mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1562 lines
56 KiB
1562 lines
56 KiB
/* |
|
* Wmall compatible decoder |
|
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion |
|
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson |
|
* Copyright (c) 2011 Andreas Öman |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* @brief wmall decoder implementation |
|
* Wmall is an MDCT based codec comparable to wma standard or AAC. |
|
* The decoding therefore consists of the following steps: |
|
* - bitstream decoding |
|
* - reconstruction of per-channel data |
|
* - rescaling and inverse quantization |
|
* - IMDCT |
|
* - windowing and overlapp-add |
|
* |
|
* The compressed wmall bitstream is split into individual packets. |
|
* Every such packet contains one or more wma frames. |
|
* The compressed frames may have a variable length and frames may |
|
* cross packet boundaries. |
|
* Common to all wmall frames is the number of samples that are stored in |
|
* a frame. |
|
* The number of samples and a few other decode flags are stored |
|
* as extradata that has to be passed to the decoder. |
|
* |
|
* The wmall frames themselves are again split into a variable number of |
|
* subframes. Every subframe contains the data for 2^N time domain samples |
|
* where N varies between 7 and 12. |
|
* |
|
* Example wmall bitstream (in samples): |
|
* |
|
* || packet 0 || packet 1 || packet 2 packets |
|
* --------------------------------------------------- |
|
* || frame 0 || frame 1 || frame 2 || frames |
|
* --------------------------------------------------- |
|
* || | | || | | | || || subframes of channel 0 |
|
* --------------------------------------------------- |
|
* || | | || | | | || || subframes of channel 1 |
|
* --------------------------------------------------- |
|
* |
|
* The frame layouts for the individual channels of a wma frame does not need |
|
* to be the same. |
|
* |
|
* However, if the offsets and lengths of several subframes of a frame are the |
|
* same, the subframes of the channels can be grouped. |
|
* Every group may then use special coding techniques like M/S stereo coding |
|
* to improve the compression ratio. These channel transformations do not |
|
* need to be applied to a whole subframe. Instead, they can also work on |
|
* individual scale factor bands (see below). |
|
* The coefficients that carry the audio signal in the frequency domain |
|
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements. |
|
* In addition to that, the encoder can switch to a runlevel coding scheme |
|
* by transmitting subframe_length / 128 zero coefficients. |
|
* |
|
* Before the audio signal can be converted to the time domain, the |
|
* coefficients have to be rescaled and inverse quantized. |
|
* A subframe is therefore split into several scale factor bands that get |
|
* scaled individually. |
|
* Scale factors are submitted for every frame but they might be shared |
|
* between the subframes of a channel. Scale factors are initially DPCM-coded. |
|
* Once scale factors are shared, the differences are transmitted as runlevel |
|
* codes. |
|
* Every subframe length and offset combination in the frame layout shares a |
|
* common quantization factor that can be adjusted for every channel by a |
|
* modifier. |
|
* After the inverse quantization, the coefficients get processed by an IMDCT. |
|
* The resulting values are then windowed with a sine window and the first half |
|
* of the values are added to the second half of the output from the previous |
|
* subframe in order to reconstruct the output samples. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "internal.h" |
|
#include "get_bits.h" |
|
#include "put_bits.h" |
|
#include "dsputil.h" |
|
#include "wma.h" |
|
|
|
/** current decoder limitations */ |
|
#define WMALL_MAX_CHANNELS 8 ///< max number of handled channels |
|
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
|
#define MAX_BANDS 29 ///< max number of scale factor bands |
|
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
|
|
|
#define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size |
|
#define WMALL_BLOCK_MAX_BITS 12 ///< log2 of max block size |
|
#define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size |
|
#define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes |
|
|
|
|
|
#define VLCBITS 9 |
|
#define SCALEVLCBITS 8 |
|
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
|
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
|
|
|
static float sin64[33]; ///< sinus table for decorrelation |
|
|
|
/** |
|
* @brief frame specific decoder context for a single channel |
|
*/ |
|
typedef struct { |
|
int16_t prev_block_len; ///< length of the previous block |
|
uint8_t transmit_coefs; |
|
uint8_t num_subframes; |
|
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples |
|
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame |
|
uint8_t cur_subframe; ///< current subframe number |
|
uint16_t decoded_samples; ///< number of already processed samples |
|
uint8_t grouped; ///< channel is part of a group |
|
int quant_step; ///< quantization step for the current subframe |
|
int8_t reuse_sf; ///< share scale factors between subframes |
|
int8_t scale_factor_step; ///< scaling step for the current subframe |
|
int max_scale_factor; ///< maximum scale factor for the current subframe |
|
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
|
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) |
|
int* scale_factors; ///< pointer to the scale factor values used for decoding |
|
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block |
|
float* coeffs; ///< pointer to the subframe decode buffer |
|
uint16_t num_vec_coeffs; ///< number of vector coded coefficients |
|
DECLARE_ALIGNED(16, float, out)[WMALL_BLOCK_MAX_SIZE + WMALL_BLOCK_MAX_SIZE / 2]; ///< output buffer |
|
int transient_counter; ///< number of transient samples from the beginning of transient zone |
|
} WmallChannelCtx; |
|
|
|
/** |
|
* @brief channel group for channel transformations |
|
*/ |
|
typedef struct { |
|
uint8_t num_channels; ///< number of channels in the group |
|
int8_t transform; ///< transform on / off |
|
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band |
|
float decorrelation_matrix[WMALL_MAX_CHANNELS*WMALL_MAX_CHANNELS]; |
|
float* channel_data[WMALL_MAX_CHANNELS]; ///< transformation coefficients |
|
} WmallChannelGrp; |
|
|
|
/** |
|
* @brief main decoder context |
|
*/ |
|
typedef struct WmallDecodeCtx { |
|
/* generic decoder variables */ |
|
AVCodecContext* avctx; ///< codec context for av_log |
|
DSPContext dsp; ///< accelerated DSP functions |
|
AVFrame frame; |
|
uint8_t frame_data[MAX_FRAMESIZE + |
|
FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data |
|
PutBitContext pb; ///< context for filling the frame_data buffer |
|
FFTContext mdct_ctx[WMALL_BLOCK_SIZES]; ///< MDCT context per block size |
|
DECLARE_ALIGNED(16, float, tmp)[WMALL_BLOCK_MAX_SIZE]; ///< IMDCT output buffer |
|
float* windows[WMALL_BLOCK_SIZES]; ///< windows for the different block sizes |
|
|
|
/* frame size dependent frame information (set during initialization) */ |
|
uint32_t decode_flags; ///< used compression features |
|
uint8_t len_prefix; ///< frame is prefixed with its length |
|
uint8_t dynamic_range_compression; ///< frame contains DRC data |
|
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) |
|
uint16_t samples_per_frame; ///< number of samples to output |
|
uint16_t log2_frame_size; |
|
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels) |
|
int8_t lfe_channel; ///< lfe channel index |
|
uint8_t max_num_subframes; |
|
uint8_t subframe_len_bits; ///< number of bits used for the subframe length |
|
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 |
|
uint16_t min_samples_per_subframe; |
|
int8_t num_sfb[WMALL_BLOCK_SIZES]; ///< scale factor bands per block size |
|
int16_t sfb_offsets[WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) |
|
int8_t sf_offsets[WMALL_BLOCK_SIZES][WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix |
|
int16_t subwoofer_cutoffs[WMALL_BLOCK_SIZES]; ///< subwoofer cutoff values |
|
|
|
/* packet decode state */ |
|
GetBitContext pgb; ///< bitstream reader context for the packet |
|
int next_packet_start; ///< start offset of the next wma packet in the demuxer packet |
|
uint8_t packet_offset; ///< frame offset in the packet |
|
uint8_t packet_sequence_number; ///< current packet number |
|
int num_saved_bits; ///< saved number of bits |
|
int frame_offset; ///< frame offset in the bit reservoir |
|
int subframe_offset; ///< subframe offset in the bit reservoir |
|
uint8_t packet_loss; ///< set in case of bitstream error |
|
uint8_t packet_done; ///< set when a packet is fully decoded |
|
|
|
/* frame decode state */ |
|
uint32_t frame_num; ///< current frame number (not used for decoding) |
|
GetBitContext gb; ///< bitstream reader context |
|
int buf_bit_size; ///< buffer size in bits |
|
int16_t* samples_16; ///< current samplebuffer pointer (16-bit) |
|
int16_t* samples_16_end; ///< maximum samplebuffer pointer |
|
int *samples_32; ///< current samplebuffer pointer (24-bit) |
|
int *samples_32_end; ///< maximum samplebuffer pointer |
|
uint8_t drc_gain; ///< gain for the DRC tool |
|
int8_t skip_frame; ///< skip output step |
|
int8_t parsed_all_subframes; ///< all subframes decoded? |
|
|
|
/* subframe/block decode state */ |
|
int16_t subframe_len; ///< current subframe length |
|
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe |
|
int8_t channel_indexes_for_cur_subframe[WMALL_MAX_CHANNELS]; |
|
int8_t num_bands; ///< number of scale factor bands |
|
int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream |
|
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block |
|
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables |
|
int8_t esc_len; ///< length of escaped coefficients |
|
|
|
uint8_t num_chgroups; ///< number of channel groups |
|
WmallChannelGrp chgroup[WMALL_MAX_CHANNELS]; ///< channel group information |
|
|
|
WmallChannelCtx channel[WMALL_MAX_CHANNELS]; ///< per channel data |
|
|
|
// WMA lossless |
|
|
|
uint8_t do_arith_coding; |
|
uint8_t do_ac_filter; |
|
uint8_t do_inter_ch_decorr; |
|
uint8_t do_mclms; |
|
uint8_t do_lpc; |
|
|
|
int8_t acfilter_order; |
|
int8_t acfilter_scaling; |
|
int64_t acfilter_coeffs[16]; |
|
int acfilter_prevvalues[2][16]; |
|
|
|
int8_t mclms_order; |
|
int8_t mclms_scaling; |
|
int16_t mclms_coeffs[128]; |
|
int16_t mclms_coeffs_cur[4]; |
|
int mclms_prevvalues[64]; // FIXME: should be 32-bit / 16-bit depending on bit-depth |
|
int16_t mclms_updates[64]; |
|
int mclms_recent; |
|
|
|
int movave_scaling; |
|
int quant_stepsize; |
|
|
|
struct { |
|
int order; |
|
int scaling; |
|
int coefsend; |
|
int bitsend; |
|
int16_t coefs[256]; |
|
int lms_prevvalues[512]; // FIXME: see above |
|
int16_t lms_updates[512]; // and here too |
|
int recent; |
|
} cdlms[2][9]; /* XXX: Here, 2 is the max. no. of channels allowed, |
|
9 is the maximum no. of filters per channel. |
|
Question is, why 2 if WMALL_MAX_CHANNELS == 8 */ |
|
|
|
|
|
int cdlms_ttl[2]; |
|
|
|
int bV3RTM; |
|
|
|
int is_channel_coded[2]; // XXX: same question as above applies here too (and below) |
|
int update_speed[2]; |
|
|
|
int transient[2]; |
|
int transient_pos[2]; |
|
int seekable_tile; |
|
|
|
int ave_sum[2]; |
|
|
|
int channel_residues[2][2048]; |
|
|
|
|
|
int lpc_coefs[2][40]; |
|
int lpc_order; |
|
int lpc_scaling; |
|
int lpc_intbits; |
|
|
|
int channel_coeffs[2][2048]; // FIXME: should be 32-bit / 16-bit depending on bit-depth |
|
|
|
} WmallDecodeCtx; |
|
|
|
|
|
#undef dprintf |
|
#define dprintf(pctx, ...) av_log(pctx, AV_LOG_DEBUG, __VA_ARGS__) |
|
|
|
|
|
static int num_logged_tiles = 0; |
|
static int num_logged_subframes = 0; |
|
static int num_lms_update_call = 0; |
|
|
|
/** |
|
*@brief helper function to print the most important members of the context |
|
*@param s context |
|
*/ |
|
static void av_cold dump_context(WmallDecodeCtx *s) |
|
{ |
|
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
|
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); |
|
|
|
PRINT("ed sample bit depth", s->bits_per_sample); |
|
PRINT_HEX("ed decode flags", s->decode_flags); |
|
PRINT("samples per frame", s->samples_per_frame); |
|
PRINT("log2 frame size", s->log2_frame_size); |
|
PRINT("max num subframes", s->max_num_subframes); |
|
PRINT("len prefix", s->len_prefix); |
|
PRINT("num channels", s->num_channels); |
|
} |
|
|
|
static void dump_int_buffer(uint8_t *buffer, int size, int length, int delimiter) |
|
{ |
|
int i; |
|
|
|
for (i=0 ; i<length ; i++) { |
|
if (!(i%delimiter)) |
|
av_log(0, 0, "\n[%d] ", i); |
|
av_log(0, 0, "%d, ", *(int16_t *)(buffer + i * size)); |
|
} |
|
av_log(0, 0, "\n"); |
|
} |
|
|
|
/** |
|
*@brief Uninitialize the decoder and free all resources. |
|
*@param avctx codec context |
|
*@return 0 on success, < 0 otherwise |
|
*/ |
|
static av_cold int decode_end(AVCodecContext *avctx) |
|
{ |
|
WmallDecodeCtx *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < WMALL_BLOCK_SIZES; i++) |
|
ff_mdct_end(&s->mdct_ctx[i]); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Initialize the decoder. |
|
*@param avctx codec context |
|
*@return 0 on success, -1 otherwise |
|
*/ |
|
static av_cold int decode_init(AVCodecContext *avctx) |
|
{ |
|
WmallDecodeCtx *s = avctx->priv_data; |
|
uint8_t *edata_ptr = avctx->extradata; |
|
unsigned int channel_mask; |
|
int i; |
|
int log2_max_num_subframes; |
|
int num_possible_block_sizes; |
|
|
|
s->avctx = avctx; |
|
dsputil_init(&s->dsp, avctx); |
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
|
|
|
if (avctx->extradata_size >= 18) { |
|
s->decode_flags = AV_RL16(edata_ptr+14); |
|
channel_mask = AV_RL32(edata_ptr+2); |
|
s->bits_per_sample = AV_RL16(edata_ptr); |
|
if (s->bits_per_sample == 16) |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
else if (s->bits_per_sample == 24) |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S32; |
|
else { |
|
av_log(avctx, AV_LOG_ERROR, "Unknown bit-depth: %d\n", |
|
s->bits_per_sample); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
/** dump the extradata */ |
|
for (i = 0; i < avctx->extradata_size; i++) |
|
dprintf(avctx, "[%x] ", avctx->extradata[i]); |
|
dprintf(avctx, "\n"); |
|
|
|
} else { |
|
av_log_ask_for_sample(avctx, "Unknown extradata size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/** generic init */ |
|
s->log2_frame_size = av_log2(avctx->block_align) + 4; |
|
|
|
/** frame info */ |
|
s->skip_frame = 1; /* skip first frame */ |
|
s->packet_loss = 1; |
|
s->len_prefix = (s->decode_flags & 0x40); |
|
|
|
/** get frame len */ |
|
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate, |
|
3, s->decode_flags); |
|
|
|
/** init previous block len */ |
|
for (i = 0; i < avctx->channels; i++) |
|
s->channel[i].prev_block_len = s->samples_per_frame; |
|
|
|
/** subframe info */ |
|
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
|
s->max_num_subframes = 1 << log2_max_num_subframes; |
|
s->max_subframe_len_bit = 0; |
|
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; |
|
|
|
num_possible_block_sizes = log2_max_num_subframes + 1; |
|
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
|
s->dynamic_range_compression = (s->decode_flags & 0x80); |
|
|
|
s->bV3RTM = s->decode_flags & 0x100; |
|
|
|
if (s->max_num_subframes > MAX_SUBFRAMES) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n", |
|
s->max_num_subframes); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->num_channels = avctx->channels; |
|
|
|
/** extract lfe channel position */ |
|
s->lfe_channel = -1; |
|
|
|
if (channel_mask & 8) { |
|
unsigned int mask; |
|
for (mask = 1; mask < 16; mask <<= 1) { |
|
if (channel_mask & mask) |
|
++s->lfe_channel; |
|
} |
|
} |
|
|
|
if (s->num_channels < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels); |
|
return AVERROR_INVALIDDATA; |
|
} else if (s->num_channels > WMALL_MAX_CHANNELS) { |
|
av_log_ask_for_sample(avctx, "unsupported number of channels\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
avcodec_get_frame_defaults(&s->frame); |
|
avctx->coded_frame = &s->frame; |
|
|
|
avctx->channel_layout = channel_mask; |
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Decode the subframe length. |
|
*@param s context |
|
*@param offset sample offset in the frame |
|
*@return decoded subframe length on success, < 0 in case of an error |
|
*/ |
|
static int decode_subframe_length(WmallDecodeCtx *s, int offset) |
|
{ |
|
int frame_len_ratio; |
|
int subframe_len, len; |
|
|
|
/** no need to read from the bitstream when only one length is possible */ |
|
if (offset == s->samples_per_frame - s->min_samples_per_subframe) |
|
return s->min_samples_per_subframe; |
|
|
|
len = av_log2(s->max_num_subframes - 1) + 1; |
|
frame_len_ratio = get_bits(&s->gb, len); |
|
|
|
subframe_len = s->min_samples_per_subframe * (frame_len_ratio + 1); |
|
|
|
/** sanity check the length */ |
|
if (subframe_len < s->min_samples_per_subframe || |
|
subframe_len > s->samples_per_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", |
|
subframe_len); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
return subframe_len; |
|
} |
|
|
|
/** |
|
*@brief Decode how the data in the frame is split into subframes. |
|
* Every WMA frame contains the encoded data for a fixed number of |
|
* samples per channel. The data for every channel might be split |
|
* into several subframes. This function will reconstruct the list of |
|
* subframes for every channel. |
|
* |
|
* If the subframes are not evenly split, the algorithm estimates the |
|
* channels with the lowest number of total samples. |
|
* Afterwards, for each of these channels a bit is read from the |
|
* bitstream that indicates if the channel contains a subframe with the |
|
* next subframe size that is going to be read from the bitstream or not. |
|
* If a channel contains such a subframe, the subframe size gets added to |
|
* the channel's subframe list. |
|
* The algorithm repeats these steps until the frame is properly divided |
|
* between the individual channels. |
|
* |
|
*@param s context |
|
*@return 0 on success, < 0 in case of an error |
|
*/ |
|
static int decode_tilehdr(WmallDecodeCtx *s) |
|
{ |
|
uint16_t num_samples[WMALL_MAX_CHANNELS]; /**< sum of samples for all currently known subframes of a channel */ |
|
uint8_t contains_subframe[WMALL_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */ |
|
int channels_for_cur_subframe = s->num_channels; /**< number of channels that contain the current subframe */ |
|
int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subfra2me offsets and sizes */ |
|
int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */ |
|
int c; |
|
|
|
/* Should never consume more than 3073 bits (256 iterations for the |
|
* while loop when always the minimum amount of 128 samples is substracted |
|
* from missing samples in the 8 channel case). |
|
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) |
|
*/ |
|
|
|
/** reset tiling information */ |
|
for (c = 0; c < s->num_channels; c++) |
|
s->channel[c].num_subframes = 0; |
|
|
|
memset(num_samples, 0, sizeof(num_samples)); |
|
|
|
if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
|
fixed_channel_layout = 1; |
|
|
|
/** loop until the frame data is split between the subframes */ |
|
do { |
|
int subframe_len; |
|
|
|
/** check which channels contain the subframe */ |
|
for (c = 0; c < s->num_channels; c++) { |
|
if (num_samples[c] == min_channel_len) { |
|
if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
|
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) { |
|
contains_subframe[c] = 1; |
|
} else { |
|
contains_subframe[c] = get_bits1(&s->gb); |
|
} |
|
} else |
|
contains_subframe[c] = 0; |
|
} |
|
|
|
/** get subframe length, subframe_len == 0 is not allowed */ |
|
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
|
return AVERROR_INVALIDDATA; |
|
/** add subframes to the individual channels and find new min_channel_len */ |
|
min_channel_len += subframe_len; |
|
for (c = 0; c < s->num_channels; c++) { |
|
WmallChannelCtx* chan = &s->channel[c]; |
|
|
|
if (contains_subframe[c]) { |
|
if (chan->num_subframes >= MAX_SUBFRAMES) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"broken frame: num subframes > 31\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
chan->subframe_len[chan->num_subframes] = subframe_len; |
|
num_samples[c] += subframe_len; |
|
++chan->num_subframes; |
|
if (num_samples[c] > s->samples_per_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: " |
|
"channel len(%d) > samples_per_frame(%d)\n", |
|
num_samples[c], s->samples_per_frame); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else if (num_samples[c] <= min_channel_len) { |
|
if (num_samples[c] < min_channel_len) { |
|
channels_for_cur_subframe = 0; |
|
min_channel_len = num_samples[c]; |
|
} |
|
++channels_for_cur_subframe; |
|
} |
|
} |
|
} while (min_channel_len < s->samples_per_frame); |
|
|
|
for (c = 0; c < s->num_channels; c++) { |
|
int i; |
|
int offset = 0; |
|
for (i = 0; i < s->channel[c].num_subframes; i++) { |
|
s->channel[c].subframe_offset[i] = offset; |
|
offset += s->channel[c].subframe_len[i]; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int my_log2(unsigned int i) |
|
{ |
|
unsigned int iLog2 = 0; |
|
while ((i >> iLog2) > 1) |
|
iLog2++; |
|
return iLog2; |
|
} |
|
|
|
|
|
/** |
|
* |
|
*/ |
|
static void decode_ac_filter(WmallDecodeCtx *s) |
|
{ |
|
int i; |
|
s->acfilter_order = get_bits(&s->gb, 4) + 1; |
|
s->acfilter_scaling = get_bits(&s->gb, 4); |
|
|
|
for(i = 0; i < s->acfilter_order; i++) { |
|
s->acfilter_coeffs[i] = get_bits(&s->gb, s->acfilter_scaling) + 1; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* |
|
*/ |
|
static void decode_mclms(WmallDecodeCtx *s) |
|
{ |
|
s->mclms_order = (get_bits(&s->gb, 4) + 1) * 2; |
|
s->mclms_scaling = get_bits(&s->gb, 4); |
|
if(get_bits1(&s->gb)) { |
|
// mclms_send_coef |
|
int i; |
|
int send_coef_bits; |
|
int cbits = av_log2(s->mclms_scaling + 1); |
|
assert(cbits == my_log2(s->mclms_scaling + 1)); |
|
if(1 << cbits < s->mclms_scaling + 1) |
|
cbits++; |
|
|
|
send_coef_bits = (cbits ? get_bits(&s->gb, cbits) : 0) + 2; |
|
|
|
for(i = 0; i < s->mclms_order * s->num_channels * s->num_channels; i++) { |
|
s->mclms_coeffs[i] = get_bits(&s->gb, send_coef_bits); |
|
} |
|
|
|
for(i = 0; i < s->num_channels; i++) { |
|
int c; |
|
for(c = 0; c < i; c++) { |
|
s->mclms_coeffs_cur[i * s->num_channels + c] = get_bits(&s->gb, send_coef_bits); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* |
|
*/ |
|
static void decode_cdlms(WmallDecodeCtx *s) |
|
{ |
|
int c, i; |
|
int cdlms_send_coef = get_bits1(&s->gb); |
|
|
|
for(c = 0; c < s->num_channels; c++) { |
|
s->cdlms_ttl[c] = get_bits(&s->gb, 3) + 1; |
|
for(i = 0; i < s->cdlms_ttl[c]; i++) { |
|
s->cdlms[c][i].order = (get_bits(&s->gb, 7) + 1) * 8; |
|
} |
|
|
|
for(i = 0; i < s->cdlms_ttl[c]; i++) { |
|
s->cdlms[c][i].scaling = get_bits(&s->gb, 4); |
|
} |
|
|
|
if(cdlms_send_coef) { |
|
for(i = 0; i < s->cdlms_ttl[c]; i++) { |
|
int cbits, shift_l, shift_r, j; |
|
cbits = av_log2(s->cdlms[c][i].order); |
|
if(1 << cbits < s->cdlms[c][i].order) |
|
cbits++; |
|
s->cdlms[c][i].coefsend = get_bits(&s->gb, cbits) + 1; |
|
|
|
cbits = av_log2(s->cdlms[c][i].scaling + 1); |
|
if(1 << cbits < s->cdlms[c][i].scaling + 1) |
|
cbits++; |
|
|
|
s->cdlms[c][i].bitsend = get_bits(&s->gb, cbits) + 2; |
|
shift_l = 32 - s->cdlms[c][i].bitsend; |
|
shift_r = 32 - 2 - s->cdlms[c][i].scaling; |
|
for(j = 0; j < s->cdlms[c][i].coefsend; j++) { |
|
s->cdlms[c][i].coefs[j] = |
|
(get_bits(&s->gb, s->cdlms[c][i].bitsend) << shift_l) >> shift_r; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* |
|
*/ |
|
static int decode_channel_residues(WmallDecodeCtx *s, int ch, int tile_size) |
|
{ |
|
int i = 0; |
|
unsigned int ave_mean; |
|
s->transient[ch] = get_bits1(&s->gb); |
|
if(s->transient[ch]) { |
|
s->transient_pos[ch] = get_bits(&s->gb, av_log2(tile_size)); |
|
if (s->transient_pos[ch]) |
|
s->transient[ch] = 0; |
|
s->channel[ch].transient_counter = |
|
FFMAX(s->channel[ch].transient_counter, s->samples_per_frame / 2); |
|
} else if (s->channel[ch].transient_counter) |
|
s->transient[ch] = 1; |
|
|
|
if(s->seekable_tile) { |
|
ave_mean = get_bits(&s->gb, s->bits_per_sample); |
|
s->ave_sum[ch] = ave_mean << (s->movave_scaling + 1); |
|
// s->ave_sum[ch] *= 2; |
|
} |
|
|
|
if(s->seekable_tile) { |
|
if(s->do_inter_ch_decorr) |
|
s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample + 1); |
|
else |
|
s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample); |
|
i++; |
|
} |
|
//av_log(0, 0, "%8d: ", num_logged_tiles++); |
|
for(; i < tile_size; i++) { |
|
int quo = 0, rem, rem_bits, residue; |
|
while(get_bits1(&s->gb)) { |
|
quo++; |
|
if (get_bits_left(&s->gb) <= 0) |
|
return -1; |
|
} |
|
if(quo >= 32) |
|
quo += get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1); |
|
|
|
ave_mean = (s->ave_sum[ch] + (1 << s->movave_scaling)) >> (s->movave_scaling + 1); |
|
if (ave_mean <= 1) |
|
residue = quo; |
|
else |
|
{ |
|
rem_bits = av_ceil_log2(ave_mean); |
|
rem = rem_bits ? get_bits(&s->gb, rem_bits) : 0; |
|
residue = (quo << rem_bits) + rem; |
|
} |
|
|
|
s->ave_sum[ch] = residue + s->ave_sum[ch] - (s->ave_sum[ch] >> s->movave_scaling); |
|
|
|
if(residue & 1) |
|
residue = -(residue >> 1) - 1; |
|
else |
|
residue = residue >> 1; |
|
s->channel_residues[ch][i] = residue; |
|
} |
|
//dump_int_buffer(s->channel_residues[ch], 4, tile_size, 16); |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
/** |
|
* |
|
*/ |
|
static void |
|
decode_lpc(WmallDecodeCtx *s) |
|
{ |
|
int ch, i, cbits; |
|
s->lpc_order = get_bits(&s->gb, 5) + 1; |
|
s->lpc_scaling = get_bits(&s->gb, 4); |
|
s->lpc_intbits = get_bits(&s->gb, 3) + 1; |
|
cbits = s->lpc_scaling + s->lpc_intbits; |
|
for(ch = 0; ch < s->num_channels; ch++) { |
|
for(i = 0; i < s->lpc_order; i++) { |
|
s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void clear_codec_buffers(WmallDecodeCtx *s) |
|
{ |
|
int ich, ilms; |
|
|
|
memset(s->acfilter_coeffs , 0, 16 * sizeof(int)); |
|
memset(s->acfilter_prevvalues, 0, 16 * 2 * sizeof(int)); // may be wrong |
|
memset(s->lpc_coefs , 0, 40 * 2 * sizeof(int)); |
|
|
|
memset(s->mclms_coeffs , 0, 128 * sizeof(int16_t)); |
|
memset(s->mclms_coeffs_cur, 0, 4 * sizeof(int16_t)); |
|
memset(s->mclms_prevvalues, 0, 64 * sizeof(int)); |
|
memset(s->mclms_updates , 0, 64 * sizeof(int16_t)); |
|
|
|
for (ich = 0; ich < s->num_channels; ich++) { |
|
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) { |
|
memset(s->cdlms[ich][ilms].coefs , 0, 256 * sizeof(int16_t)); |
|
memset(s->cdlms[ich][ilms].lms_prevvalues, 0, 512 * sizeof(int)); |
|
memset(s->cdlms[ich][ilms].lms_updates , 0, 512 * sizeof(int16_t)); |
|
} |
|
s->ave_sum[ich] = 0; |
|
} |
|
} |
|
|
|
/** |
|
*@brief Resets filter parameters and transient area at new seekable tile |
|
*/ |
|
static void reset_codec(WmallDecodeCtx *s) |
|
{ |
|
int ich, ilms; |
|
s->mclms_recent = s->mclms_order * s->num_channels; |
|
for (ich = 0; ich < s->num_channels; ich++) { |
|
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) |
|
s->cdlms[ich][ilms].recent = s->cdlms[ich][ilms].order; |
|
/* first sample of a seekable subframe is considered as the starting of |
|
a transient area which is samples_per_frame samples long */ |
|
s->channel[ich].transient_counter = s->samples_per_frame; |
|
s->transient[ich] = 1; |
|
s->transient_pos[ich] = 0; |
|
} |
|
} |
|
|
|
|
|
|
|
static void mclms_update(WmallDecodeCtx *s, int icoef, int *pred) |
|
{ |
|
int i, j, ich; |
|
int pred_error; |
|
int order = s->mclms_order; |
|
int num_channels = s->num_channels; |
|
int range = 1 << (s->bits_per_sample - 1); |
|
//int bps = s->bits_per_sample > 16 ? 4 : 2; // bytes per sample |
|
|
|
for (ich = 0; ich < num_channels; ich++) { |
|
pred_error = s->channel_residues[ich][icoef] - pred[ich]; |
|
if (pred_error > 0) { |
|
for (i = 0; i < order * num_channels; i++) |
|
s->mclms_coeffs[i + ich * order * num_channels] += |
|
s->mclms_updates[s->mclms_recent + i]; |
|
for (j = 0; j < ich; j++) { |
|
if (s->channel_residues[j][icoef] > 0) |
|
s->mclms_coeffs_cur[ich * num_channels + j] += 1; |
|
else if (s->channel_residues[j][icoef] < 0) |
|
s->mclms_coeffs_cur[ich * num_channels + j] -= 1; |
|
} |
|
} else if (pred_error < 0) { |
|
for (i = 0; i < order * num_channels; i++) |
|
s->mclms_coeffs[i + ich * order * num_channels] -= |
|
s->mclms_updates[s->mclms_recent + i]; |
|
for (j = 0; j < ich; j++) { |
|
if (s->channel_residues[j][icoef] > 0) |
|
s->mclms_coeffs_cur[ich * num_channels + j] -= 1; |
|
else if (s->channel_residues[j][icoef] < 0) |
|
s->mclms_coeffs_cur[ich * num_channels + j] += 1; |
|
} |
|
} |
|
} |
|
|
|
for (ich = num_channels - 1; ich >= 0; ich--) { |
|
s->mclms_recent--; |
|
s->mclms_prevvalues[s->mclms_recent] = s->channel_residues[ich][icoef]; |
|
if (s->channel_residues[ich][icoef] > range - 1) |
|
s->mclms_prevvalues[s->mclms_recent] = range - 1; |
|
else if (s->channel_residues[ich][icoef] < -range) |
|
s->mclms_prevvalues[s->mclms_recent] = -range; |
|
|
|
s->mclms_updates[s->mclms_recent] = 0; |
|
if (s->channel_residues[ich][icoef] > 0) |
|
s->mclms_updates[s->mclms_recent] = 1; |
|
else if (s->channel_residues[ich][icoef] < 0) |
|
s->mclms_updates[s->mclms_recent] = -1; |
|
} |
|
|
|
if (s->mclms_recent == 0) { |
|
memcpy(&s->mclms_prevvalues[order * num_channels], |
|
s->mclms_prevvalues, |
|
4 * order * num_channels); |
|
memcpy(&s->mclms_updates[order * num_channels], |
|
s->mclms_updates, |
|
2 * order * num_channels); |
|
s->mclms_recent = num_channels * order; |
|
} |
|
} |
|
|
|
static void mclms_predict(WmallDecodeCtx *s, int icoef, int *pred) |
|
{ |
|
int ich, i; |
|
int order = s->mclms_order; |
|
int num_channels = s->num_channels; |
|
|
|
for (ich = 0; ich < num_channels; ich++) { |
|
if (!s->is_channel_coded[ich]) |
|
continue; |
|
pred[ich] = 0; |
|
for (i = 0; i < order * num_channels; i++) |
|
pred[ich] += s->mclms_prevvalues[i + s->mclms_recent] * |
|
s->mclms_coeffs[i + order * num_channels * ich]; |
|
for (i = 0; i < ich; i++) |
|
pred[ich] += s->channel_residues[i][icoef] * |
|
s->mclms_coeffs_cur[i + num_channels * ich]; |
|
pred[ich] += 1 << s->mclms_scaling - 1; |
|
pred[ich] >>= s->mclms_scaling; |
|
s->channel_residues[ich][icoef] += pred[ich]; |
|
} |
|
} |
|
|
|
static void revert_mclms(WmallDecodeCtx *s, int tile_size) |
|
{ |
|
int icoef, pred[WMALL_MAX_CHANNELS] = {0}; |
|
for (icoef = 0; icoef < tile_size; icoef++) { |
|
mclms_predict(s, icoef, pred); |
|
mclms_update(s, icoef, pred); |
|
} |
|
} |
|
|
|
static int lms_predict(WmallDecodeCtx *s, int ich, int ilms) |
|
{ |
|
int pred = 0; |
|
int icoef; |
|
int recent = s->cdlms[ich][ilms].recent; |
|
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
pred += s->cdlms[ich][ilms].coefs[icoef] * |
|
s->cdlms[ich][ilms].lms_prevvalues[icoef + recent]; |
|
|
|
//pred += (1 << (s->cdlms[ich][ilms].scaling - 1)); |
|
/* XXX: Table 29 has: |
|
iPred >= cdlms[iCh][ilms].scaling; |
|
seems to me like a missing > */ |
|
//pred >>= s->cdlms[ich][ilms].scaling; |
|
return pred; |
|
} |
|
|
|
static void lms_update(WmallDecodeCtx *s, int ich, int ilms, int input, int residue) |
|
{ |
|
int icoef; |
|
int recent = s->cdlms[ich][ilms].recent; |
|
int range = 1 << s->bits_per_sample - 1; |
|
//int bps = s->bits_per_sample > 16 ? 4 : 2; // bytes per sample |
|
|
|
if (residue < 0) { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].coefs[icoef] -= |
|
s->cdlms[ich][ilms].lms_updates[icoef + recent]; |
|
} else if (residue > 0) { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].coefs[icoef] += |
|
s->cdlms[ich][ilms].lms_updates[icoef + recent]; /* spec mistakenly |
|
dropped the recent */ |
|
} |
|
|
|
if (recent) |
|
recent--; |
|
else { |
|
/* XXX: This memcpy()s will probably fail if a fixed 32-bit buffer is used. |
|
follow kshishkov's suggestion of using a union. */ |
|
memcpy(&s->cdlms[ich][ilms].lms_prevvalues[s->cdlms[ich][ilms].order], |
|
s->cdlms[ich][ilms].lms_prevvalues, |
|
4 * s->cdlms[ich][ilms].order); |
|
memcpy(&s->cdlms[ich][ilms].lms_updates[s->cdlms[ich][ilms].order], |
|
s->cdlms[ich][ilms].lms_updates, |
|
2 * s->cdlms[ich][ilms].order); |
|
recent = s->cdlms[ich][ilms].order - 1; |
|
} |
|
|
|
s->cdlms[ich][ilms].lms_prevvalues[recent] = av_clip(input, -range, range - 1); |
|
if (!input) |
|
s->cdlms[ich][ilms].lms_updates[recent] = 0; |
|
else if (input < 0) |
|
s->cdlms[ich][ilms].lms_updates[recent] = -s->update_speed[ich]; |
|
else |
|
s->cdlms[ich][ilms].lms_updates[recent] = s->update_speed[ich]; |
|
|
|
/* XXX: spec says: |
|
cdlms[iCh][ilms].updates[iRecent + cdlms[iCh][ilms].order >> 4] >>= 2; |
|
lms_updates[iCh][ilms][iRecent + cdlms[iCh][ilms].order >> 3] >>= 1; |
|
|
|
Questions is - are cdlms[iCh][ilms].updates[] and lms_updates[][][] two |
|
seperate buffers? Here I've assumed that the two are same which makes |
|
more sense to me. |
|
*/ |
|
s->cdlms[ich][ilms].lms_updates[recent + (s->cdlms[ich][ilms].order >> 4)] >>= 2; |
|
s->cdlms[ich][ilms].lms_updates[recent + (s->cdlms[ich][ilms].order >> 3)] >>= 1; |
|
s->cdlms[ich][ilms].recent = recent; |
|
} |
|
|
|
static void use_high_update_speed(WmallDecodeCtx *s, int ich) |
|
{ |
|
int ilms, recent, icoef; |
|
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) { |
|
recent = s->cdlms[ich][ilms].recent; |
|
if (s->update_speed[ich] == 16) |
|
continue; |
|
if (s->bV3RTM) { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].lms_updates[icoef + recent] *= 2; |
|
} else { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].lms_updates[icoef] *= 2; |
|
} |
|
} |
|
s->update_speed[ich] = 16; |
|
} |
|
|
|
static void use_normal_update_speed(WmallDecodeCtx *s, int ich) |
|
{ |
|
int ilms, recent, icoef; |
|
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) { |
|
recent = s->cdlms[ich][ilms].recent; |
|
if (s->update_speed[ich] == 8) |
|
continue; |
|
if (s->bV3RTM) { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].lms_updates[icoef + recent] /= 2; |
|
} else { |
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++) |
|
s->cdlms[ich][ilms].lms_updates[icoef] /= 2; |
|
} |
|
} |
|
s->update_speed[ich] = 8; |
|
} |
|
|
|
static void revert_cdlms(WmallDecodeCtx *s, int ch, int coef_begin, int coef_end) |
|
{ |
|
int icoef; |
|
int pred; |
|
int ilms, num_lms; |
|
int residue, input; |
|
|
|
num_lms = s->cdlms_ttl[ch]; |
|
for (ilms = num_lms - 1; ilms >= 0; ilms--) { |
|
//s->cdlms[ch][ilms].recent = s->cdlms[ch][ilms].order; |
|
for (icoef = coef_begin; icoef < coef_end; icoef++) { |
|
pred = 1 << (s->cdlms[ch][ilms].scaling - 1); |
|
residue = s->channel_residues[ch][icoef]; |
|
pred += lms_predict(s, ch, ilms); |
|
input = residue + (pred >> s->cdlms[ch][ilms].scaling); |
|
lms_update(s, ch, ilms, input, residue); |
|
s->channel_residues[ch][icoef] = input; |
|
} |
|
} |
|
} |
|
|
|
static void revert_inter_ch_decorr(WmallDecodeCtx *s, int tile_size) |
|
{ |
|
int icoef; |
|
if (s->num_channels != 2) |
|
return; |
|
else if (s->is_channel_coded[0] && s->is_channel_coded[1]) { |
|
for (icoef = 0; icoef < tile_size; icoef++) { |
|
s->channel_residues[0][icoef] -= s->channel_residues[1][icoef] >> 1; |
|
s->channel_residues[1][icoef] += s->channel_residues[0][icoef]; |
|
} |
|
} |
|
} |
|
|
|
static void revert_acfilter(WmallDecodeCtx *s, int tile_size) |
|
{ |
|
int ich, icoef; |
|
int pred; |
|
int i, j; |
|
int64_t *filter_coeffs = s->acfilter_coeffs; |
|
int scaling = s->acfilter_scaling; |
|
int order = s->acfilter_order; |
|
|
|
for (ich = 0; ich < s->num_channels; ich++) { |
|
int *prevvalues = s->acfilter_prevvalues[ich]; |
|
for (i = 0; i < order; i++) { |
|
pred = 0; |
|
for (j = 0; j < order; j++) { |
|
if (i <= j) |
|
pred += filter_coeffs[j] * prevvalues[j - i]; |
|
else |
|
pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j]; |
|
} |
|
pred >>= scaling; |
|
s->channel_residues[ich][i] += pred; |
|
} |
|
for (i = order; i < tile_size; i++) { |
|
pred = 0; |
|
for (j = 0; j < order; j++) |
|
pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j]; |
|
pred >>= scaling; |
|
s->channel_residues[ich][i] += pred; |
|
} |
|
for (j = 0; j < order; j++) |
|
prevvalues[j] = s->channel_residues[ich][tile_size - j - 1]; |
|
} |
|
} |
|
|
|
/** |
|
*@brief Decode a single subframe (block). |
|
*@param s codec context |
|
*@return 0 on success, < 0 when decoding failed |
|
*/ |
|
static int decode_subframe(WmallDecodeCtx *s) |
|
{ |
|
int offset = s->samples_per_frame; |
|
int subframe_len = s->samples_per_frame; |
|
int i, j; |
|
int total_samples = s->samples_per_frame * s->num_channels; |
|
int rawpcm_tile; |
|
int padding_zeroes; |
|
|
|
s->subframe_offset = get_bits_count(&s->gb); |
|
|
|
/** reset channel context and find the next block offset and size |
|
== the next block of the channel with the smallest number of |
|
decoded samples |
|
*/ |
|
for (i = 0; i < s->num_channels; i++) { |
|
s->channel[i].grouped = 0; |
|
if (offset > s->channel[i].decoded_samples) { |
|
offset = s->channel[i].decoded_samples; |
|
subframe_len = |
|
s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
|
} |
|
} |
|
|
|
/** get a list of all channels that contain the estimated block */ |
|
s->channels_for_cur_subframe = 0; |
|
for (i = 0; i < s->num_channels; i++) { |
|
const int cur_subframe = s->channel[i].cur_subframe; |
|
/** substract already processed samples */ |
|
total_samples -= s->channel[i].decoded_samples; |
|
|
|
/** and count if there are multiple subframes that match our profile */ |
|
if (offset == s->channel[i].decoded_samples && |
|
subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
|
total_samples -= s->channel[i].subframe_len[cur_subframe]; |
|
s->channel[i].decoded_samples += |
|
s->channel[i].subframe_len[cur_subframe]; |
|
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
|
++s->channels_for_cur_subframe; |
|
} |
|
} |
|
|
|
/** check if the frame will be complete after processing the |
|
estimated block */ |
|
if (!total_samples) |
|
s->parsed_all_subframes = 1; |
|
|
|
|
|
s->seekable_tile = get_bits1(&s->gb); |
|
if(s->seekable_tile) { |
|
clear_codec_buffers(s); |
|
|
|
s->do_arith_coding = get_bits1(&s->gb); |
|
if(s->do_arith_coding) { |
|
dprintf(s->avctx, "do_arith_coding == 1"); |
|
abort(); |
|
} |
|
s->do_ac_filter = get_bits1(&s->gb); |
|
s->do_inter_ch_decorr = get_bits1(&s->gb); |
|
s->do_mclms = get_bits1(&s->gb); |
|
|
|
if(s->do_ac_filter) |
|
decode_ac_filter(s); |
|
|
|
if(s->do_mclms) |
|
decode_mclms(s); |
|
|
|
decode_cdlms(s); |
|
s->movave_scaling = get_bits(&s->gb, 3); |
|
s->quant_stepsize = get_bits(&s->gb, 8) + 1; |
|
|
|
reset_codec(s); |
|
} |
|
|
|
rawpcm_tile = get_bits1(&s->gb); |
|
|
|
for(i = 0; i < s->num_channels; i++) { |
|
s->is_channel_coded[i] = 1; |
|
} |
|
|
|
if(!rawpcm_tile) { |
|
|
|
for(i = 0; i < s->num_channels; i++) { |
|
s->is_channel_coded[i] = get_bits1(&s->gb); |
|
} |
|
|
|
if(s->bV3RTM) { |
|
// LPC |
|
s->do_lpc = get_bits1(&s->gb); |
|
if(s->do_lpc) { |
|
decode_lpc(s); |
|
} |
|
} else { |
|
s->do_lpc = 0; |
|
} |
|
} |
|
|
|
|
|
if(get_bits1(&s->gb)) { |
|
padding_zeroes = get_bits(&s->gb, 5); |
|
} else { |
|
padding_zeroes = 0; |
|
} |
|
|
|
if(rawpcm_tile) { |
|
|
|
int bits = s->bits_per_sample - padding_zeroes; |
|
dprintf(s->avctx, "RAWPCM %d bits per sample. total %d bits, remain=%d\n", bits, |
|
bits * s->num_channels * subframe_len, get_bits_count(&s->gb)); |
|
for(i = 0; i < s->num_channels; i++) { |
|
for(j = 0; j < subframe_len; j++) { |
|
s->channel_coeffs[i][j] = get_sbits(&s->gb, bits); |
|
// dprintf(s->avctx, "PCM[%d][%d] = 0x%04x\n", i, j, s->channel_coeffs[i][j]); |
|
} |
|
} |
|
} else { |
|
for(i = 0; i < s->num_channels; i++) |
|
if(s->is_channel_coded[i]) { |
|
decode_channel_residues(s, i, subframe_len); |
|
if (s->seekable_tile) |
|
use_high_update_speed(s, i); |
|
else |
|
use_normal_update_speed(s, i); |
|
revert_cdlms(s, i, 0, subframe_len); |
|
} |
|
} |
|
if (s->do_mclms) |
|
revert_mclms(s, subframe_len); |
|
if (s->do_inter_ch_decorr) |
|
revert_inter_ch_decorr(s, subframe_len); |
|
if(s->do_ac_filter) |
|
revert_acfilter(s, subframe_len); |
|
|
|
/* Dequantize */ |
|
if (s->quant_stepsize != 1) |
|
for (i = 0; i < s->num_channels; i++) |
|
for (j = 0; j < subframe_len; j++) |
|
s->channel_residues[i][j] *= s->quant_stepsize; |
|
|
|
// Write to proper output buffer depending on bit-depth |
|
for (i = 0; i < subframe_len; i++) |
|
for (j = 0; j < s->num_channels; j++) { |
|
if (s->bits_per_sample == 16) |
|
*s->samples_16++ = (int16_t) s->channel_residues[j][i]; |
|
else |
|
*s->samples_32++ = s->channel_residues[j][i]; |
|
} |
|
|
|
/** handled one subframe */ |
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
++s->channel[c].cur_subframe; |
|
} |
|
num_logged_subframes++; |
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Decode one WMA frame. |
|
*@param s codec context |
|
*@return 0 if the trailer bit indicates that this is the last frame, |
|
* 1 if there are additional frames |
|
*/ |
|
static int decode_frame(WmallDecodeCtx *s) |
|
{ |
|
GetBitContext* gb = &s->gb; |
|
int more_frames = 0; |
|
int len = 0; |
|
int i, ret; |
|
|
|
s->frame.nb_samples = s->samples_per_frame; |
|
if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) { |
|
/** return an error if no frame could be decoded at all */ |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"not enough space for the output samples\n"); |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
s->samples_16 = (int16_t *)s->frame.data[0]; |
|
s->samples_32 = (int32_t *)s->frame.data[0]; |
|
|
|
/** get frame length */ |
|
if (s->len_prefix) |
|
len = get_bits(gb, s->log2_frame_size); |
|
|
|
/** decode tile information */ |
|
if (decode_tilehdr(s)) { |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** read drc info */ |
|
if (s->dynamic_range_compression) { |
|
s->drc_gain = get_bits(gb, 8); |
|
} |
|
|
|
/** no idea what these are for, might be the number of samples |
|
that need to be skipped at the beginning or end of a stream */ |
|
if (get_bits1(gb)) { |
|
int skip; |
|
|
|
/** usually true for the first frame */ |
|
if (get_bits1(gb)) { |
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
|
dprintf(s->avctx, "start skip: %i\n", skip); |
|
} |
|
|
|
/** sometimes true for the last frame */ |
|
if (get_bits1(gb)) { |
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
|
dprintf(s->avctx, "end skip: %i\n", skip); |
|
} |
|
|
|
} |
|
|
|
/** reset subframe states */ |
|
s->parsed_all_subframes = 0; |
|
for (i = 0; i < s->num_channels; i++) { |
|
s->channel[i].decoded_samples = 0; |
|
s->channel[i].cur_subframe = 0; |
|
s->channel[i].reuse_sf = 0; |
|
} |
|
|
|
/** decode all subframes */ |
|
while (!s->parsed_all_subframes) { |
|
if (decode_subframe(s) < 0) { |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
} |
|
|
|
dprintf(s->avctx, "Frame done\n"); |
|
|
|
if (s->skip_frame) { |
|
s->skip_frame = 0; |
|
} |
|
|
|
if (s->len_prefix) { |
|
if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
|
/** FIXME: not sure if this is always an error */ |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"frame[%i] would have to skip %i bits\n", s->frame_num, |
|
len - (get_bits_count(gb) - s->frame_offset) - 1); |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** skip the rest of the frame data */ |
|
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); |
|
} else { |
|
/* |
|
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) { |
|
dprintf(s->avctx, "skip1\n"); |
|
} |
|
*/ |
|
} |
|
|
|
/** decode trailer bit */ |
|
more_frames = get_bits1(gb); |
|
++s->frame_num; |
|
return more_frames; |
|
} |
|
|
|
/** |
|
*@brief Calculate remaining input buffer length. |
|
*@param s codec context |
|
*@param gb bitstream reader context |
|
*@return remaining size in bits |
|
*/ |
|
static int remaining_bits(WmallDecodeCtx *s, GetBitContext *gb) |
|
{ |
|
return s->buf_bit_size - get_bits_count(gb); |
|
} |
|
|
|
/** |
|
*@brief Fill the bit reservoir with a (partial) frame. |
|
*@param s codec context |
|
*@param gb bitstream reader context |
|
*@param len length of the partial frame |
|
*@param append decides wether to reset the buffer or not |
|
*/ |
|
static void save_bits(WmallDecodeCtx *s, GetBitContext* gb, int len, |
|
int append) |
|
{ |
|
int buflen; |
|
|
|
/** when the frame data does not need to be concatenated, the input buffer |
|
is resetted and additional bits from the previous frame are copyed |
|
and skipped later so that a fast byte copy is possible */ |
|
|
|
if (!append) { |
|
s->frame_offset = get_bits_count(gb) & 7; |
|
s->num_saved_bits = s->frame_offset; |
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
|
} |
|
|
|
buflen = (s->num_saved_bits + len + 8) >> 3; |
|
|
|
if (len <= 0 || buflen > MAX_FRAMESIZE) { |
|
av_log_ask_for_sample(s->avctx, "input buffer too small\n"); |
|
s->packet_loss = 1; |
|
return; |
|
} |
|
|
|
s->num_saved_bits += len; |
|
if (!append) { |
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), |
|
s->num_saved_bits); |
|
} else { |
|
int align = 8 - (get_bits_count(gb) & 7); |
|
align = FFMIN(align, len); |
|
put_bits(&s->pb, align, get_bits(gb, align)); |
|
len -= align; |
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); |
|
} |
|
skip_bits_long(gb, len); |
|
|
|
{ |
|
PutBitContext tmp = s->pb; |
|
flush_put_bits(&tmp); |
|
} |
|
|
|
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
|
skip_bits(&s->gb, s->frame_offset); |
|
} |
|
|
|
/** |
|
*@brief Decode a single WMA packet. |
|
*@param avctx codec context |
|
*@param data the output buffer |
|
*@param data_size number of bytes that were written to the output buffer |
|
*@param avpkt input packet |
|
*@return number of bytes that were read from the input buffer |
|
*/ |
|
static int decode_packet(AVCodecContext *avctx, |
|
void *data, int *got_frame_ptr, AVPacket* avpkt) |
|
{ |
|
WmallDecodeCtx *s = avctx->priv_data; |
|
GetBitContext* gb = &s->pgb; |
|
const uint8_t* buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int num_bits_prev_frame; |
|
int packet_sequence_number; |
|
int seekable_frame_in_packet; |
|
int spliced_packet; |
|
|
|
if (s->packet_done || s->packet_loss) { |
|
int seekable_frame_in_packet, spliced_packet; |
|
s->packet_done = 0; |
|
|
|
/** sanity check for the buffer length */ |
|
if (buf_size < avctx->block_align) |
|
return 0; |
|
|
|
s->next_packet_start = buf_size - avctx->block_align; |
|
buf_size = avctx->block_align; |
|
s->buf_bit_size = buf_size << 3; |
|
|
|
/** parse packet header */ |
|
init_get_bits(gb, buf, s->buf_bit_size); |
|
packet_sequence_number = get_bits(gb, 4); |
|
seekable_frame_in_packet = get_bits1(gb); |
|
spliced_packet = get_bits1(gb); |
|
|
|
/** get number of bits that need to be added to the previous frame */ |
|
num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
|
|
|
/** check for packet loss */ |
|
if (!s->packet_loss && |
|
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
|
s->packet_loss = 1; |
|
av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n", |
|
s->packet_sequence_number, packet_sequence_number); |
|
} |
|
s->packet_sequence_number = packet_sequence_number; |
|
|
|
if (num_bits_prev_frame > 0) { |
|
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb); |
|
if (num_bits_prev_frame >= remaining_packet_bits) { |
|
num_bits_prev_frame = remaining_packet_bits; |
|
s->packet_done = 1; |
|
} |
|
|
|
/** append the previous frame data to the remaining data from the |
|
previous packet to create a full frame */ |
|
save_bits(s, gb, num_bits_prev_frame, 1); |
|
|
|
/** decode the cross packet frame if it is valid */ |
|
if (!s->packet_loss) |
|
decode_frame(s); |
|
} else if (s->num_saved_bits - s->frame_offset) { |
|
dprintf(avctx, "ignoring %x previously saved bits\n", |
|
s->num_saved_bits - s->frame_offset); |
|
} |
|
|
|
if (s->packet_loss) { |
|
/** reset number of saved bits so that the decoder |
|
does not start to decode incomplete frames in the |
|
s->len_prefix == 0 case */ |
|
s->num_saved_bits = 0; |
|
s->packet_loss = 0; |
|
} |
|
|
|
} else { |
|
int frame_size; |
|
|
|
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3; |
|
init_get_bits(gb, avpkt->data, s->buf_bit_size); |
|
skip_bits(gb, s->packet_offset); |
|
|
|
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size && |
|
(frame_size = show_bits(gb, s->log2_frame_size)) && |
|
frame_size <= remaining_bits(s, gb)) { |
|
save_bits(s, gb, frame_size, 0); |
|
s->packet_done = !decode_frame(s); |
|
} else if (!s->len_prefix |
|
&& s->num_saved_bits > get_bits_count(&s->gb)) { |
|
/** when the frames do not have a length prefix, we don't know |
|
the compressed length of the individual frames |
|
however, we know what part of a new packet belongs to the |
|
previous frame |
|
therefore we save the incoming packet first, then we append |
|
the "previous frame" data from the next packet so that |
|
we get a buffer that only contains full frames */ |
|
s->packet_done = !decode_frame(s); |
|
} else { |
|
s->packet_done = 1; |
|
} |
|
} |
|
|
|
if (s->packet_done && !s->packet_loss && |
|
remaining_bits(s, gb) > 0) { |
|
/** save the rest of the data so that it can be decoded |
|
with the next packet */ |
|
save_bits(s, gb, remaining_bits(s, gb), 0); |
|
} |
|
|
|
*(AVFrame *)data = s->frame; |
|
*got_frame_ptr = 1; |
|
s->packet_offset = get_bits_count(gb) & 7; |
|
|
|
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; |
|
} |
|
|
|
/** |
|
*@brief Clear decoder buffers (for seeking). |
|
*@param avctx codec context |
|
*/ |
|
static void flush(AVCodecContext *avctx) |
|
{ |
|
WmallDecodeCtx *s = avctx->priv_data; |
|
int i; |
|
/** reset output buffer as a part of it is used during the windowing of a |
|
new frame */ |
|
for (i = 0; i < s->num_channels; i++) |
|
memset(s->channel[i].out, 0, s->samples_per_frame * |
|
sizeof(*s->channel[i].out)); |
|
s->packet_loss = 1; |
|
} |
|
|
|
|
|
/** |
|
*@brief wmall decoder |
|
*/ |
|
AVCodec ff_wmalossless_decoder = { |
|
.name = "wmalossless", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = CODEC_ID_WMALOSSLESS, |
|
.priv_data_size = sizeof(WmallDecodeCtx), |
|
.init = decode_init, |
|
.close = decode_end, |
|
.decode = decode_packet, |
|
.flush = flush, |
|
.capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_EXPERIMENTAL | CODEC_CAP_DR1, |
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Lossless"), |
|
};
|
|
|