mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1340 lines
45 KiB
1340 lines
45 KiB
/* |
|
* Apple ProRes encoder |
|
* |
|
* Copyright (c) 2012 Konstantin Shishkov |
|
* |
|
* This encoder appears to be based on Anatoliy Wassermans considering |
|
* similarities in the bugs. |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/opt.h" |
|
#include "libavutil/pixdesc.h" |
|
#include "avcodec.h" |
|
#include "fdctdsp.h" |
|
#include "put_bits.h" |
|
#include "bytestream.h" |
|
#include "internal.h" |
|
#include "proresdata.h" |
|
|
|
#define CFACTOR_Y422 2 |
|
#define CFACTOR_Y444 3 |
|
|
|
#define MAX_MBS_PER_SLICE 8 |
|
|
|
#define MAX_PLANES 4 |
|
|
|
enum { |
|
PRORES_PROFILE_PROXY = 0, |
|
PRORES_PROFILE_LT, |
|
PRORES_PROFILE_STANDARD, |
|
PRORES_PROFILE_HQ, |
|
PRORES_PROFILE_4444, |
|
}; |
|
|
|
enum { |
|
QUANT_MAT_PROXY = 0, |
|
QUANT_MAT_LT, |
|
QUANT_MAT_STANDARD, |
|
QUANT_MAT_HQ, |
|
QUANT_MAT_DEFAULT, |
|
}; |
|
|
|
static const uint8_t prores_quant_matrices[][64] = { |
|
{ // proxy |
|
4, 7, 9, 11, 13, 14, 15, 63, |
|
7, 7, 11, 12, 14, 15, 63, 63, |
|
9, 11, 13, 14, 15, 63, 63, 63, |
|
11, 11, 13, 14, 63, 63, 63, 63, |
|
11, 13, 14, 63, 63, 63, 63, 63, |
|
13, 14, 63, 63, 63, 63, 63, 63, |
|
13, 63, 63, 63, 63, 63, 63, 63, |
|
63, 63, 63, 63, 63, 63, 63, 63, |
|
}, |
|
{ // LT |
|
4, 5, 6, 7, 9, 11, 13, 15, |
|
5, 5, 7, 8, 11, 13, 15, 17, |
|
6, 7, 9, 11, 13, 15, 15, 17, |
|
7, 7, 9, 11, 13, 15, 17, 19, |
|
7, 9, 11, 13, 14, 16, 19, 23, |
|
9, 11, 13, 14, 16, 19, 23, 29, |
|
9, 11, 13, 15, 17, 21, 28, 35, |
|
11, 13, 16, 17, 21, 28, 35, 41, |
|
}, |
|
{ // standard |
|
4, 4, 5, 5, 6, 7, 7, 9, |
|
4, 4, 5, 6, 7, 7, 9, 9, |
|
5, 5, 6, 7, 7, 9, 9, 10, |
|
5, 5, 6, 7, 7, 9, 9, 10, |
|
5, 6, 7, 7, 8, 9, 10, 12, |
|
6, 7, 7, 8, 9, 10, 12, 15, |
|
6, 7, 7, 9, 10, 11, 14, 17, |
|
7, 7, 9, 10, 11, 14, 17, 21, |
|
}, |
|
{ // high quality |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 5, |
|
4, 4, 4, 4, 4, 4, 5, 5, |
|
4, 4, 4, 4, 4, 5, 5, 6, |
|
4, 4, 4, 4, 5, 5, 6, 7, |
|
4, 4, 4, 4, 5, 6, 7, 7, |
|
}, |
|
{ // codec default |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
4, 4, 4, 4, 4, 4, 4, 4, |
|
}, |
|
}; |
|
|
|
#define NUM_MB_LIMITS 4 |
|
static const int prores_mb_limits[NUM_MB_LIMITS] = { |
|
1620, // up to 720x576 |
|
2700, // up to 960x720 |
|
6075, // up to 1440x1080 |
|
9216, // up to 2048x1152 |
|
}; |
|
|
|
static const struct prores_profile { |
|
const char *full_name; |
|
uint32_t tag; |
|
int min_quant; |
|
int max_quant; |
|
int br_tab[NUM_MB_LIMITS]; |
|
int quant; |
|
} prores_profile_info[5] = { |
|
{ |
|
.full_name = "proxy", |
|
.tag = MKTAG('a', 'p', 'c', 'o'), |
|
.min_quant = 4, |
|
.max_quant = 8, |
|
.br_tab = { 300, 242, 220, 194 }, |
|
.quant = QUANT_MAT_PROXY, |
|
}, |
|
{ |
|
.full_name = "LT", |
|
.tag = MKTAG('a', 'p', 'c', 's'), |
|
.min_quant = 1, |
|
.max_quant = 9, |
|
.br_tab = { 720, 560, 490, 440 }, |
|
.quant = QUANT_MAT_LT, |
|
}, |
|
{ |
|
.full_name = "standard", |
|
.tag = MKTAG('a', 'p', 'c', 'n'), |
|
.min_quant = 1, |
|
.max_quant = 6, |
|
.br_tab = { 1050, 808, 710, 632 }, |
|
.quant = QUANT_MAT_STANDARD, |
|
}, |
|
{ |
|
.full_name = "high quality", |
|
.tag = MKTAG('a', 'p', 'c', 'h'), |
|
.min_quant = 1, |
|
.max_quant = 6, |
|
.br_tab = { 1566, 1216, 1070, 950 }, |
|
.quant = QUANT_MAT_HQ, |
|
}, |
|
{ |
|
.full_name = "4444", |
|
.tag = MKTAG('a', 'p', '4', 'h'), |
|
.min_quant = 1, |
|
.max_quant = 6, |
|
.br_tab = { 2350, 1828, 1600, 1425 }, |
|
.quant = QUANT_MAT_HQ, |
|
} |
|
}; |
|
|
|
#define TRELLIS_WIDTH 16 |
|
#define SCORE_LIMIT INT_MAX / 2 |
|
|
|
struct TrellisNode { |
|
int prev_node; |
|
int quant; |
|
int bits; |
|
int score; |
|
}; |
|
|
|
#define MAX_STORED_Q 16 |
|
|
|
typedef struct ProresThreadData { |
|
DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; |
|
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16]; |
|
int16_t custom_q[64]; |
|
struct TrellisNode *nodes; |
|
} ProresThreadData; |
|
|
|
typedef struct ProresContext { |
|
AVClass *class; |
|
DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; |
|
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16]; |
|
int16_t quants[MAX_STORED_Q][64]; |
|
int16_t custom_q[64]; |
|
const uint8_t *quant_mat; |
|
const uint8_t *scantable; |
|
|
|
void (*fdct)(FDCTDSPContext *fdsp, const uint16_t *src, |
|
int linesize, int16_t *block); |
|
FDCTDSPContext fdsp; |
|
|
|
int mb_width, mb_height; |
|
int mbs_per_slice; |
|
int num_chroma_blocks, chroma_factor; |
|
int slices_width; |
|
int slices_per_picture; |
|
int pictures_per_frame; // 1 for progressive, 2 for interlaced |
|
int cur_picture_idx; |
|
int num_planes; |
|
int bits_per_mb; |
|
int force_quant; |
|
int alpha_bits; |
|
int warn; |
|
|
|
char *vendor; |
|
int quant_sel; |
|
|
|
int frame_size_upper_bound; |
|
|
|
int profile; |
|
const struct prores_profile *profile_info; |
|
|
|
int *slice_q; |
|
|
|
ProresThreadData *tdata; |
|
} ProresContext; |
|
|
|
static void get_slice_data(ProresContext *ctx, const uint16_t *src, |
|
int linesize, int x, int y, int w, int h, |
|
int16_t *blocks, uint16_t *emu_buf, |
|
int mbs_per_slice, int blocks_per_mb, int is_chroma) |
|
{ |
|
const uint16_t *esrc; |
|
const int mb_width = 4 * blocks_per_mb; |
|
int elinesize; |
|
int i, j, k; |
|
|
|
for (i = 0; i < mbs_per_slice; i++, src += mb_width) { |
|
if (x >= w) { |
|
memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb |
|
* sizeof(*blocks)); |
|
return; |
|
} |
|
if (x + mb_width <= w && y + 16 <= h) { |
|
esrc = src; |
|
elinesize = linesize; |
|
} else { |
|
int bw, bh, pix; |
|
|
|
esrc = emu_buf; |
|
elinesize = 16 * sizeof(*emu_buf); |
|
|
|
bw = FFMIN(w - x, mb_width); |
|
bh = FFMIN(h - y, 16); |
|
|
|
for (j = 0; j < bh; j++) { |
|
memcpy(emu_buf + j * 16, |
|
(const uint8_t*)src + j * linesize, |
|
bw * sizeof(*src)); |
|
pix = emu_buf[j * 16 + bw - 1]; |
|
for (k = bw; k < mb_width; k++) |
|
emu_buf[j * 16 + k] = pix; |
|
} |
|
for (; j < 16; j++) |
|
memcpy(emu_buf + j * 16, |
|
emu_buf + (bh - 1) * 16, |
|
mb_width * sizeof(*emu_buf)); |
|
} |
|
if (!is_chroma) { |
|
ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); |
|
blocks += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); |
|
blocks += 64; |
|
} |
|
ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); |
|
blocks += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); |
|
blocks += 64; |
|
} |
|
} else { |
|
ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); |
|
blocks += 64; |
|
ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); |
|
blocks += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); |
|
blocks += 64; |
|
ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); |
|
blocks += 64; |
|
} |
|
} |
|
|
|
x += mb_width; |
|
} |
|
} |
|
|
|
static void get_alpha_data(ProresContext *ctx, const uint16_t *src, |
|
int linesize, int x, int y, int w, int h, |
|
int16_t *blocks, int mbs_per_slice, int abits) |
|
{ |
|
const int slice_width = 16 * mbs_per_slice; |
|
int i, j, copy_w, copy_h; |
|
|
|
copy_w = FFMIN(w - x, slice_width); |
|
copy_h = FFMIN(h - y, 16); |
|
for (i = 0; i < copy_h; i++) { |
|
memcpy(blocks, src, copy_w * sizeof(*src)); |
|
if (abits == 8) |
|
for (j = 0; j < copy_w; j++) |
|
blocks[j] >>= 2; |
|
else |
|
for (j = 0; j < copy_w; j++) |
|
blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4); |
|
for (j = copy_w; j < slice_width; j++) |
|
blocks[j] = blocks[copy_w - 1]; |
|
blocks += slice_width; |
|
src += linesize >> 1; |
|
} |
|
for (; i < 16; i++) { |
|
memcpy(blocks, blocks - slice_width, slice_width * sizeof(*blocks)); |
|
blocks += slice_width; |
|
} |
|
} |
|
|
|
/** |
|
* Write an unsigned rice/exp golomb codeword. |
|
*/ |
|
static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val) |
|
{ |
|
unsigned int rice_order, exp_order, switch_bits, switch_val; |
|
int exponent; |
|
|
|
/* number of prefix bits to switch between Rice and expGolomb */ |
|
switch_bits = (codebook & 3) + 1; |
|
rice_order = codebook >> 5; /* rice code order */ |
|
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
|
|
|
switch_val = switch_bits << rice_order; |
|
|
|
if (val >= switch_val) { |
|
val -= switch_val - (1 << exp_order); |
|
exponent = av_log2(val); |
|
|
|
put_bits(pb, exponent - exp_order + switch_bits, 0); |
|
put_bits(pb, exponent + 1, val); |
|
} else { |
|
exponent = val >> rice_order; |
|
|
|
if (exponent) |
|
put_bits(pb, exponent, 0); |
|
put_bits(pb, 1, 1); |
|
if (rice_order) |
|
put_sbits(pb, rice_order, val); |
|
} |
|
} |
|
|
|
#define GET_SIGN(x) ((x) >> 31) |
|
#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x)) |
|
|
|
static void encode_dcs(PutBitContext *pb, int16_t *blocks, |
|
int blocks_per_slice, int scale) |
|
{ |
|
int i; |
|
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
|
|
|
prev_dc = (blocks[0] - 0x4000) / scale; |
|
encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc)); |
|
sign = 0; |
|
codebook = 3; |
|
blocks += 64; |
|
|
|
for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
|
dc = (blocks[0] - 0x4000) / scale; |
|
delta = dc - prev_dc; |
|
new_sign = GET_SIGN(delta); |
|
delta = (delta ^ sign) - sign; |
|
code = MAKE_CODE(delta); |
|
encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code); |
|
codebook = (code + (code & 1)) >> 1; |
|
codebook = FFMIN(codebook, 3); |
|
sign = new_sign; |
|
prev_dc = dc; |
|
} |
|
} |
|
|
|
static void encode_acs(PutBitContext *pb, int16_t *blocks, |
|
int blocks_per_slice, |
|
int plane_size_factor, |
|
const uint8_t *scan, const int16_t *qmat) |
|
{ |
|
int idx, i; |
|
int run, level, run_cb, lev_cb; |
|
int max_coeffs, abs_level; |
|
|
|
max_coeffs = blocks_per_slice << 6; |
|
run_cb = ff_prores_run_to_cb_index[4]; |
|
lev_cb = ff_prores_lev_to_cb_index[2]; |
|
run = 0; |
|
|
|
for (i = 1; i < 64; i++) { |
|
for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
|
level = blocks[idx] / qmat[scan[i]]; |
|
if (level) { |
|
abs_level = FFABS(level); |
|
encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run); |
|
encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb], |
|
abs_level - 1); |
|
put_sbits(pb, 1, GET_SIGN(level)); |
|
|
|
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
|
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
|
run = 0; |
|
} else { |
|
run++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb, |
|
const uint16_t *src, int linesize, |
|
int mbs_per_slice, int16_t *blocks, |
|
int blocks_per_mb, int plane_size_factor, |
|
const int16_t *qmat) |
|
{ |
|
int blocks_per_slice, saved_pos; |
|
|
|
saved_pos = put_bits_count(pb); |
|
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
|
|
|
encode_dcs(pb, blocks, blocks_per_slice, qmat[0]); |
|
encode_acs(pb, blocks, blocks_per_slice, plane_size_factor, |
|
ctx->scantable, qmat); |
|
flush_put_bits(pb); |
|
|
|
return (put_bits_count(pb) - saved_pos) >> 3; |
|
} |
|
|
|
static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits) |
|
{ |
|
const int mask = (1 << abits) - 1; |
|
const int dbits = (abits == 8) ? 4 : 7; |
|
const int dsize = 1 << dbits - 1; |
|
int diff = cur - prev; |
|
|
|
diff &= mask; |
|
if (diff >= (1 << abits) - dsize) |
|
diff -= 1 << abits; |
|
if (diff < -dsize || diff > dsize || !diff) { |
|
put_bits(pb, 1, 1); |
|
put_bits(pb, abits, diff); |
|
} else { |
|
put_bits(pb, 1, 0); |
|
put_bits(pb, dbits - 1, FFABS(diff) - 1); |
|
put_bits(pb, 1, diff < 0); |
|
} |
|
} |
|
|
|
static void put_alpha_run(PutBitContext *pb, int run) |
|
{ |
|
if (run) { |
|
put_bits(pb, 1, 0); |
|
if (run < 0x10) |
|
put_bits(pb, 4, run); |
|
else |
|
put_bits(pb, 15, run); |
|
} else { |
|
put_bits(pb, 1, 1); |
|
} |
|
} |
|
|
|
// todo alpha quantisation for high quants |
|
static int encode_alpha_plane(ProresContext *ctx, PutBitContext *pb, |
|
int mbs_per_slice, uint16_t *blocks, |
|
int quant) |
|
{ |
|
const int abits = ctx->alpha_bits; |
|
const int mask = (1 << abits) - 1; |
|
const int num_coeffs = mbs_per_slice * 256; |
|
int saved_pos = put_bits_count(pb); |
|
int prev = mask, cur; |
|
int idx = 0; |
|
int run = 0; |
|
|
|
cur = blocks[idx++]; |
|
put_alpha_diff(pb, cur, prev, abits); |
|
prev = cur; |
|
do { |
|
cur = blocks[idx++]; |
|
if (cur != prev) { |
|
put_alpha_run (pb, run); |
|
put_alpha_diff(pb, cur, prev, abits); |
|
prev = cur; |
|
run = 0; |
|
} else { |
|
run++; |
|
} |
|
} while (idx < num_coeffs); |
|
if (run) |
|
put_alpha_run(pb, run); |
|
flush_put_bits(pb); |
|
return (put_bits_count(pb) - saved_pos) >> 3; |
|
} |
|
|
|
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, |
|
PutBitContext *pb, |
|
int sizes[4], int x, int y, int quant, |
|
int mbs_per_slice) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
int i, xp, yp; |
|
int total_size = 0; |
|
const uint16_t *src; |
|
int slice_width_factor = av_log2(mbs_per_slice); |
|
int num_cblocks, pwidth, linesize, line_add; |
|
int plane_factor, is_chroma; |
|
uint16_t *qmat; |
|
|
|
if (ctx->pictures_per_frame == 1) |
|
line_add = 0; |
|
else |
|
line_add = ctx->cur_picture_idx ^ !pic->top_field_first; |
|
|
|
if (ctx->force_quant) { |
|
qmat = ctx->quants[0]; |
|
} else if (quant < MAX_STORED_Q) { |
|
qmat = ctx->quants[quant]; |
|
} else { |
|
qmat = ctx->custom_q; |
|
for (i = 0; i < 64; i++) |
|
qmat[i] = ctx->quant_mat[i] * quant; |
|
} |
|
|
|
for (i = 0; i < ctx->num_planes; i++) { |
|
is_chroma = (i == 1 || i == 2); |
|
plane_factor = slice_width_factor + 2; |
|
if (is_chroma) |
|
plane_factor += ctx->chroma_factor - 3; |
|
if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) { |
|
xp = x << 4; |
|
yp = y << 4; |
|
num_cblocks = 4; |
|
pwidth = avctx->width; |
|
} else { |
|
xp = x << 3; |
|
yp = y << 4; |
|
num_cblocks = 2; |
|
pwidth = avctx->width >> 1; |
|
} |
|
|
|
linesize = pic->linesize[i] * ctx->pictures_per_frame; |
|
src = (const uint16_t*)(pic->data[i] + yp * linesize + |
|
line_add * pic->linesize[i]) + xp; |
|
|
|
if (i < 3) { |
|
get_slice_data(ctx, src, linesize, xp, yp, |
|
pwidth, avctx->height / ctx->pictures_per_frame, |
|
ctx->blocks[0], ctx->emu_buf, |
|
mbs_per_slice, num_cblocks, is_chroma); |
|
sizes[i] = encode_slice_plane(ctx, pb, src, linesize, |
|
mbs_per_slice, ctx->blocks[0], |
|
num_cblocks, plane_factor, |
|
qmat); |
|
} else { |
|
get_alpha_data(ctx, src, linesize, xp, yp, |
|
pwidth, avctx->height / ctx->pictures_per_frame, |
|
ctx->blocks[0], mbs_per_slice, ctx->alpha_bits); |
|
sizes[i] = encode_alpha_plane(ctx, pb, mbs_per_slice, |
|
ctx->blocks[0], quant); |
|
} |
|
total_size += sizes[i]; |
|
if (put_bits_left(pb) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Underestimated required buffer size.\n"); |
|
return AVERROR_BUG; |
|
} |
|
} |
|
return total_size; |
|
} |
|
|
|
static inline int estimate_vlc(unsigned codebook, int val) |
|
{ |
|
unsigned int rice_order, exp_order, switch_bits, switch_val; |
|
int exponent; |
|
|
|
/* number of prefix bits to switch between Rice and expGolomb */ |
|
switch_bits = (codebook & 3) + 1; |
|
rice_order = codebook >> 5; /* rice code order */ |
|
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
|
|
|
switch_val = switch_bits << rice_order; |
|
|
|
if (val >= switch_val) { |
|
val -= switch_val - (1 << exp_order); |
|
exponent = av_log2(val); |
|
|
|
return exponent * 2 - exp_order + switch_bits + 1; |
|
} else { |
|
return (val >> rice_order) + rice_order + 1; |
|
} |
|
} |
|
|
|
static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice, |
|
int scale) |
|
{ |
|
int i; |
|
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
|
int bits; |
|
|
|
prev_dc = (blocks[0] - 0x4000) / scale; |
|
bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc)); |
|
sign = 0; |
|
codebook = 3; |
|
blocks += 64; |
|
*error += FFABS(blocks[0] - 0x4000) % scale; |
|
|
|
for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
|
dc = (blocks[0] - 0x4000) / scale; |
|
*error += FFABS(blocks[0] - 0x4000) % scale; |
|
delta = dc - prev_dc; |
|
new_sign = GET_SIGN(delta); |
|
delta = (delta ^ sign) - sign; |
|
code = MAKE_CODE(delta); |
|
bits += estimate_vlc(ff_prores_dc_codebook[codebook], code); |
|
codebook = (code + (code & 1)) >> 1; |
|
codebook = FFMIN(codebook, 3); |
|
sign = new_sign; |
|
prev_dc = dc; |
|
} |
|
|
|
return bits; |
|
} |
|
|
|
static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice, |
|
int plane_size_factor, |
|
const uint8_t *scan, const int16_t *qmat) |
|
{ |
|
int idx, i; |
|
int run, level, run_cb, lev_cb; |
|
int max_coeffs, abs_level; |
|
int bits = 0; |
|
|
|
max_coeffs = blocks_per_slice << 6; |
|
run_cb = ff_prores_run_to_cb_index[4]; |
|
lev_cb = ff_prores_lev_to_cb_index[2]; |
|
run = 0; |
|
|
|
for (i = 1; i < 64; i++) { |
|
for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
|
level = blocks[idx] / qmat[scan[i]]; |
|
*error += FFABS(blocks[idx]) % qmat[scan[i]]; |
|
if (level) { |
|
abs_level = FFABS(level); |
|
bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run); |
|
bits += estimate_vlc(ff_prores_ac_codebook[lev_cb], |
|
abs_level - 1) + 1; |
|
|
|
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
|
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
|
run = 0; |
|
} else { |
|
run++; |
|
} |
|
} |
|
} |
|
|
|
return bits; |
|
} |
|
|
|
static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, |
|
const uint16_t *src, int linesize, |
|
int mbs_per_slice, |
|
int blocks_per_mb, int plane_size_factor, |
|
const int16_t *qmat, ProresThreadData *td) |
|
{ |
|
int blocks_per_slice; |
|
int bits; |
|
|
|
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
|
|
|
bits = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]); |
|
bits += estimate_acs(error, td->blocks[plane], blocks_per_slice, |
|
plane_size_factor, ctx->scantable, qmat); |
|
|
|
return FFALIGN(bits, 8); |
|
} |
|
|
|
static int est_alpha_diff(int cur, int prev, int abits) |
|
{ |
|
const int mask = (1 << abits) - 1; |
|
const int dbits = (abits == 8) ? 4 : 7; |
|
const int dsize = 1 << dbits - 1; |
|
int diff = cur - prev; |
|
|
|
diff &= mask; |
|
if (diff >= (1 << abits) - dsize) |
|
diff -= 1 << abits; |
|
if (diff < -dsize || diff > dsize || !diff) |
|
return abits + 1; |
|
else |
|
return dbits + 1; |
|
} |
|
|
|
static int estimate_alpha_plane(ProresContext *ctx, int *error, |
|
const uint16_t *src, int linesize, |
|
int mbs_per_slice, int quant, |
|
int16_t *blocks) |
|
{ |
|
const int abits = ctx->alpha_bits; |
|
const int mask = (1 << abits) - 1; |
|
const int num_coeffs = mbs_per_slice * 256; |
|
int prev = mask, cur; |
|
int idx = 0; |
|
int run = 0; |
|
int bits; |
|
|
|
*error = 0; |
|
cur = blocks[idx++]; |
|
bits = est_alpha_diff(cur, prev, abits); |
|
prev = cur; |
|
do { |
|
cur = blocks[idx++]; |
|
if (cur != prev) { |
|
if (!run) |
|
bits++; |
|
else if (run < 0x10) |
|
bits += 4; |
|
else |
|
bits += 15; |
|
bits += est_alpha_diff(cur, prev, abits); |
|
prev = cur; |
|
run = 0; |
|
} else { |
|
run++; |
|
} |
|
} while (idx < num_coeffs); |
|
|
|
if (run) { |
|
if (run < 0x10) |
|
bits += 4; |
|
else |
|
bits += 15; |
|
} |
|
|
|
return bits; |
|
} |
|
|
|
static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic, |
|
int trellis_node, int x, int y, int mbs_per_slice, |
|
ProresThreadData *td) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
int i, q, pq, xp, yp; |
|
const uint16_t *src; |
|
int slice_width_factor = av_log2(mbs_per_slice); |
|
int num_cblocks[MAX_PLANES], pwidth; |
|
int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES]; |
|
const int min_quant = ctx->profile_info->min_quant; |
|
const int max_quant = ctx->profile_info->max_quant; |
|
int error, bits, bits_limit; |
|
int mbs, prev, cur, new_score; |
|
int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH]; |
|
int overquant; |
|
uint16_t *qmat; |
|
int linesize[4], line_add; |
|
|
|
if (ctx->pictures_per_frame == 1) |
|
line_add = 0; |
|
else |
|
line_add = ctx->cur_picture_idx ^ !pic->top_field_first; |
|
mbs = x + mbs_per_slice; |
|
|
|
for (i = 0; i < ctx->num_planes; i++) { |
|
is_chroma[i] = (i == 1 || i == 2); |
|
plane_factor[i] = slice_width_factor + 2; |
|
if (is_chroma[i]) |
|
plane_factor[i] += ctx->chroma_factor - 3; |
|
if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) { |
|
xp = x << 4; |
|
yp = y << 4; |
|
num_cblocks[i] = 4; |
|
pwidth = avctx->width; |
|
} else { |
|
xp = x << 3; |
|
yp = y << 4; |
|
num_cblocks[i] = 2; |
|
pwidth = avctx->width >> 1; |
|
} |
|
|
|
linesize[i] = pic->linesize[i] * ctx->pictures_per_frame; |
|
src = (const uint16_t*)(pic->data[i] + yp * linesize[i] + |
|
line_add * pic->linesize[i]) + xp; |
|
|
|
if (i < 3) { |
|
get_slice_data(ctx, src, linesize[i], xp, yp, |
|
pwidth, avctx->height / ctx->pictures_per_frame, |
|
td->blocks[i], td->emu_buf, |
|
mbs_per_slice, num_cblocks[i], is_chroma[i]); |
|
} else { |
|
get_alpha_data(ctx, src, linesize[i], xp, yp, |
|
pwidth, avctx->height / ctx->pictures_per_frame, |
|
td->blocks[i], mbs_per_slice, ctx->alpha_bits); |
|
} |
|
} |
|
|
|
for (q = min_quant; q < max_quant + 2; q++) { |
|
td->nodes[trellis_node + q].prev_node = -1; |
|
td->nodes[trellis_node + q].quant = q; |
|
} |
|
|
|
// todo: maybe perform coarser quantising to fit into frame size when needed |
|
for (q = min_quant; q <= max_quant; q++) { |
|
bits = 0; |
|
error = 0; |
|
for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) { |
|
bits += estimate_slice_plane(ctx, &error, i, |
|
src, linesize[i], |
|
mbs_per_slice, |
|
num_cblocks[i], plane_factor[i], |
|
ctx->quants[q], td); |
|
} |
|
if (ctx->alpha_bits) |
|
bits += estimate_alpha_plane(ctx, &error, src, linesize[3], |
|
mbs_per_slice, q, td->blocks[3]); |
|
if (bits > 65000 * 8) { |
|
error = SCORE_LIMIT; |
|
break; |
|
} |
|
slice_bits[q] = bits; |
|
slice_score[q] = error; |
|
} |
|
if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) { |
|
slice_bits[max_quant + 1] = slice_bits[max_quant]; |
|
slice_score[max_quant + 1] = slice_score[max_quant] + 1; |
|
overquant = max_quant; |
|
} else { |
|
for (q = max_quant + 1; q < 128; q++) { |
|
bits = 0; |
|
error = 0; |
|
if (q < MAX_STORED_Q) { |
|
qmat = ctx->quants[q]; |
|
} else { |
|
qmat = td->custom_q; |
|
for (i = 0; i < 64; i++) |
|
qmat[i] = ctx->quant_mat[i] * q; |
|
} |
|
for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) { |
|
bits += estimate_slice_plane(ctx, &error, i, |
|
src, linesize[i], |
|
mbs_per_slice, |
|
num_cblocks[i], plane_factor[i], |
|
qmat, td); |
|
} |
|
if (ctx->alpha_bits) |
|
bits += estimate_alpha_plane(ctx, &error, src, linesize[3], |
|
mbs_per_slice, q, td->blocks[3]); |
|
if (bits <= ctx->bits_per_mb * mbs_per_slice) |
|
break; |
|
} |
|
|
|
slice_bits[max_quant + 1] = bits; |
|
slice_score[max_quant + 1] = error; |
|
overquant = q; |
|
} |
|
td->nodes[trellis_node + max_quant + 1].quant = overquant; |
|
|
|
bits_limit = mbs * ctx->bits_per_mb; |
|
for (pq = min_quant; pq < max_quant + 2; pq++) { |
|
prev = trellis_node - TRELLIS_WIDTH + pq; |
|
|
|
for (q = min_quant; q < max_quant + 2; q++) { |
|
cur = trellis_node + q; |
|
|
|
bits = td->nodes[prev].bits + slice_bits[q]; |
|
error = slice_score[q]; |
|
if (bits > bits_limit) |
|
error = SCORE_LIMIT; |
|
|
|
if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT) |
|
new_score = td->nodes[prev].score + error; |
|
else |
|
new_score = SCORE_LIMIT; |
|
if (td->nodes[cur].prev_node == -1 || |
|
td->nodes[cur].score >= new_score) { |
|
|
|
td->nodes[cur].bits = bits; |
|
td->nodes[cur].score = new_score; |
|
td->nodes[cur].prev_node = prev; |
|
} |
|
} |
|
} |
|
|
|
error = td->nodes[trellis_node + min_quant].score; |
|
pq = trellis_node + min_quant; |
|
for (q = min_quant + 1; q < max_quant + 2; q++) { |
|
if (td->nodes[trellis_node + q].score <= error) { |
|
error = td->nodes[trellis_node + q].score; |
|
pq = trellis_node + q; |
|
} |
|
} |
|
|
|
return pq; |
|
} |
|
|
|
static int find_quant_thread(AVCodecContext *avctx, void *arg, |
|
int jobnr, int threadnr) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
ProresThreadData *td = ctx->tdata + threadnr; |
|
int mbs_per_slice = ctx->mbs_per_slice; |
|
int x, y = jobnr, mb, q = 0; |
|
|
|
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
|
while (ctx->mb_width - x < mbs_per_slice) |
|
mbs_per_slice >>= 1; |
|
q = find_slice_quant(avctx, avctx->coded_frame, |
|
(mb + 1) * TRELLIS_WIDTH, x, y, |
|
mbs_per_slice, td); |
|
} |
|
|
|
for (x = ctx->slices_width - 1; x >= 0; x--) { |
|
ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant; |
|
q = td->nodes[q].prev_node; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
|
const AVFrame *pic, int *got_packet) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp; |
|
uint8_t *picture_size_pos; |
|
PutBitContext pb; |
|
int x, y, i, mb, q = 0; |
|
int sizes[4] = { 0 }; |
|
int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1); |
|
int frame_size, picture_size, slice_size; |
|
int pkt_size, ret; |
|
int max_slice_size = (ctx->frame_size_upper_bound - 200) / (ctx->pictures_per_frame * ctx->slices_per_picture + 1); |
|
uint8_t frame_flags; |
|
|
|
*avctx->coded_frame = *pic; |
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
|
avctx->coded_frame->key_frame = 1; |
|
|
|
pkt_size = ctx->frame_size_upper_bound; |
|
|
|
if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size + FF_MIN_BUFFER_SIZE)) < 0) |
|
return ret; |
|
|
|
orig_buf = pkt->data; |
|
|
|
// frame atom |
|
orig_buf += 4; // frame size |
|
bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID |
|
buf = orig_buf; |
|
|
|
// frame header |
|
tmp = buf; |
|
buf += 2; // frame header size will be stored here |
|
bytestream_put_be16 (&buf, 0); // version 1 |
|
bytestream_put_buffer(&buf, ctx->vendor, 4); |
|
bytestream_put_be16 (&buf, avctx->width); |
|
bytestream_put_be16 (&buf, avctx->height); |
|
|
|
frame_flags = ctx->chroma_factor << 6; |
|
if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) |
|
frame_flags |= pic->top_field_first ? 0x04 : 0x08; |
|
bytestream_put_byte (&buf, frame_flags); |
|
|
|
bytestream_put_byte (&buf, 0); // reserved |
|
bytestream_put_byte (&buf, avctx->color_primaries); |
|
bytestream_put_byte (&buf, avctx->color_trc); |
|
bytestream_put_byte (&buf, avctx->colorspace); |
|
bytestream_put_byte (&buf, 0x40 | (ctx->alpha_bits >> 3)); |
|
bytestream_put_byte (&buf, 0); // reserved |
|
if (ctx->quant_sel != QUANT_MAT_DEFAULT) { |
|
bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present |
|
// luma quantisation matrix |
|
for (i = 0; i < 64; i++) |
|
bytestream_put_byte(&buf, ctx->quant_mat[i]); |
|
// chroma quantisation matrix |
|
for (i = 0; i < 64; i++) |
|
bytestream_put_byte(&buf, ctx->quant_mat[i]); |
|
} else { |
|
bytestream_put_byte (&buf, 0x00); // matrix flags - default matrices are used |
|
} |
|
bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size |
|
|
|
for (ctx->cur_picture_idx = 0; |
|
ctx->cur_picture_idx < ctx->pictures_per_frame; |
|
ctx->cur_picture_idx++) { |
|
// picture header |
|
picture_size_pos = buf + 1; |
|
bytestream_put_byte (&buf, 0x40); // picture header size (in bits) |
|
buf += 4; // picture data size will be stored here |
|
bytestream_put_be16 (&buf, ctx->slices_per_picture); |
|
bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs |
|
|
|
// seek table - will be filled during slice encoding |
|
slice_sizes = buf; |
|
buf += ctx->slices_per_picture * 2; |
|
|
|
// slices |
|
if (!ctx->force_quant) { |
|
ret = avctx->execute2(avctx, find_quant_thread, NULL, NULL, |
|
ctx->mb_height); |
|
if (ret) |
|
return ret; |
|
} |
|
|
|
for (y = 0; y < ctx->mb_height; y++) { |
|
int mbs_per_slice = ctx->mbs_per_slice; |
|
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
|
q = ctx->force_quant ? ctx->force_quant |
|
: ctx->slice_q[mb + y * ctx->slices_width]; |
|
|
|
while (ctx->mb_width - x < mbs_per_slice) |
|
mbs_per_slice >>= 1; |
|
|
|
bytestream_put_byte(&buf, slice_hdr_size << 3); |
|
slice_hdr = buf; |
|
buf += slice_hdr_size - 1; |
|
if (pkt_size <= buf - orig_buf + 2 * max_slice_size) { |
|
uint8_t *start = pkt->data; |
|
// Recompute new size according to max_slice_size |
|
// and deduce delta |
|
int delta = 200 + (ctx->pictures_per_frame * |
|
ctx->slices_per_picture + 1) * |
|
max_slice_size - pkt_size; |
|
|
|
delta = FFMAX(delta, 2 * max_slice_size); |
|
ctx->frame_size_upper_bound += delta; |
|
|
|
if (!ctx->warn) { |
|
avpriv_request_sample(avctx, |
|
"Packet too small: is %i," |
|
" needs %i (slice: %i). " |
|
"Correct allocation", |
|
pkt_size, delta, max_slice_size); |
|
ctx->warn = 1; |
|
} |
|
|
|
ret = av_grow_packet(pkt, delta); |
|
if (ret < 0) |
|
return ret; |
|
|
|
pkt_size += delta; |
|
// restore pointers |
|
orig_buf = pkt->data + (orig_buf - start); |
|
buf = pkt->data + (buf - start); |
|
picture_size_pos = pkt->data + (picture_size_pos - start); |
|
slice_sizes = pkt->data + (slice_sizes - start); |
|
slice_hdr = pkt->data + (slice_hdr - start); |
|
tmp = pkt->data + (tmp - start); |
|
} |
|
init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8); |
|
ret = encode_slice(avctx, pic, &pb, sizes, x, y, q, |
|
mbs_per_slice); |
|
if (ret < 0) |
|
return ret; |
|
|
|
bytestream_put_byte(&slice_hdr, q); |
|
slice_size = slice_hdr_size + sizes[ctx->num_planes - 1]; |
|
for (i = 0; i < ctx->num_planes - 1; i++) { |
|
bytestream_put_be16(&slice_hdr, sizes[i]); |
|
slice_size += sizes[i]; |
|
} |
|
bytestream_put_be16(&slice_sizes, slice_size); |
|
buf += slice_size - slice_hdr_size; |
|
if (max_slice_size < slice_size) |
|
max_slice_size = slice_size; |
|
} |
|
} |
|
|
|
picture_size = buf - (picture_size_pos - 1); |
|
bytestream_put_be32(&picture_size_pos, picture_size); |
|
} |
|
|
|
orig_buf -= 8; |
|
frame_size = buf - orig_buf; |
|
bytestream_put_be32(&orig_buf, frame_size); |
|
|
|
pkt->size = frame_size; |
|
pkt->flags |= AV_PKT_FLAG_KEY; |
|
*got_packet = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int encode_close(AVCodecContext *avctx) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
int i; |
|
|
|
av_freep(&avctx->coded_frame); |
|
|
|
if (ctx->tdata) { |
|
for (i = 0; i < avctx->thread_count; i++) |
|
av_free(ctx->tdata[i].nodes); |
|
} |
|
av_freep(&ctx->tdata); |
|
av_freep(&ctx->slice_q); |
|
|
|
return 0; |
|
} |
|
|
|
static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src, |
|
int linesize, int16_t *block) |
|
{ |
|
int x, y; |
|
const uint16_t *tsrc = src; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
block[y * 8 + x] = tsrc[x]; |
|
tsrc += linesize >> 1; |
|
} |
|
fdsp->fdct(block); |
|
} |
|
|
|
static av_cold int encode_init(AVCodecContext *avctx) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
int mps; |
|
int i, j; |
|
int min_quant, max_quant; |
|
int interlaced = !!(avctx->flags & CODEC_FLAG_INTERLACED_DCT); |
|
|
|
avctx->bits_per_raw_sample = 10; |
|
avctx->coded_frame = av_frame_alloc(); |
|
if (!avctx->coded_frame) |
|
return AVERROR(ENOMEM); |
|
|
|
ctx->fdct = prores_fdct; |
|
ctx->scantable = interlaced ? ff_prores_interlaced_scan |
|
: ff_prores_progressive_scan; |
|
ff_fdctdsp_init(&ctx->fdsp, avctx); |
|
|
|
mps = ctx->mbs_per_slice; |
|
if (mps & (mps - 1)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"there should be an integer power of two MBs per slice\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (av_pix_fmt_desc_get(avctx->pix_fmt)->flags & AV_PIX_FMT_FLAG_ALPHA) { |
|
if (ctx->alpha_bits & 7) { |
|
av_log(avctx, AV_LOG_ERROR, "alpha bits should be 0, 8 or 16\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
} else { |
|
ctx->alpha_bits = 0; |
|
} |
|
|
|
ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10 |
|
? CFACTOR_Y422 |
|
: CFACTOR_Y444; |
|
ctx->profile_info = prores_profile_info + ctx->profile; |
|
ctx->num_planes = 3 + !!ctx->alpha_bits; |
|
|
|
ctx->mb_width = FFALIGN(avctx->width, 16) >> 4; |
|
|
|
if (interlaced) |
|
ctx->mb_height = FFALIGN(avctx->height, 32) >> 5; |
|
else |
|
ctx->mb_height = FFALIGN(avctx->height, 16) >> 4; |
|
|
|
ctx->slices_width = ctx->mb_width / mps; |
|
ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps); |
|
ctx->slices_per_picture = ctx->mb_height * ctx->slices_width; |
|
ctx->pictures_per_frame = 1 + interlaced; |
|
|
|
if (ctx->quant_sel == -1) |
|
ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant]; |
|
else |
|
ctx->quant_mat = prores_quant_matrices[ctx->quant_sel]; |
|
|
|
if (strlen(ctx->vendor) != 4) { |
|
av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA; |
|
if (!ctx->force_quant) { |
|
if (!ctx->bits_per_mb) { |
|
for (i = 0; i < NUM_MB_LIMITS - 1; i++) |
|
if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height * |
|
ctx->pictures_per_frame) |
|
break; |
|
ctx->bits_per_mb = ctx->profile_info->br_tab[i]; |
|
} else if (ctx->bits_per_mb < 128) { |
|
av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
min_quant = ctx->profile_info->min_quant; |
|
max_quant = ctx->profile_info->max_quant; |
|
for (i = min_quant; i < MAX_STORED_Q; i++) { |
|
for (j = 0; j < 64; j++) |
|
ctx->quants[i][j] = ctx->quant_mat[j] * i; |
|
} |
|
|
|
ctx->slice_q = av_malloc(ctx->slices_per_picture * sizeof(*ctx->slice_q)); |
|
if (!ctx->slice_q) { |
|
encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
ctx->tdata = av_mallocz(avctx->thread_count * sizeof(*ctx->tdata)); |
|
if (!ctx->tdata) { |
|
encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (j = 0; j < avctx->thread_count; j++) { |
|
ctx->tdata[j].nodes = av_malloc((ctx->slices_width + 1) |
|
* TRELLIS_WIDTH |
|
* sizeof(*ctx->tdata->nodes)); |
|
if (!ctx->tdata[j].nodes) { |
|
encode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
for (i = min_quant; i < max_quant + 2; i++) { |
|
ctx->tdata[j].nodes[i].prev_node = -1; |
|
ctx->tdata[j].nodes[i].bits = 0; |
|
ctx->tdata[j].nodes[i].score = 0; |
|
} |
|
} |
|
} else { |
|
int ls = 0; |
|
|
|
if (ctx->force_quant > 64) { |
|
av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
for (j = 0; j < 64; j++) { |
|
ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant; |
|
ls += av_log2((1 << 11) / ctx->quants[0][j]) * 2 + 1; |
|
} |
|
|
|
ctx->bits_per_mb = ls * 8; |
|
if (ctx->chroma_factor == CFACTOR_Y444) |
|
ctx->bits_per_mb += ls * 4; |
|
} |
|
|
|
ctx->frame_size_upper_bound = (ctx->pictures_per_frame * |
|
ctx->slices_per_picture + 1) * |
|
(2 + 2 * ctx->num_planes + |
|
(mps * ctx->bits_per_mb) / 8) |
|
+ 200; |
|
|
|
if (ctx->alpha_bits) { |
|
// The alpha plane is run-coded and might exceed the bit budget. |
|
ctx->frame_size_upper_bound += (ctx->pictures_per_frame * |
|
ctx->slices_per_picture + 1) * |
|
/* num pixels per slice */ (ctx->mbs_per_slice * 256 * |
|
/* bits per pixel */ (1 + ctx->alpha_bits + 1) + 7 >> 3); |
|
} |
|
|
|
avctx->codec_tag = ctx->profile_info->tag; |
|
|
|
av_log(avctx, AV_LOG_DEBUG, |
|
"profile %d, %d slices, interlacing: %s, %d bits per MB\n", |
|
ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame, |
|
interlaced ? "yes" : "no", ctx->bits_per_mb); |
|
av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n", |
|
ctx->frame_size_upper_bound); |
|
|
|
return 0; |
|
} |
|
|
|
#define OFFSET(x) offsetof(ProresContext, x) |
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
|
|
|
static const AVOption options[] = { |
|
{ "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice), |
|
AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE }, |
|
{ "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT, |
|
{ .i64 = PRORES_PROFILE_STANDARD }, |
|
PRORES_PROFILE_PROXY, PRORES_PROFILE_4444, VE, "profile" }, |
|
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY }, |
|
0, 0, VE, "profile" }, |
|
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT }, |
|
0, 0, VE, "profile" }, |
|
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD }, |
|
0, 0, VE, "profile" }, |
|
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ }, |
|
0, 0, VE, "profile" }, |
|
{ "4444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444 }, |
|
0, 0, VE, "profile" }, |
|
{ "vendor", "vendor ID", OFFSET(vendor), |
|
AV_OPT_TYPE_STRING, { .str = "Lavc" }, CHAR_MIN, CHAR_MAX, VE }, |
|
{ "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb), |
|
AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE }, |
|
{ "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT, |
|
{ .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, "quant_mat" }, |
|
{ "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT }, |
|
0, 0, VE, "quant_mat" }, |
|
{ "alpha_bits", "bits for alpha plane", OFFSET(alpha_bits), AV_OPT_TYPE_INT, |
|
{ .i64 = 16 }, 0, 16, VE }, |
|
{ NULL } |
|
}; |
|
|
|
static const AVClass proresenc_class = { |
|
.class_name = "ProRes encoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_prores_ks_encoder = { |
|
.name = "prores_ks", |
|
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_PRORES, |
|
.priv_data_size = sizeof(ProresContext), |
|
.init = encode_init, |
|
.close = encode_close, |
|
.encode2 = encode_frame, |
|
.capabilities = CODEC_CAP_SLICE_THREADS, |
|
.pix_fmts = (const enum AVPixelFormat[]) { |
|
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, |
|
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE |
|
}, |
|
.priv_class = &proresenc_class, |
|
};
|
|
|