int picture_number= s->picture_number;
int64_t wanted_bits;
RateControlContext *rcc= &s->rc_context;
AVCodecContext *a= s->avctx;
RateControlEntry local_rce, *rce;
double bits;
double rate_factor;
int var;
const int pict_type= s->pict_type;
Picture * const pic= &s->current_picture;
emms_c();
#if CONFIG_LIBXVID
if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
return ff_xvid_rate_estimate_qscale(s, dry_run);
#endif
get_qminmax(&qmin, &qmax, s, pict_type);
fps= 1/av_q2d(s->avctx->time_base);
//printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
/* update predictors */
if(picture_number>2 && !dry_run){
const int last_var= s->last_pict_type == FF_I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
}
if(s->flags&CODEC_FLAG_PASS2){
assert(picture_number>=0);
assert(picture_number<rcc->num_entries);
rce= &rcc->entry[picture_number];
wanted_bits= rce->expected_bits;
}else{
Picture *dts_pic;
rce= &local_rce;
//FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
//but the reordering is simpler for now until h.264 b pyramid must be handeld
if(s->pict_type == FF_B_TYPE || s->low_delay)
dts_pic= s->current_picture_ptr;
else
dts_pic= s->last_picture_ptr;
//if(dts_pic)
// av_log(NULL, AV_LOG_ERROR, "%Ld %Ld %Ld %d\n", s->current_picture_ptr->pts, s->user_specified_pts, dts_pic->pts, picture_number);
if(!dts_pic || dts_pic->pts == AV_NOPTS_VALUE)
wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
else
wanted_bits= (uint64_t)(s->bit_rate*(double)dts_pic->pts/fps);
}
diff= s->total_bits - wanted_bits;
br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
if(br_compensation<=0.0) br_compensation=0.001;
var= pict_type == FF_I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
short_term_q = 0; /* avoid warning */
if(s->flags&CODEC_FLAG_PASS2){
if(pict_type!=FF_I_TYPE)
assert(pict_type == rce->new_pict_type);
q= rce->new_qscale / br_compensation;
//printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
}else{
rce->pict_type=
rce->new_pict_type= pict_type;
rce->mc_mb_var_sum= pic->mc_mb_var_sum;
rce->mb_var_sum = pic-> mb_var_sum;
rce->qscale = FF_QP2LAMBDA * 2;
rce->f_code = s->f_code;
rce->b_code = s->b_code;
rce->misc_bits= 1;
bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
if(pict_type== FF_I_TYPE){
rce->i_count = s->mb_num;
rce->i_tex_bits= bits;
rce->p_tex_bits= 0;
rce->mv_bits= 0;
}else{
rce->i_count = 0; //FIXME we do know this approx
rce->i_tex_bits= 0;
rce->p_tex_bits= bits*0.9;
rce->mv_bits= bits*0.1;
}
rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
rcc->mv_bits_sum[pict_type] += rce->mv_bits;
rcc->frame_count[pict_type] ++;
bits= rce->i_tex_bits + rce->p_tex_bits;
rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
q= get_qscale(s, rce, rate_factor, picture_number);
if (q < 0)
return -1;
assert(q>0.0);
//printf("%f ", q);
q= get_diff_limited_q(s, rce, q);
//printf("%f ", q);
assert(q>0.0);
if(pict_type==FF_P_TYPE || s->intra_only){ //FIXME type dependent blur like in 2-pass
rcc->short_term_qsum*=a->qblur;
rcc->short_term_qcount*=a->qblur;
rcc->short_term_qsum+= q;
rcc->short_term_qcount++;
//printf("%f ", q);
q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
//printf("%f ", q);
}
assert(q>0.0);
q= modify_qscale(s, rce, q, picture_number);
rcc->pass1_wanted_bits+= s->bit_rate/fps;
assert(q>0.0);
}
if(s->avctx->debug&FF_DEBUG_RC){
av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
);
}
if (q<qmin) q=qmin;
else if(q>qmax) q=qmax;
if(s->adaptive_quant)
adaptive_quantization(s, q);
else
q= (int)(q + 0.5);
if(!dry_run){
rcc->last_qscale= q;
rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
rcc->last_mb_var_sum= pic->mb_var_sum;
}
#if 0
{
static int mvsum=0, texsum=0;
mvsum += s->mv_bits;
texsum += s->i_tex_bits + s->p_tex_bits;
printf("%d %d//\n\n", mvsum, texsum);
}
#endif
return q;
}
//----------------------------------------------
// 2-Pass code
static int init_pass2(MpegEncContext *s)
{
RateControlContext *rcc= &s->rc_context;
AVCodecContext *a= s->avctx;
int i, toobig;
double fps= 1/av_q2d(s->avctx->time_base);
double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
uint64_t all_const_bits;
uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
double rate_factor=0;
double step;
//int last_i_frame=-10000000;
const int filter_size= (int)(a->qblur*4) | 1;
double expected_bits;
double *qscale, *blurred_qscale, qscale_sum;
/* find complexity & const_bits & decide the pict_types */
for(i=0; i<rcc->num_entries; i++){
RateControlEntry *rce= &rcc->entry[i];
rce->new_pict_type= rce->pict_type;
rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
rcc->frame_count[rce->pict_type] ++;
complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
}
all_const_bits= const_bits[FF_I_TYPE] + const_bits[FF_P_TYPE] + const_bits[FF_B_TYPE];
if(all_available_bits < all_const_bits){
av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
return -1;
}
qscale= av_malloc(sizeof(double)*rcc->num_entries);
blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
toobig = 0;
for(step=256*256; step>0.0000001; step*=0.5){
expected_bits=0;
rate_factor+= step;
rcc->buffer_index= s->avctx->rc_buffer_size/2;
/* find qscale */
for(i=0; i<rcc->num_entries; i++){
qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
}
assert(filter_size%2==1);
/* fixed I/B QP relative to P mode */
for(i=rcc->num_entries-1; i>=0; i--){
RateControlEntry *rce= &rcc->entry[i];
qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
}
/* smooth curve */
for(i=0; i<rcc->num_entries; i++){
RateControlEntry *rce= &rcc->entry[i];
const int pict_type= rce->new_pict_type;
int j;
double q=0.0, sum=0.0;
for(j=0; j<filter_size; j++){
int index= i+j-filter_size/2;
double d= index-i;
double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
if(index < 0 || index >= rcc->num_entries) continue;
if(pict_type != rcc->entry[index].new_pict_type) continue;
q+= qscale[index] * coeff;
sum+= coeff;
}
blurred_qscale[i]= q/sum;
}
/* find expected bits */
for(i=0; i<rcc->num_entries; i++){
RateControlEntry *rce= &rcc->entry[i];
double bits;
rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
//printf("%d %f\n", rce->new_bits, blurred_qscale[i]);
bits += 8*ff_vbv_update(s, bits);
rce->expected_bits= expected_bits;
expected_bits += bits;
}
/*
av_log(s->avctx, AV_LOG_INFO,
"expected_bits: %f all_available_bits: %d rate_factor: %f\n",
expected_bits, (int)all_available_bits, rate_factor);
*/
if(expected_bits > all_available_bits) {
rate_factor-= step;
++toobig;
}
}
av_free(qscale);
av_free(blurred_qscale);
/* check bitrate calculations and print info */
qscale_sum = 0.0;
for(i=0; i<rcc->num_entries; i++){
/* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
}
assert(toobig <= 40);
av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
s->bit_rate,
(int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
av_log(s->avctx, AV_LOG_DEBUG,
"[lavc rc] estimated target average qp: %.3f\n",
(float)qscale_sum / rcc->num_entries);
if (toobig == 0) {
av_log(s->avctx, AV_LOG_INFO,
"[lavc rc] Using all of requested bitrate is not "
"necessary for this video with these parameters.\n");
} else if (toobig == 40) {
av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: bitrate too low for this video "
"with these parameters.\n");
return -1;
} else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
av_log(s->avctx, AV_LOG_ERROR,
"[lavc rc] Error: 2pass curve failed to converge\n");
return -1;
}
return 0;
}