mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1161 lines
40 KiB
1161 lines
40 KiB
/* |
|
* AC-3 Audio Decoder |
|
* This code is developed as part of Google Summer of Code 2006 Program. |
|
* |
|
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). |
|
* Copyright (c) 2007 Justin Ruggles |
|
* |
|
* Portions of this code are derived from liba52 |
|
* http://liba52.sourceforge.net |
|
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org> |
|
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stddef.h> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#include "avcodec.h" |
|
#include "ac3_parser.h" |
|
#include "bitstream.h" |
|
#include "dsputil.h" |
|
#include "random.h" |
|
|
|
/** |
|
* Table of bin locations for rematrixing bands |
|
* reference: Section 7.5.2 Rematrixing : Frequency Band Definitions |
|
*/ |
|
static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 }; |
|
|
|
/** |
|
* table for exponent to scale_factor mapping |
|
* scale_factors[i] = 2 ^ -i |
|
*/ |
|
static float scale_factors[25]; |
|
|
|
/** table for grouping exponents */ |
|
static uint8_t exp_ungroup_tab[128][3]; |
|
|
|
|
|
/** tables for ungrouping mantissas */ |
|
static float b1_mantissas[32][3]; |
|
static float b2_mantissas[128][3]; |
|
static float b3_mantissas[8]; |
|
static float b4_mantissas[128][2]; |
|
static float b5_mantissas[16]; |
|
|
|
/** |
|
* Quantization table: levels for symmetric. bits for asymmetric. |
|
* reference: Table 7.18 Mapping of bap to Quantizer |
|
*/ |
|
static const uint8_t quantization_tab[16] = { |
|
0, 3, 5, 7, 11, 15, |
|
5, 6, 7, 8, 9, 10, 11, 12, 14, 16 |
|
}; |
|
|
|
/** dynamic range table. converts codes to scale factors. */ |
|
static float dynamic_range_tab[256]; |
|
|
|
/** Adjustments in dB gain */ |
|
#define LEVEL_MINUS_3DB 0.7071067811865476 |
|
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605 |
|
#define LEVEL_MINUS_6DB 0.5000000000000000 |
|
#define LEVEL_MINUS_9DB 0.3535533905932738 |
|
#define LEVEL_ZERO 0.0000000000000000 |
|
#define LEVEL_ONE 1.0000000000000000 |
|
|
|
static const float gain_levels[6] = { |
|
LEVEL_ZERO, |
|
LEVEL_ONE, |
|
LEVEL_MINUS_3DB, |
|
LEVEL_MINUS_4POINT5DB, |
|
LEVEL_MINUS_6DB, |
|
LEVEL_MINUS_9DB |
|
}; |
|
|
|
/** |
|
* Table for center mix levels |
|
* reference: Section 5.4.2.4 cmixlev |
|
*/ |
|
static const uint8_t center_levels[4] = { 2, 3, 4, 3 }; |
|
|
|
/** |
|
* Table for surround mix levels |
|
* reference: Section 5.4.2.5 surmixlev |
|
*/ |
|
static const uint8_t surround_levels[4] = { 2, 4, 0, 4 }; |
|
|
|
/** |
|
* Table for default stereo downmixing coefficients |
|
* reference: Section 7.8.2 Downmixing Into Two Channels |
|
*/ |
|
static const uint8_t ac3_default_coeffs[8][5][2] = { |
|
{ { 1, 0 }, { 0, 1 }, }, |
|
{ { 2, 2 }, }, |
|
{ { 1, 0 }, { 0, 1 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, }, |
|
{ { 1, 0 }, { 0, 1 }, { 4, 4 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, }, |
|
{ { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, }, |
|
{ { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, }, |
|
}; |
|
|
|
/* override ac3.h to include coupling channel */ |
|
#undef AC3_MAX_CHANNELS |
|
#define AC3_MAX_CHANNELS 7 |
|
#define CPL_CH 0 |
|
|
|
#define AC3_OUTPUT_LFEON 8 |
|
|
|
typedef struct { |
|
int channel_mode; ///< channel mode (acmod) |
|
int dolby_surround_mode; ///< dolby surround mode |
|
int block_switch[AC3_MAX_CHANNELS]; ///< block switch flags |
|
int dither_flag[AC3_MAX_CHANNELS]; ///< dither flags |
|
int dither_all; ///< true if all channels are dithered |
|
int cpl_in_use; ///< coupling in use |
|
int channel_in_cpl[AC3_MAX_CHANNELS]; ///< channel in coupling |
|
int phase_flags_in_use; ///< phase flags in use |
|
int cpl_band_struct[18]; ///< coupling band structure |
|
int rematrixing_strategy; ///< rematrixing strategy |
|
int num_rematrixing_bands; ///< number of rematrixing bands |
|
int rematrixing_flags[4]; ///< rematrixing flags |
|
int exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies |
|
int snr_offset[AC3_MAX_CHANNELS]; ///< signal-to-noise ratio offsets |
|
int fast_gain[AC3_MAX_CHANNELS]; ///< fast gain values (signal-to-mask ratio) |
|
int dba_mode[AC3_MAX_CHANNELS]; ///< delta bit allocation mode |
|
int dba_nsegs[AC3_MAX_CHANNELS]; ///< number of delta segments |
|
uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets |
|
uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths |
|
uint8_t dba_values[AC3_MAX_CHANNELS][8]; ///< delta values for each segment |
|
|
|
int sampling_rate; ///< sample frequency, in Hz |
|
int bit_rate; ///< stream bit rate, in bits-per-second |
|
int frame_size; ///< current frame size, in bytes |
|
|
|
int channels; ///< number of total channels |
|
int fbw_channels; ///< number of full-bandwidth channels |
|
int lfe_on; ///< lfe channel in use |
|
int lfe_ch; ///< index of LFE channel |
|
int output_mode; ///< output channel configuration |
|
int out_channels; ///< number of output channels |
|
|
|
float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients |
|
float dynamic_range[2]; ///< dynamic range |
|
float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates |
|
int num_cpl_bands; ///< number of coupling bands |
|
int num_cpl_subbands; ///< number of coupling sub bands |
|
int start_freq[AC3_MAX_CHANNELS]; ///< start frequency bin |
|
int end_freq[AC3_MAX_CHANNELS]; ///< end frequency bin |
|
AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters |
|
|
|
int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents |
|
uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers |
|
int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents |
|
int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents |
|
int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values |
|
|
|
DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); ///< transform coefficients |
|
|
|
/* For IMDCT. */ |
|
MDCTContext imdct_512; ///< for 512 sample IMDCT |
|
MDCTContext imdct_256; ///< for 256 sample IMDCT |
|
DSPContext dsp; ///< for optimization |
|
float add_bias; ///< offset for float_to_int16 conversion |
|
float mul_bias; ///< scaling for float_to_int16 conversion |
|
|
|
DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); ///< output after imdct transform and windowing |
|
DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output |
|
DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); ///< delay - added to the next block |
|
DECLARE_ALIGNED_16(float, tmp_imdct[256]); ///< temporary storage for imdct transform |
|
DECLARE_ALIGNED_16(float, tmp_output[512]); ///< temporary storage for output before windowing |
|
DECLARE_ALIGNED_16(float, window[256]); ///< window coefficients |
|
|
|
/* Miscellaneous. */ |
|
GetBitContext gb; ///< bitstream reader |
|
AVRandomState dith_state; ///< for dither generation |
|
AVCodecContext *avctx; ///< parent context |
|
} AC3DecodeContext; |
|
|
|
/** |
|
* Generate a Kaiser-Bessel Derived Window. |
|
*/ |
|
static void ac3_window_init(float *window) |
|
{ |
|
int i, j; |
|
double sum = 0.0, bessel, tmp; |
|
double local_window[256]; |
|
double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0); |
|
|
|
for (i = 0; i < 256; i++) { |
|
tmp = i * (256 - i) * alpha2; |
|
bessel = 1.0; |
|
for (j = 100; j > 0; j--) /* default to 100 iterations */ |
|
bessel = bessel * tmp / (j * j) + 1; |
|
sum += bessel; |
|
local_window[i] = sum; |
|
} |
|
|
|
sum++; |
|
for (i = 0; i < 256; i++) |
|
window[i] = sqrt(local_window[i] / sum); |
|
} |
|
|
|
/** |
|
* Symmetrical Dequantization |
|
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization |
|
* Tables 7.19 to 7.23 |
|
*/ |
|
static inline float |
|
symmetric_dequant(int code, int levels) |
|
{ |
|
return (code - (levels >> 1)) * (2.0f / levels); |
|
} |
|
|
|
/* |
|
* Initialize tables at runtime. |
|
*/ |
|
static void ac3_tables_init(void) |
|
{ |
|
int i; |
|
|
|
/* generate grouped mantissa tables |
|
reference: Section 7.3.5 Ungrouping of Mantissas */ |
|
for(i=0; i<32; i++) { |
|
/* bap=1 mantissas */ |
|
b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3); |
|
b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3); |
|
b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3); |
|
} |
|
for(i=0; i<128; i++) { |
|
/* bap=2 mantissas */ |
|
b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5); |
|
b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5); |
|
b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5); |
|
|
|
/* bap=4 mantissas */ |
|
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); |
|
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); |
|
} |
|
/* generate ungrouped mantissa tables |
|
reference: Tables 7.21 and 7.23 */ |
|
for(i=0; i<7; i++) { |
|
/* bap=3 mantissas */ |
|
b3_mantissas[i] = symmetric_dequant(i, 7); |
|
} |
|
for(i=0; i<15; i++) { |
|
/* bap=5 mantissas */ |
|
b5_mantissas[i] = symmetric_dequant(i, 15); |
|
} |
|
|
|
/* generate dynamic range table |
|
reference: Section 7.7.1 Dynamic Range Control */ |
|
for(i=0; i<256; i++) { |
|
int v = (i >> 5) - ((i >> 7) << 3) - 5; |
|
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); |
|
} |
|
|
|
/* generate scale factors for exponents and asymmetrical dequantization |
|
reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */ |
|
for (i = 0; i < 25; i++) |
|
scale_factors[i] = pow(2.0, -i); |
|
|
|
/* generate exponent tables |
|
reference: Section 7.1.3 Exponent Decoding */ |
|
for(i=0; i<128; i++) { |
|
exp_ungroup_tab[i][0] = i / 25; |
|
exp_ungroup_tab[i][1] = (i % 25) / 5; |
|
exp_ungroup_tab[i][2] = (i % 25) % 5; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* AVCodec initialization |
|
*/ |
|
static int ac3_decode_init(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = avctx->priv_data; |
|
ctx->avctx = avctx; |
|
|
|
ac3_common_init(); |
|
ac3_tables_init(); |
|
ff_mdct_init(&ctx->imdct_256, 8, 1); |
|
ff_mdct_init(&ctx->imdct_512, 9, 1); |
|
ac3_window_init(ctx->window); |
|
dsputil_init(&ctx->dsp, avctx); |
|
av_init_random(0, &ctx->dith_state); |
|
|
|
/* set bias values for float to int16 conversion */ |
|
if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) { |
|
ctx->add_bias = 385.0f; |
|
ctx->mul_bias = 1.0f; |
|
} else { |
|
ctx->add_bias = 0.0f; |
|
ctx->mul_bias = 32767.0f; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream. |
|
* GetBitContext within AC3DecodeContext must point to |
|
* start of the synchronized ac3 bitstream. |
|
*/ |
|
static int ac3_parse_header(AC3DecodeContext *ctx) |
|
{ |
|
AC3HeaderInfo hdr; |
|
GetBitContext *gb = &ctx->gb; |
|
float center_mix_level, surround_mix_level; |
|
int err, i; |
|
|
|
err = ff_ac3_parse_header(gb->buffer, &hdr); |
|
if(err) |
|
return err; |
|
|
|
/* get decoding parameters from header info */ |
|
ctx->bit_alloc_params.sr_code = hdr.sr_code; |
|
ctx->channel_mode = hdr.channel_mode; |
|
center_mix_level = gain_levels[center_levels[hdr.center_mix_level]]; |
|
surround_mix_level = gain_levels[surround_levels[hdr.surround_mix_level]]; |
|
ctx->dolby_surround_mode = hdr.dolby_surround_mode; |
|
ctx->lfe_on = hdr.lfe_on; |
|
ctx->bit_alloc_params.sr_shift = hdr.sr_shift; |
|
ctx->sampling_rate = hdr.sample_rate; |
|
ctx->bit_rate = hdr.bit_rate; |
|
ctx->channels = hdr.channels; |
|
ctx->fbw_channels = ctx->channels - ctx->lfe_on; |
|
ctx->lfe_ch = ctx->fbw_channels + 1; |
|
ctx->frame_size = hdr.frame_size; |
|
|
|
/* set default output to all source channels */ |
|
ctx->out_channels = ctx->channels; |
|
ctx->output_mode = ctx->channel_mode; |
|
if(ctx->lfe_on) |
|
ctx->output_mode |= AC3_OUTPUT_LFEON; |
|
|
|
/* skip over portion of header which has already been read */ |
|
skip_bits(gb, 16); // skip the sync_word |
|
skip_bits(gb, 16); // skip crc1 |
|
skip_bits(gb, 8); // skip fscod and frmsizecod |
|
skip_bits(gb, 11); // skip bsid, bsmod, and acmod |
|
if(ctx->channel_mode == AC3_CHMODE_STEREO) { |
|
skip_bits(gb, 2); // skip dsurmod |
|
} else { |
|
if((ctx->channel_mode & 1) && ctx->channel_mode != AC3_CHMODE_MONO) |
|
skip_bits(gb, 2); // skip cmixlev |
|
if(ctx->channel_mode & 4) |
|
skip_bits(gb, 2); // skip surmixlev |
|
} |
|
skip_bits1(gb); // skip lfeon |
|
|
|
/* read the rest of the bsi. read twice for dual mono mode. */ |
|
i = !(ctx->channel_mode); |
|
do { |
|
skip_bits(gb, 5); // skip dialog normalization |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip compression |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 8); //skip language code |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 7); //skip audio production information |
|
} while (i--); |
|
|
|
skip_bits(gb, 2); //skip copyright bit and original bitstream bit |
|
|
|
/* skip the timecodes (or extra bitstream information for Alternate Syntax) |
|
TODO: read & use the xbsi1 downmix levels */ |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode1 / xbsi1 |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 14); //skip timecode2 / xbsi2 |
|
|
|
/* skip additional bitstream info */ |
|
if (get_bits1(gb)) { |
|
i = get_bits(gb, 6); |
|
do { |
|
skip_bits(gb, 8); |
|
} while(i--); |
|
} |
|
|
|
/* set stereo downmixing coefficients |
|
reference: Section 7.8.2 Downmixing Into Two Channels */ |
|
for(i=0; i<ctx->fbw_channels; i++) { |
|
ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][0]]; |
|
ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->channel_mode][i][1]]; |
|
} |
|
if(ctx->channel_mode > 1 && ctx->channel_mode & 1) { |
|
ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = center_mix_level; |
|
} |
|
if(ctx->channel_mode == AC3_CHMODE_2F1R || ctx->channel_mode == AC3_CHMODE_3F1R) { |
|
int nf = ctx->channel_mode - 2; |
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surround_mix_level * LEVEL_MINUS_3DB; |
|
} |
|
if(ctx->channel_mode == AC3_CHMODE_2F2R || ctx->channel_mode == AC3_CHMODE_3F2R) { |
|
int nf = ctx->channel_mode - 4; |
|
ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surround_mix_level; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode the grouped exponents according to exponent strategy. |
|
* reference: Section 7.1.3 Exponent Decoding |
|
*/ |
|
static void decode_exponents(GetBitContext *gb, int exp_strategy, int ngrps, |
|
uint8_t absexp, int8_t *dexps) |
|
{ |
|
int i, j, grp, group_size; |
|
int dexp[256]; |
|
int expacc, prevexp; |
|
|
|
/* unpack groups */ |
|
group_size = exp_strategy + (exp_strategy == EXP_D45); |
|
for(grp=0,i=0; grp<ngrps; grp++) { |
|
expacc = get_bits(gb, 7); |
|
dexp[i++] = exp_ungroup_tab[expacc][0]; |
|
dexp[i++] = exp_ungroup_tab[expacc][1]; |
|
dexp[i++] = exp_ungroup_tab[expacc][2]; |
|
} |
|
|
|
/* convert to absolute exps and expand groups */ |
|
prevexp = absexp; |
|
for(i=0; i<ngrps*3; i++) { |
|
prevexp = av_clip(prevexp + dexp[i]-2, 0, 24); |
|
for(j=0; j<group_size; j++) { |
|
dexps[(i*group_size)+j] = prevexp; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Generate transform coefficients for each coupled channel in the coupling |
|
* range using the coupling coefficients and coupling coordinates. |
|
* reference: Section 7.4.3 Coupling Coordinate Format |
|
*/ |
|
static void uncouple_channels(AC3DecodeContext *ctx) |
|
{ |
|
int i, j, ch, bnd, subbnd; |
|
|
|
subbnd = -1; |
|
i = ctx->start_freq[CPL_CH]; |
|
for(bnd=0; bnd<ctx->num_cpl_bands; bnd++) { |
|
do { |
|
subbnd++; |
|
for(j=0; j<12; j++) { |
|
for(ch=1; ch<=ctx->fbw_channels; ch++) { |
|
if(ctx->channel_in_cpl[ch]) |
|
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cpl_coords[ch][bnd] * 8.0f; |
|
} |
|
i++; |
|
} |
|
} while(ctx->cpl_band_struct[subbnd]); |
|
} |
|
} |
|
|
|
/** |
|
* Grouped mantissas for 3-level 5-level and 11-level quantization |
|
*/ |
|
typedef struct { |
|
float b1_mant[3]; |
|
float b2_mant[3]; |
|
float b4_mant[2]; |
|
int b1ptr; |
|
int b2ptr; |
|
int b4ptr; |
|
} mant_groups; |
|
|
|
/** |
|
* Get the transform coefficients for a particular channel |
|
* reference: Section 7.3 Quantization and Decoding of Mantissas |
|
*/ |
|
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m) |
|
{ |
|
GetBitContext *gb = &ctx->gb; |
|
int i, gcode, tbap, start, end; |
|
uint8_t *exps; |
|
uint8_t *bap; |
|
float *coeffs; |
|
|
|
exps = ctx->dexps[ch_index]; |
|
bap = ctx->bap[ch_index]; |
|
coeffs = ctx->transform_coeffs[ch_index]; |
|
start = ctx->start_freq[ch_index]; |
|
end = ctx->end_freq[ch_index]; |
|
|
|
for (i = start; i < end; i++) { |
|
tbap = bap[i]; |
|
switch (tbap) { |
|
case 0: |
|
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) / 65535.0f) - 0.5f; |
|
break; |
|
|
|
case 1: |
|
if(m->b1ptr > 2) { |
|
gcode = get_bits(gb, 5); |
|
m->b1_mant[0] = b1_mantissas[gcode][0]; |
|
m->b1_mant[1] = b1_mantissas[gcode][1]; |
|
m->b1_mant[2] = b1_mantissas[gcode][2]; |
|
m->b1ptr = 0; |
|
} |
|
coeffs[i] = m->b1_mant[m->b1ptr++]; |
|
break; |
|
|
|
case 2: |
|
if(m->b2ptr > 2) { |
|
gcode = get_bits(gb, 7); |
|
m->b2_mant[0] = b2_mantissas[gcode][0]; |
|
m->b2_mant[1] = b2_mantissas[gcode][1]; |
|
m->b2_mant[2] = b2_mantissas[gcode][2]; |
|
m->b2ptr = 0; |
|
} |
|
coeffs[i] = m->b2_mant[m->b2ptr++]; |
|
break; |
|
|
|
case 3: |
|
coeffs[i] = b3_mantissas[get_bits(gb, 3)]; |
|
break; |
|
|
|
case 4: |
|
if(m->b4ptr > 1) { |
|
gcode = get_bits(gb, 7); |
|
m->b4_mant[0] = b4_mantissas[gcode][0]; |
|
m->b4_mant[1] = b4_mantissas[gcode][1]; |
|
m->b4ptr = 0; |
|
} |
|
coeffs[i] = m->b4_mant[m->b4ptr++]; |
|
break; |
|
|
|
case 5: |
|
coeffs[i] = b5_mantissas[get_bits(gb, 4)]; |
|
break; |
|
|
|
default: |
|
/* asymmetric dequantization */ |
|
coeffs[i] = get_sbits(gb, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1]; |
|
break; |
|
} |
|
coeffs[i] *= scale_factors[exps[i]]; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Remove random dithering from coefficients with zero-bit mantissas |
|
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0) |
|
*/ |
|
static void remove_dithering(AC3DecodeContext *ctx) { |
|
int ch, i; |
|
int end=0; |
|
float *coeffs; |
|
uint8_t *bap; |
|
|
|
for(ch=1; ch<=ctx->fbw_channels; ch++) { |
|
if(!ctx->dither_flag[ch]) { |
|
coeffs = ctx->transform_coeffs[ch]; |
|
bap = ctx->bap[ch]; |
|
if(ctx->channel_in_cpl[ch]) |
|
end = ctx->start_freq[CPL_CH]; |
|
else |
|
end = ctx->end_freq[ch]; |
|
for(i=0; i<end; i++) { |
|
if(bap[i] == 0) |
|
coeffs[i] = 0.0f; |
|
} |
|
if(ctx->channel_in_cpl[ch]) { |
|
bap = ctx->bap[CPL_CH]; |
|
for(; i<ctx->end_freq[CPL_CH]; i++) { |
|
if(bap[i] == 0) |
|
coeffs[i] = 0.0f; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Get the transform coefficients. |
|
*/ |
|
static int get_transform_coeffs(AC3DecodeContext * ctx) |
|
{ |
|
int ch, end; |
|
int got_cplchan = 0; |
|
mant_groups m; |
|
|
|
m.b1ptr = m.b2ptr = m.b4ptr = 3; |
|
|
|
for (ch = 1; ch <= ctx->channels; ch++) { |
|
/* transform coefficients for full-bandwidth channel */ |
|
if (get_transform_coeffs_ch(ctx, ch, &m)) |
|
return -1; |
|
/* tranform coefficients for coupling channel come right after the |
|
coefficients for the first coupled channel*/ |
|
if (ctx->channel_in_cpl[ch]) { |
|
if (!got_cplchan) { |
|
if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n"); |
|
return -1; |
|
} |
|
uncouple_channels(ctx); |
|
got_cplchan = 1; |
|
} |
|
end = ctx->end_freq[CPL_CH]; |
|
} else { |
|
end = ctx->end_freq[ch]; |
|
} |
|
do |
|
ctx->transform_coeffs[ch][end] = 0; |
|
while(++end < 256); |
|
} |
|
|
|
/* if any channel doesn't use dithering, zero appropriate coefficients */ |
|
if(!ctx->dither_all) |
|
remove_dithering(ctx); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Stereo rematrixing. |
|
* reference: Section 7.5.4 Rematrixing : Decoding Technique |
|
*/ |
|
static void do_rematrixing(AC3DecodeContext *ctx) |
|
{ |
|
int bnd, i; |
|
int end, bndend; |
|
float tmp0, tmp1; |
|
|
|
end = FFMIN(ctx->end_freq[1], ctx->end_freq[2]); |
|
|
|
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) { |
|
if(ctx->rematrixing_flags[bnd]) { |
|
bndend = FFMIN(end, rematrix_band_tab[bnd+1]); |
|
for(i=rematrix_band_tab[bnd]; i<bndend; i++) { |
|
tmp0 = ctx->transform_coeffs[1][i]; |
|
tmp1 = ctx->transform_coeffs[2][i]; |
|
ctx->transform_coeffs[1][i] = tmp0 + tmp1; |
|
ctx->transform_coeffs[2][i] = tmp0 - tmp1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Perform the 256-point IMDCT |
|
*/ |
|
static void do_imdct_256(AC3DecodeContext *ctx, int chindex) |
|
{ |
|
int i, k; |
|
DECLARE_ALIGNED_16(float, x[128]); |
|
FFTComplex z[2][64]; |
|
float *o_ptr = ctx->tmp_output; |
|
|
|
for(i=0; i<2; i++) { |
|
/* de-interleave coefficients */ |
|
for(k=0; k<128; k++) { |
|
x[k] = ctx->transform_coeffs[chindex][2*k+i]; |
|
} |
|
|
|
/* run standard IMDCT */ |
|
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct); |
|
|
|
/* reverse the post-rotation & reordering from standard IMDCT */ |
|
for(k=0; k<32; k++) { |
|
z[i][32+k].re = -o_ptr[128+2*k]; |
|
z[i][32+k].im = -o_ptr[2*k]; |
|
z[i][31-k].re = o_ptr[2*k+1]; |
|
z[i][31-k].im = o_ptr[128+2*k+1]; |
|
} |
|
} |
|
|
|
/* apply AC-3 post-rotation & reordering */ |
|
for(k=0; k<64; k++) { |
|
o_ptr[ 2*k ] = -z[0][ k].im; |
|
o_ptr[ 2*k+1] = z[0][63-k].re; |
|
o_ptr[128+2*k ] = -z[0][ k].re; |
|
o_ptr[128+2*k+1] = z[0][63-k].im; |
|
o_ptr[256+2*k ] = -z[1][ k].re; |
|
o_ptr[256+2*k+1] = z[1][63-k].im; |
|
o_ptr[384+2*k ] = z[1][ k].im; |
|
o_ptr[384+2*k+1] = -z[1][63-k].re; |
|
} |
|
} |
|
|
|
/** |
|
* Inverse MDCT Transform. |
|
* Convert frequency domain coefficients to time-domain audio samples. |
|
* reference: Section 7.9.4 Transformation Equations |
|
*/ |
|
static inline void do_imdct(AC3DecodeContext *ctx) |
|
{ |
|
int ch; |
|
int channels; |
|
|
|
/* Don't perform the IMDCT on the LFE channel unless it's used in the output */ |
|
channels = ctx->fbw_channels; |
|
if(ctx->output_mode & AC3_OUTPUT_LFEON) |
|
channels++; |
|
|
|
for (ch=1; ch<=channels; ch++) { |
|
if (ctx->block_switch[ch]) { |
|
do_imdct_256(ctx, ch); |
|
} else { |
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output, |
|
ctx->transform_coeffs[ch], |
|
ctx->tmp_imdct); |
|
} |
|
/* For the first half of the block, apply the window, add the delay |
|
from the previous block, and send to output */ |
|
ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output, |
|
ctx->window, ctx->delay[ch-1], 0, 256, 1); |
|
/* For the second half of the block, apply the window and store the |
|
samples to delay, to be combined with the next block */ |
|
ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256, |
|
ctx->window, 256); |
|
} |
|
} |
|
|
|
/** |
|
* Downmix the output to mono or stereo. |
|
*/ |
|
static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int fbw_channels, |
|
int output_mode, float coef[AC3_MAX_CHANNELS][2]) |
|
{ |
|
int i, j; |
|
float v0, v1, s0, s1; |
|
|
|
for(i=0; i<256; i++) { |
|
v0 = v1 = s0 = s1 = 0.0f; |
|
for(j=0; j<fbw_channels; j++) { |
|
v0 += samples[j][i] * coef[j][0]; |
|
v1 += samples[j][i] * coef[j][1]; |
|
s0 += coef[j][0]; |
|
s1 += coef[j][1]; |
|
} |
|
v0 /= s0; |
|
v1 /= s1; |
|
if(output_mode == AC3_CHMODE_MONO) { |
|
samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB; |
|
} else if(output_mode == AC3_CHMODE_STEREO) { |
|
samples[0][i] = v0; |
|
samples[1][i] = v1; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Parse an audio block from AC-3 bitstream. |
|
*/ |
|
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk) |
|
{ |
|
int fbw_channels = ctx->fbw_channels; |
|
int channel_mode = ctx->channel_mode; |
|
int i, bnd, seg, ch; |
|
GetBitContext *gb = &ctx->gb; |
|
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; |
|
|
|
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS); |
|
|
|
/* block switch flags */ |
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
ctx->block_switch[ch] = get_bits1(gb); |
|
|
|
/* dithering flags */ |
|
ctx->dither_all = 1; |
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
ctx->dither_flag[ch] = get_bits1(gb); |
|
if(!ctx->dither_flag[ch]) |
|
ctx->dither_all = 0; |
|
} |
|
|
|
/* dynamic range */ |
|
i = !(ctx->channel_mode); |
|
do { |
|
if(get_bits1(gb)) { |
|
ctx->dynamic_range[i] = dynamic_range_tab[get_bits(gb, 8)]; |
|
} else if(blk == 0) { |
|
ctx->dynamic_range[i] = 1.0f; |
|
} |
|
} while(i--); |
|
|
|
/* coupling strategy */ |
|
if (get_bits1(gb)) { |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
ctx->cpl_in_use = get_bits1(gb); |
|
if (ctx->cpl_in_use) { |
|
/* coupling in use */ |
|
int cpl_begin_freq, cpl_end_freq; |
|
|
|
/* determine which channels are coupled */ |
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
ctx->channel_in_cpl[ch] = get_bits1(gb); |
|
|
|
/* phase flags in use */ |
|
if (channel_mode == AC3_CHMODE_STEREO) |
|
ctx->phase_flags_in_use = get_bits1(gb); |
|
|
|
/* coupling frequency range and band structure */ |
|
cpl_begin_freq = get_bits(gb, 4); |
|
cpl_end_freq = get_bits(gb, 4); |
|
if (3 + cpl_end_freq - cpl_begin_freq < 0) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq); |
|
return -1; |
|
} |
|
ctx->num_cpl_bands = ctx->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq; |
|
ctx->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37; |
|
ctx->end_freq[CPL_CH] = cpl_end_freq * 12 + 73; |
|
for (bnd = 0; bnd < ctx->num_cpl_subbands - 1; bnd++) { |
|
if (get_bits1(gb)) { |
|
ctx->cpl_band_struct[bnd] = 1; |
|
ctx->num_cpl_bands--; |
|
} |
|
} |
|
} else { |
|
/* coupling not in use */ |
|
for (ch = 1; ch <= fbw_channels; ch++) |
|
ctx->channel_in_cpl[ch] = 0; |
|
} |
|
} |
|
|
|
/* coupling coordinates */ |
|
if (ctx->cpl_in_use) { |
|
int cpl_coords_exist = 0; |
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
if (ctx->channel_in_cpl[ch]) { |
|
if (get_bits1(gb)) { |
|
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant; |
|
cpl_coords_exist = 1; |
|
master_cpl_coord = 3 * get_bits(gb, 2); |
|
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { |
|
cpl_coord_exp = get_bits(gb, 4); |
|
cpl_coord_mant = get_bits(gb, 4); |
|
if (cpl_coord_exp == 15) |
|
ctx->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f; |
|
else |
|
ctx->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f; |
|
ctx->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord]; |
|
} |
|
} |
|
} |
|
} |
|
/* phase flags */ |
|
if (channel_mode == AC3_CHMODE_STEREO && ctx->phase_flags_in_use && cpl_coords_exist) { |
|
for (bnd = 0; bnd < ctx->num_cpl_bands; bnd++) { |
|
if (get_bits1(gb)) |
|
ctx->cpl_coords[2][bnd] = -ctx->cpl_coords[2][bnd]; |
|
} |
|
} |
|
} |
|
|
|
/* stereo rematrixing strategy and band structure */ |
|
if (channel_mode == AC3_CHMODE_STEREO) { |
|
ctx->rematrixing_strategy = get_bits1(gb); |
|
if (ctx->rematrixing_strategy) { |
|
ctx->num_rematrixing_bands = 4; |
|
if(ctx->cpl_in_use && ctx->start_freq[CPL_CH] <= 61) |
|
ctx->num_rematrixing_bands -= 1 + (ctx->start_freq[CPL_CH] == 37); |
|
for(bnd=0; bnd<ctx->num_rematrixing_bands; bnd++) |
|
ctx->rematrixing_flags[bnd] = get_bits1(gb); |
|
} |
|
} |
|
|
|
/* exponent strategies for each channel */ |
|
ctx->exp_strategy[CPL_CH] = EXP_REUSE; |
|
ctx->exp_strategy[ctx->lfe_ch] = EXP_REUSE; |
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { |
|
if(ch == ctx->lfe_ch) |
|
ctx->exp_strategy[ch] = get_bits(gb, 1); |
|
else |
|
ctx->exp_strategy[ch] = get_bits(gb, 2); |
|
if(ctx->exp_strategy[ch] != EXP_REUSE) |
|
bit_alloc_stages[ch] = 3; |
|
} |
|
|
|
/* channel bandwidth */ |
|
for (ch = 1; ch <= fbw_channels; ch++) { |
|
ctx->start_freq[ch] = 0; |
|
if (ctx->exp_strategy[ch] != EXP_REUSE) { |
|
int prev = ctx->end_freq[ch]; |
|
if (ctx->channel_in_cpl[ch]) |
|
ctx->end_freq[ch] = ctx->start_freq[CPL_CH]; |
|
else { |
|
int bandwidth_code = get_bits(gb, 6); |
|
if (bandwidth_code > 60) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code); |
|
return -1; |
|
} |
|
ctx->end_freq[ch] = bandwidth_code * 3 + 73; |
|
} |
|
if(blk > 0 && ctx->end_freq[ch] != prev) |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
} |
|
} |
|
ctx->start_freq[ctx->lfe_ch] = 0; |
|
ctx->end_freq[ctx->lfe_ch] = 7; |
|
|
|
/* decode exponents for each channel */ |
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { |
|
if (ctx->exp_strategy[ch] != EXP_REUSE) { |
|
int group_size, num_groups; |
|
group_size = 3 << (ctx->exp_strategy[ch] - 1); |
|
if(ch == CPL_CH) |
|
num_groups = (ctx->end_freq[ch] - ctx->start_freq[ch]) / group_size; |
|
else if(ch == ctx->lfe_ch) |
|
num_groups = 2; |
|
else |
|
num_groups = (ctx->end_freq[ch] + group_size - 4) / group_size; |
|
ctx->dexps[ch][0] = get_bits(gb, 4) << !ch; |
|
decode_exponents(gb, ctx->exp_strategy[ch], num_groups, ctx->dexps[ch][0], |
|
&ctx->dexps[ch][ctx->start_freq[ch]+!!ch]); |
|
if(ch != CPL_CH && ch != ctx->lfe_ch) |
|
skip_bits(gb, 2); /* skip gainrng */ |
|
} |
|
} |
|
|
|
/* bit allocation information */ |
|
if (get_bits1(gb)) { |
|
ctx->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gb, 2)] >> ctx->bit_alloc_params.sr_shift; |
|
ctx->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gb, 2)] >> ctx->bit_alloc_params.sr_shift; |
|
ctx->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gb, 2)]; |
|
ctx->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gb, 3)]; |
|
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { |
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
} |
|
} |
|
|
|
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */ |
|
if (get_bits1(gb)) { |
|
int csnr; |
|
csnr = (get_bits(gb, 6) - 15) << 4; |
|
for (ch = !ctx->cpl_in_use; ch <= ctx->channels; ch++) { /* snr offset and fast gain */ |
|
ctx->snr_offset[ch] = (csnr + get_bits(gb, 4)) << 2; |
|
ctx->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gb, 3)]; |
|
} |
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS); |
|
} |
|
|
|
/* coupling leak information */ |
|
if (ctx->cpl_in_use && get_bits1(gb)) { |
|
ctx->bit_alloc_params.cpl_fast_leak = get_bits(gb, 3); |
|
ctx->bit_alloc_params.cpl_slow_leak = get_bits(gb, 3); |
|
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2); |
|
} |
|
|
|
/* delta bit allocation information */ |
|
if (get_bits1(gb)) { |
|
/* delta bit allocation exists (strategy) */ |
|
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { |
|
ctx->dba_mode[ch] = get_bits(gb, 2); |
|
if (ctx->dba_mode[ch] == DBA_RESERVED) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n"); |
|
return -1; |
|
} |
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2); |
|
} |
|
/* channel delta offset, len and bit allocation */ |
|
for (ch = !ctx->cpl_in_use; ch <= fbw_channels; ch++) { |
|
if (ctx->dba_mode[ch] == DBA_NEW) { |
|
ctx->dba_nsegs[ch] = get_bits(gb, 3); |
|
for (seg = 0; seg <= ctx->dba_nsegs[ch]; seg++) { |
|
ctx->dba_offsets[ch][seg] = get_bits(gb, 5); |
|
ctx->dba_lengths[ch][seg] = get_bits(gb, 4); |
|
ctx->dba_values[ch][seg] = get_bits(gb, 3); |
|
} |
|
} |
|
} |
|
} else if(blk == 0) { |
|
for(ch=0; ch<=ctx->channels; ch++) { |
|
ctx->dba_mode[ch] = DBA_NONE; |
|
} |
|
} |
|
|
|
/* Bit allocation */ |
|
for(ch=!ctx->cpl_in_use; ch<=ctx->channels; ch++) { |
|
if(bit_alloc_stages[ch] > 2) { |
|
/* Exponent mapping into PSD and PSD integration */ |
|
ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch], |
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
ctx->psd[ch], ctx->band_psd[ch]); |
|
} |
|
if(bit_alloc_stages[ch] > 1) { |
|
/* Compute excitation function, Compute masking curve, and |
|
Apply delta bit allocation */ |
|
ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->band_psd[ch], |
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
ctx->fast_gain[ch], (ch == ctx->lfe_ch), |
|
ctx->dba_mode[ch], ctx->dba_nsegs[ch], |
|
ctx->dba_offsets[ch], ctx->dba_lengths[ch], |
|
ctx->dba_values[ch], ctx->mask[ch]); |
|
} |
|
if(bit_alloc_stages[ch] > 0) { |
|
/* Compute bit allocation */ |
|
ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch], |
|
ctx->start_freq[ch], ctx->end_freq[ch], |
|
ctx->snr_offset[ch], |
|
ctx->bit_alloc_params.floor, |
|
ctx->bap[ch]); |
|
} |
|
} |
|
|
|
/* unused dummy data */ |
|
if (get_bits1(gb)) { |
|
int skipl = get_bits(gb, 9); |
|
while(skipl--) |
|
skip_bits(gb, 8); |
|
} |
|
|
|
/* unpack the transform coefficients |
|
this also uncouples channels if coupling is in use. */ |
|
if (get_transform_coeffs(ctx)) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n"); |
|
return -1; |
|
} |
|
|
|
/* recover coefficients if rematrixing is in use */ |
|
if(ctx->channel_mode == AC3_CHMODE_STEREO) |
|
do_rematrixing(ctx); |
|
|
|
/* apply scaling to coefficients (headroom, dynrng) */ |
|
for(ch=1; ch<=ctx->channels; ch++) { |
|
float gain = 2.0f * ctx->mul_bias; |
|
if(ctx->channel_mode == AC3_CHMODE_DUALMONO) { |
|
gain *= ctx->dynamic_range[ch-1]; |
|
} else { |
|
gain *= ctx->dynamic_range[0]; |
|
} |
|
for(i=0; i<ctx->end_freq[ch]; i++) { |
|
ctx->transform_coeffs[ch][i] *= gain; |
|
} |
|
} |
|
|
|
do_imdct(ctx); |
|
|
|
/* downmix output if needed */ |
|
if(ctx->channels != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) && |
|
ctx->fbw_channels == ctx->out_channels)) { |
|
ac3_downmix(ctx->output, ctx->fbw_channels, ctx->output_mode, |
|
ctx->downmix_coeffs); |
|
} |
|
|
|
/* convert float to 16-bit integer */ |
|
for(ch=0; ch<ctx->out_channels; ch++) { |
|
for(i=0; i<256; i++) { |
|
ctx->output[ch][i] += ctx->add_bias; |
|
} |
|
ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode a single AC-3 frame. |
|
*/ |
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
int16_t *out_samples = (int16_t *)data; |
|
int i, blk, ch, err; |
|
|
|
/* initialize the GetBitContext with the start of valid AC-3 Frame */ |
|
init_get_bits(&ctx->gb, buf, buf_size * 8); |
|
|
|
/* parse the syncinfo */ |
|
err = ac3_parse_header(ctx); |
|
if(err) { |
|
switch(err) { |
|
case AC3_PARSE_ERROR_SYNC: |
|
av_log(avctx, AV_LOG_ERROR, "frame sync error\n"); |
|
break; |
|
case AC3_PARSE_ERROR_BSID: |
|
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n"); |
|
break; |
|
case AC3_PARSE_ERROR_SAMPLE_RATE: |
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
|
break; |
|
case AC3_PARSE_ERROR_FRAME_SIZE: |
|
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n"); |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "invalid header\n"); |
|
break; |
|
} |
|
return -1; |
|
} |
|
|
|
avctx->sample_rate = ctx->sampling_rate; |
|
avctx->bit_rate = ctx->bit_rate; |
|
|
|
/* check that reported frame size fits in input buffer */ |
|
if(ctx->frame_size > buf_size) { |
|
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); |
|
return -1; |
|
} |
|
|
|
/* channel config */ |
|
ctx->out_channels = ctx->channels; |
|
if (avctx->request_channels > 0 && avctx->request_channels <= 2 && |
|
avctx->request_channels < ctx->channels) { |
|
ctx->out_channels = avctx->request_channels; |
|
ctx->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO; |
|
} |
|
avctx->channels = ctx->out_channels; |
|
|
|
/* parse the audio blocks */ |
|
for (blk = 0; blk < NB_BLOCKS; blk++) { |
|
if (ac3_parse_audio_block(ctx, blk)) { |
|
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n"); |
|
*data_size = 0; |
|
return ctx->frame_size; |
|
} |
|
for (i = 0; i < 256; i++) |
|
for (ch = 0; ch < ctx->out_channels; ch++) |
|
*(out_samples++) = ctx->int_output[ch][i]; |
|
} |
|
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t); |
|
return ctx->frame_size; |
|
} |
|
|
|
/** |
|
* Uninitialize the AC-3 decoder. |
|
*/ |
|
static int ac3_decode_end(AVCodecContext *avctx) |
|
{ |
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data; |
|
ff_mdct_end(&ctx->imdct_512); |
|
ff_mdct_end(&ctx->imdct_256); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ac3_decoder = { |
|
.name = "ac3", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_AC3, |
|
.priv_data_size = sizeof (AC3DecodeContext), |
|
.init = ac3_decode_init, |
|
.close = ac3_decode_end, |
|
.decode = ac3_decode_frame, |
|
};
|
|
|