mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1271 lines
35 KiB
1271 lines
35 KiB
/** |
|
* FLAC audio encoder |
|
* Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net> |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "crc.h" |
|
#include "golomb.h" |
|
|
|
#define FLAC_MAX_CH 8 |
|
#define FLAC_MIN_BLOCKSIZE 16 |
|
#define FLAC_MAX_BLOCKSIZE 65535 |
|
|
|
#define FLAC_SUBFRAME_CONSTANT 0 |
|
#define FLAC_SUBFRAME_VERBATIM 1 |
|
#define FLAC_SUBFRAME_FIXED 8 |
|
#define FLAC_SUBFRAME_LPC 32 |
|
|
|
#define FLAC_CHMODE_NOT_STEREO 0 |
|
#define FLAC_CHMODE_LEFT_RIGHT 1 |
|
#define FLAC_CHMODE_LEFT_SIDE 8 |
|
#define FLAC_CHMODE_RIGHT_SIDE 9 |
|
#define FLAC_CHMODE_MID_SIDE 10 |
|
|
|
#define ORDER_METHOD_EST 0 |
|
#define ORDER_METHOD_2LEVEL 1 |
|
#define ORDER_METHOD_4LEVEL 2 |
|
#define ORDER_METHOD_8LEVEL 3 |
|
#define ORDER_METHOD_SEARCH 4 |
|
|
|
#define FLAC_STREAMINFO_SIZE 34 |
|
|
|
#define MIN_LPC_ORDER 1 |
|
#define MAX_LPC_ORDER 32 |
|
#define MAX_FIXED_ORDER 4 |
|
#define MAX_PARTITION_ORDER 8 |
|
#define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) |
|
#define MAX_LPC_PRECISION 15 |
|
#define MAX_LPC_SHIFT 15 |
|
#define MAX_RICE_PARAM 14 |
|
|
|
typedef struct CompressionOptions { |
|
int compression_level; |
|
int block_time_ms; |
|
int use_lpc; |
|
int lpc_coeff_precision; |
|
int min_prediction_order; |
|
int max_prediction_order; |
|
int prediction_order_method; |
|
int min_partition_order; |
|
int max_partition_order; |
|
} CompressionOptions; |
|
|
|
typedef struct RiceContext { |
|
int porder; |
|
int params[MAX_PARTITIONS]; |
|
} RiceContext; |
|
|
|
typedef struct FlacSubframe { |
|
int type; |
|
int type_code; |
|
int obits; |
|
int order; |
|
int32_t coefs[MAX_LPC_ORDER]; |
|
int shift; |
|
RiceContext rc; |
|
int32_t samples[FLAC_MAX_BLOCKSIZE]; |
|
int32_t residual[FLAC_MAX_BLOCKSIZE]; |
|
} FlacSubframe; |
|
|
|
typedef struct FlacFrame { |
|
FlacSubframe subframes[FLAC_MAX_CH]; |
|
int blocksize; |
|
int bs_code[2]; |
|
uint8_t crc8; |
|
int ch_mode; |
|
} FlacFrame; |
|
|
|
typedef struct FlacEncodeContext { |
|
PutBitContext pb; |
|
int channels; |
|
int ch_code; |
|
int samplerate; |
|
int sr_code[2]; |
|
int blocksize; |
|
int max_framesize; |
|
uint32_t frame_count; |
|
FlacFrame frame; |
|
CompressionOptions options; |
|
AVCodecContext *avctx; |
|
} FlacEncodeContext; |
|
|
|
static const int flac_samplerates[16] = { |
|
0, 0, 0, 0, |
|
8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000, |
|
0, 0, 0, 0 |
|
}; |
|
|
|
static const int flac_blocksizes[16] = { |
|
0, |
|
192, |
|
576, 1152, 2304, 4608, |
|
0, 0, |
|
256, 512, 1024, 2048, 4096, 8192, 16384, 32768 |
|
}; |
|
|
|
/** |
|
* Writes streaminfo metadata block to byte array |
|
*/ |
|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) |
|
{ |
|
PutBitContext pb; |
|
|
|
memset(header, 0, FLAC_STREAMINFO_SIZE); |
|
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE); |
|
|
|
/* streaminfo metadata block */ |
|
put_bits(&pb, 16, s->blocksize); |
|
put_bits(&pb, 16, s->blocksize); |
|
put_bits(&pb, 24, 0); |
|
put_bits(&pb, 24, s->max_framesize); |
|
put_bits(&pb, 20, s->samplerate); |
|
put_bits(&pb, 3, s->channels-1); |
|
put_bits(&pb, 5, 15); /* bits per sample - 1 */ |
|
flush_put_bits(&pb); |
|
/* total samples = 0 */ |
|
/* MD5 signature = 0 */ |
|
} |
|
|
|
/** |
|
* Sets blocksize based on samplerate |
|
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds |
|
*/ |
|
static int select_blocksize(int samplerate, int block_time_ms) |
|
{ |
|
int i; |
|
int target; |
|
int blocksize; |
|
|
|
assert(samplerate > 0); |
|
blocksize = flac_blocksizes[1]; |
|
target = (samplerate * block_time_ms) / 1000; |
|
for(i=0; i<16; i++) { |
|
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) { |
|
blocksize = flac_blocksizes[i]; |
|
} |
|
} |
|
return blocksize; |
|
} |
|
|
|
static int flac_encode_init(AVCodecContext *avctx) |
|
{ |
|
int freq = avctx->sample_rate; |
|
int channels = avctx->channels; |
|
FlacEncodeContext *s = avctx->priv_data; |
|
int i, level; |
|
uint8_t *streaminfo; |
|
|
|
s->avctx = avctx; |
|
|
|
if(avctx->sample_fmt != SAMPLE_FMT_S16) { |
|
return -1; |
|
} |
|
|
|
if(channels < 1 || channels > FLAC_MAX_CH) { |
|
return -1; |
|
} |
|
s->channels = channels; |
|
s->ch_code = s->channels-1; |
|
|
|
/* find samplerate in table */ |
|
if(freq < 1) |
|
return -1; |
|
for(i=4; i<12; i++) { |
|
if(freq == flac_samplerates[i]) { |
|
s->samplerate = flac_samplerates[i]; |
|
s->sr_code[0] = i; |
|
s->sr_code[1] = 0; |
|
break; |
|
} |
|
} |
|
/* if not in table, samplerate is non-standard */ |
|
if(i == 12) { |
|
if(freq % 1000 == 0 && freq < 255000) { |
|
s->sr_code[0] = 12; |
|
s->sr_code[1] = freq / 1000; |
|
} else if(freq % 10 == 0 && freq < 655350) { |
|
s->sr_code[0] = 14; |
|
s->sr_code[1] = freq / 10; |
|
} else if(freq < 65535) { |
|
s->sr_code[0] = 13; |
|
s->sr_code[1] = freq; |
|
} else { |
|
return -1; |
|
} |
|
s->samplerate = freq; |
|
} |
|
|
|
/* set compression option defaults based on avctx->compression_level */ |
|
if(avctx->compression_level < 0) { |
|
s->options.compression_level = 5; |
|
} else { |
|
s->options.compression_level = avctx->compression_level; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level); |
|
|
|
level= s->options.compression_level; |
|
if(level > 5) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", |
|
s->options.compression_level); |
|
return -1; |
|
} |
|
|
|
s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105})[level]; |
|
s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1})[level]; |
|
s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1})[level]; |
|
s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8})[level]; |
|
s->options.prediction_order_method = ORDER_METHOD_EST; |
|
s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0})[level]; |
|
s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8})[level]; |
|
|
|
/* set compression option overrides from AVCodecContext */ |
|
if(avctx->use_lpc >= 0) { |
|
s->options.use_lpc = !!avctx->use_lpc; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " use lpc: %s\n", |
|
s->options.use_lpc? "yes" : "no"); |
|
|
|
if(avctx->min_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->min_prediction_order < MIN_LPC_ORDER || |
|
avctx->min_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->min_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", |
|
avctx->min_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.min_prediction_order = avctx->min_prediction_order; |
|
} |
|
if(avctx->max_prediction_order >= 0) { |
|
if(s->options.use_lpc) { |
|
if(avctx->max_prediction_order < MIN_LPC_ORDER || |
|
avctx->max_prediction_order > MAX_LPC_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} else { |
|
if(avctx->max_prediction_order > MAX_FIXED_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", |
|
avctx->max_prediction_order); |
|
return -1; |
|
} |
|
} |
|
s->options.max_prediction_order = avctx->max_prediction_order; |
|
} |
|
if(s->options.max_prediction_order < s->options.min_prediction_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", |
|
s->options.min_prediction_order, s->options.max_prediction_order); |
|
|
|
if(avctx->prediction_order_method >= 0) { |
|
if(avctx->prediction_order_method > ORDER_METHOD_SEARCH) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n", |
|
avctx->prediction_order_method); |
|
return -1; |
|
} |
|
s->options.prediction_order_method = avctx->prediction_order_method; |
|
} |
|
switch(avctx->prediction_order_method) { |
|
case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"estimate"); break; |
|
case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"2-level"); break; |
|
case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"4-level"); break; |
|
case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"8-level"); break; |
|
case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", |
|
"full search"); break; |
|
} |
|
|
|
if(avctx->min_partition_order >= 0) { |
|
if(avctx->min_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n", |
|
avctx->min_partition_order); |
|
return -1; |
|
} |
|
s->options.min_partition_order = avctx->min_partition_order; |
|
} |
|
if(avctx->max_partition_order >= 0) { |
|
if(avctx->max_partition_order > MAX_PARTITION_ORDER) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n", |
|
avctx->max_partition_order); |
|
return -1; |
|
} |
|
s->options.max_partition_order = avctx->max_partition_order; |
|
} |
|
if(s->options.max_partition_order < s->options.min_partition_order) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
return -1; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", |
|
s->options.min_partition_order, s->options.max_partition_order); |
|
|
|
if(avctx->frame_size > 0) { |
|
if(avctx->frame_size < FLAC_MIN_BLOCKSIZE || |
|
avctx->frame_size > FLAC_MIN_BLOCKSIZE) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", |
|
avctx->frame_size); |
|
return -1; |
|
} |
|
s->blocksize = avctx->frame_size; |
|
} else { |
|
s->blocksize = select_blocksize(s->samplerate, s->options.block_time_ms); |
|
avctx->frame_size = s->blocksize; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->blocksize); |
|
|
|
/* set LPC precision */ |
|
if(avctx->lpc_coeff_precision > 0) { |
|
if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n", |
|
avctx->lpc_coeff_precision); |
|
return -1; |
|
} |
|
s->options.lpc_coeff_precision = avctx->lpc_coeff_precision; |
|
} else { |
|
/* select LPC precision based on block size */ |
|
if( s->blocksize <= 192) s->options.lpc_coeff_precision = 7; |
|
else if(s->blocksize <= 384) s->options.lpc_coeff_precision = 8; |
|
else if(s->blocksize <= 576) s->options.lpc_coeff_precision = 9; |
|
else if(s->blocksize <= 1152) s->options.lpc_coeff_precision = 10; |
|
else if(s->blocksize <= 2304) s->options.lpc_coeff_precision = 11; |
|
else if(s->blocksize <= 4608) s->options.lpc_coeff_precision = 12; |
|
else if(s->blocksize <= 8192) s->options.lpc_coeff_precision = 13; |
|
else if(s->blocksize <= 16384) s->options.lpc_coeff_precision = 14; |
|
else s->options.lpc_coeff_precision = 15; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", |
|
s->options.lpc_coeff_precision); |
|
|
|
/* set maximum encoded frame size in verbatim mode */ |
|
if(s->channels == 2) { |
|
s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3); |
|
} else { |
|
s->max_framesize = 14 + (s->blocksize * s->channels * 2); |
|
} |
|
|
|
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); |
|
write_streaminfo(s, streaminfo); |
|
avctx->extradata = streaminfo; |
|
avctx->extradata_size = FLAC_STREAMINFO_SIZE; |
|
|
|
s->frame_count = 0; |
|
|
|
avctx->coded_frame = avcodec_alloc_frame(); |
|
avctx->coded_frame->key_frame = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static void init_frame(FlacEncodeContext *s) |
|
{ |
|
int i, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
|
|
for(i=0; i<16; i++) { |
|
if(s->blocksize == flac_blocksizes[i]) { |
|
frame->blocksize = flac_blocksizes[i]; |
|
frame->bs_code[0] = i; |
|
frame->bs_code[1] = 0; |
|
break; |
|
} |
|
} |
|
if(i == 16) { |
|
frame->blocksize = s->blocksize; |
|
if(frame->blocksize <= 256) { |
|
frame->bs_code[0] = 6; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} else { |
|
frame->bs_code[0] = 7; |
|
frame->bs_code[1] = frame->blocksize-1; |
|
} |
|
} |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
frame->subframes[ch].obits = 16; |
|
} |
|
} |
|
|
|
/** |
|
* Copy channel-interleaved input samples into separate subframes |
|
*/ |
|
static void copy_samples(FlacEncodeContext *s, int16_t *samples) |
|
{ |
|
int i, j, ch; |
|
FlacFrame *frame; |
|
|
|
frame = &s->frame; |
|
for(i=0,j=0; i<frame->blocksize; i++) { |
|
for(ch=0; ch<s->channels; ch++,j++) { |
|
frame->subframes[ch].samples[i] = samples[j]; |
|
} |
|
} |
|
} |
|
|
|
|
|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) |
|
|
|
static int find_optimal_param(uint32_t sum, int n) |
|
{ |
|
int k, k_opt; |
|
uint32_t nbits[MAX_RICE_PARAM+1]; |
|
|
|
k_opt = 0; |
|
nbits[0] = UINT32_MAX; |
|
for(k=0; k<=MAX_RICE_PARAM; k++) { |
|
nbits[k] = rice_encode_count(sum, n, k); |
|
if(nbits[k] < nbits[k_opt]) { |
|
k_opt = k; |
|
} |
|
} |
|
return k_opt; |
|
} |
|
|
|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, |
|
uint32_t *sums, int n, int pred_order) |
|
{ |
|
int i; |
|
int k, cnt, part; |
|
uint32_t all_bits; |
|
|
|
part = (1 << porder); |
|
all_bits = 0; |
|
|
|
cnt = (n >> porder) - pred_order; |
|
for(i=0; i<part; i++) { |
|
if(i == 1) cnt = (n >> porder); |
|
k = find_optimal_param(sums[i], cnt); |
|
rc->params[i] = k; |
|
all_bits += rice_encode_count(sums[i], cnt, k); |
|
} |
|
all_bits += (4 * part); |
|
|
|
rc->porder = porder; |
|
|
|
return all_bits; |
|
} |
|
|
|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order, |
|
uint32_t sums[][MAX_PARTITIONS]) |
|
{ |
|
int i, j; |
|
int parts; |
|
uint32_t *res, *res_end; |
|
|
|
/* sums for highest level */ |
|
parts = (1 << pmax); |
|
res = &data[pred_order]; |
|
res_end = &data[n >> pmax]; |
|
for(i=0; i<parts; i++) { |
|
sums[pmax][i] = 0; |
|
while(res < res_end){ |
|
sums[pmax][i] += *(res++); |
|
} |
|
res_end+= n >> pmax; |
|
} |
|
/* sums for lower levels */ |
|
for(i=pmax-1; i>=pmin; i--) { |
|
parts = (1 << i); |
|
for(j=0; j<parts; j++) { |
|
sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1]; |
|
} |
|
} |
|
} |
|
|
|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order) |
|
{ |
|
int i; |
|
uint32_t bits[MAX_PARTITION_ORDER+1]; |
|
int opt_porder; |
|
RiceContext tmp_rc; |
|
uint32_t *udata; |
|
uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS]; |
|
|
|
assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); |
|
assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); |
|
assert(pmin <= pmax); |
|
|
|
udata = av_malloc(n * sizeof(uint32_t)); |
|
for(i=0; i<n; i++) { |
|
udata[i] = (2*data[i]) ^ (data[i]>>31); |
|
} |
|
|
|
calc_sums(pmin, pmax, udata, n, pred_order, sums); |
|
|
|
opt_porder = pmin; |
|
bits[pmin] = UINT32_MAX; |
|
for(i=pmin; i<=pmax; i++) { |
|
bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); |
|
if(bits[i] <= bits[opt_porder]) { |
|
opt_porder = i; |
|
*rc= tmp_rc; |
|
} |
|
} |
|
|
|
av_freep(&udata); |
|
return bits[opt_porder]; |
|
} |
|
|
|
static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps) |
|
{ |
|
uint32_t bits; |
|
bits = pred_order*bps + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax, |
|
int32_t *data, int n, int pred_order, |
|
int bps, int precision) |
|
{ |
|
uint32_t bits; |
|
bits = pred_order*bps + 4 + 5 + pred_order*precision + 6; |
|
bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); |
|
return bits; |
|
} |
|
|
|
/** |
|
* Apply Welch window function to audio block |
|
*/ |
|
static void apply_welch_window(const int32_t *data, int len, double *w_data) |
|
{ |
|
int i, n2; |
|
double w; |
|
double c; |
|
|
|
n2 = (len >> 1); |
|
c = 2.0 / (len - 1.0); |
|
for(i=0; i<n2; i++) { |
|
w = c - i - 1.0; |
|
w = 1.0 - (w * w); |
|
w_data[i] = data[i] * w; |
|
w_data[len-1-i] = data[len-1-i] * w; |
|
} |
|
} |
|
|
|
/** |
|
* Calculates autocorrelation data from audio samples |
|
* A Welch window function is applied before calculation. |
|
*/ |
|
static void compute_autocorr(const int32_t *data, int len, int lag, |
|
double *autoc) |
|
{ |
|
int i, lag_ptr; |
|
double tmp[len + lag]; |
|
double *data1= tmp + lag; |
|
|
|
apply_welch_window(data, len, data1); |
|
|
|
for(i=0; i<lag; i++){ |
|
autoc[i] = 1.0; |
|
data1[i-lag]= 0.0; |
|
} |
|
|
|
for(i=0; i<len; i++){ |
|
for(lag_ptr= i-lag; lag_ptr<=i; lag_ptr++){ |
|
autoc[i-lag_ptr] += data1[i] * data1[lag_ptr]; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Levinson-Durbin recursion. |
|
* Produces LPC coefficients from autocorrelation data. |
|
*/ |
|
static void compute_lpc_coefs(const double *autoc, int max_order, |
|
double lpc[][MAX_LPC_ORDER], double *ref) |
|
{ |
|
int i, j, i2; |
|
double r, err, tmp; |
|
double lpc_tmp[MAX_LPC_ORDER]; |
|
|
|
for(i=0; i<max_order; i++) lpc_tmp[i] = 0; |
|
err = autoc[0]; |
|
|
|
for(i=0; i<max_order; i++) { |
|
r = -autoc[i+1]; |
|
for(j=0; j<i; j++) { |
|
r -= lpc_tmp[j] * autoc[i-j]; |
|
} |
|
r /= err; |
|
ref[i] = fabs(r); |
|
|
|
err *= 1.0 - (r * r); |
|
|
|
i2 = (i >> 1); |
|
lpc_tmp[i] = r; |
|
for(j=0; j<i2; j++) { |
|
tmp = lpc_tmp[j]; |
|
lpc_tmp[j] += r * lpc_tmp[i-1-j]; |
|
lpc_tmp[i-1-j] += r * tmp; |
|
} |
|
if(i & 1) { |
|
lpc_tmp[j] += lpc_tmp[j] * r; |
|
} |
|
|
|
for(j=0; j<=i; j++) { |
|
lpc[i][j] = -lpc_tmp[j]; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Quantize LPC coefficients |
|
*/ |
|
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
|
int32_t *lpc_out, int *shift) |
|
{ |
|
int i; |
|
double cmax; |
|
int32_t qmax; |
|
int sh; |
|
|
|
/* define maximum levels */ |
|
qmax = (1 << (precision - 1)) - 1; |
|
|
|
/* find maximum coefficient value */ |
|
cmax = 0.0; |
|
for(i=0; i<order; i++) { |
|
cmax= FFMAX(cmax, fabs(lpc_in[i])); |
|
} |
|
|
|
/* if maximum value quantizes to zero, return all zeros */ |
|
if(cmax * (1 << MAX_LPC_SHIFT) < 1.0) { |
|
*shift = 0; |
|
memset(lpc_out, 0, sizeof(int32_t) * order); |
|
return; |
|
} |
|
|
|
/* calculate level shift which scales max coeff to available bits */ |
|
sh = MAX_LPC_SHIFT; |
|
while((cmax * (1 << sh) > qmax) && (sh > 0)) { |
|
sh--; |
|
} |
|
|
|
/* since negative shift values are unsupported in decoder, scale down |
|
coefficients instead */ |
|
if(sh == 0 && cmax > qmax) { |
|
double scale = ((double)qmax) / cmax; |
|
for(i=0; i<order; i++) { |
|
lpc_in[i] *= scale; |
|
} |
|
} |
|
|
|
/* output quantized coefficients and level shift */ |
|
for(i=0; i<order; i++) { |
|
lpc_out[i] = (int32_t)(lpc_in[i] * (1 << sh)); |
|
} |
|
*shift = sh; |
|
} |
|
|
|
static int estimate_best_order(double *ref, int max_order) |
|
{ |
|
int i, est; |
|
|
|
est = 1; |
|
for(i=max_order-1; i>=0; i--) { |
|
if(ref[i] > 0.10) { |
|
est = i+1; |
|
break; |
|
} |
|
} |
|
return est; |
|
} |
|
|
|
/** |
|
* Calculate LPC coefficients for multiple orders |
|
*/ |
|
static int lpc_calc_coefs(const int32_t *samples, int blocksize, int max_order, |
|
int precision, int32_t coefs[][MAX_LPC_ORDER], |
|
int *shift) |
|
{ |
|
double autoc[MAX_LPC_ORDER+1]; |
|
double ref[MAX_LPC_ORDER]; |
|
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int i; |
|
int opt_order; |
|
|
|
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER); |
|
|
|
compute_autocorr(samples, blocksize, max_order+1, autoc); |
|
|
|
compute_lpc_coefs(autoc, max_order, lpc, ref); |
|
|
|
opt_order = estimate_best_order(ref, max_order); |
|
|
|
i = opt_order-1; |
|
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i]); |
|
|
|
return opt_order; |
|
} |
|
|
|
|
|
static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n) |
|
{ |
|
assert(n > 0); |
|
memcpy(res, smp, n * sizeof(int32_t)); |
|
} |
|
|
|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, |
|
int order) |
|
{ |
|
int i; |
|
|
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
|
|
if(order==0){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i]; |
|
}else if(order==1){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - smp[i-1]; |
|
}else if(order==2){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - 2*smp[i-1] + smp[i-2]; |
|
}else if(order==3){ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3]; |
|
}else{ |
|
for(i=order; i<n; i++) |
|
res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4]; |
|
} |
|
} |
|
|
|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n, |
|
int order, const int32_t *coefs, int shift) |
|
{ |
|
int i, j; |
|
int32_t pred; |
|
|
|
for(i=0; i<order; i++) { |
|
res[i] = smp[i]; |
|
} |
|
for(i=order; i<n; i++) { |
|
pred = 0; |
|
for(j=0; j<order; j++) { |
|
pred += coefs[j] * smp[i-j-1]; |
|
} |
|
res[i] = smp[i] - (pred >> shift); |
|
} |
|
} |
|
|
|
static int get_max_p_order(int max_porder, int n, int order) |
|
{ |
|
int porder, max_parts; |
|
|
|
for(porder = max_porder; porder > 0; porder--) { |
|
max_parts = (1 << porder); |
|
if(!(n % max_parts) && (n > max_parts*order)) { |
|
break; |
|
} |
|
} |
|
return porder; |
|
} |
|
|
|
static int encode_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
int min_order, max_order, opt_order, precision; |
|
int porder, min_porder, max_porder; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
|
int shift[MAX_LPC_ORDER]; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
if(n < 5) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
min_order = ctx->options.min_prediction_order; |
|
max_order = ctx->options.max_prediction_order; |
|
min_porder = ctx->options.min_partition_order; |
|
max_porder = ctx->options.max_partition_order; |
|
precision = ctx->options.lpc_coeff_precision; |
|
|
|
/* FIXED */ |
|
if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) { |
|
uint32_t bits[MAX_FIXED_ORDER+1]; |
|
if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; |
|
opt_order = 0; |
|
bits[0] = UINT32_MAX; |
|
for(i=min_order; i<=max_order; i++) { |
|
encode_residual_fixed(res, smp, n, i); |
|
porder = get_max_p_order(max_porder, n, i); |
|
bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, porder, res, |
|
n, i, sub->obits); |
|
if(bits[i] < bits[opt_order]) { |
|
opt_order = i; |
|
} |
|
} |
|
sub->order = opt_order; |
|
sub->type = FLAC_SUBFRAME_FIXED; |
|
sub->type_code = sub->type | sub->order; |
|
if(sub->order != max_order) { |
|
encode_residual_fixed(res, smp, n, sub->order); |
|
porder = get_max_p_order(max_porder, n, sub->order); |
|
return calc_rice_params_fixed(&sub->rc, min_porder, porder, res, n, |
|
sub->order, sub->obits); |
|
} |
|
return bits[sub->order]; |
|
} |
|
|
|
/* LPC */ |
|
sub->order = lpc_calc_coefs(smp, n, max_order, precision, coefs, shift); |
|
sub->type = FLAC_SUBFRAME_LPC; |
|
sub->type_code = sub->type | (sub->order-1); |
|
sub->shift = shift[sub->order-1]; |
|
for(i=0; i<sub->order; i++) { |
|
sub->coefs[i] = coefs[sub->order-1][i]; |
|
} |
|
porder = get_max_p_order(max_porder, n, sub->order); |
|
encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); |
|
return calc_rice_params_lpc(&sub->rc, 0, porder, res, n, sub->order, |
|
sub->obits, precision); |
|
} |
|
|
|
static int encode_residual_v(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, n; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res, *smp; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
smp = sub->samples; |
|
n = frame->blocksize; |
|
|
|
/* CONSTANT */ |
|
for(i=1; i<n; i++) { |
|
if(smp[i] != smp[0]) break; |
|
} |
|
if(i == n) { |
|
sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT; |
|
res[0] = smp[0]; |
|
return sub->obits; |
|
} |
|
|
|
/* VERBATIM */ |
|
sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; |
|
encode_residual_verbatim(res, smp, n); |
|
return sub->obits * n; |
|
} |
|
|
|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) |
|
{ |
|
int i, best; |
|
int32_t lt, rt; |
|
uint64_t sum[4]; |
|
uint64_t score[4]; |
|
int k; |
|
|
|
/* calculate sum of 2nd order residual for each channel */ |
|
sum[0] = sum[1] = sum[2] = sum[3] = 0; |
|
for(i=2; i<n; i++) { |
|
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2]; |
|
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2]; |
|
sum[2] += ABS((lt + rt) >> 1); |
|
sum[3] += ABS(lt - rt); |
|
sum[0] += ABS(lt); |
|
sum[1] += ABS(rt); |
|
} |
|
/* estimate bit counts */ |
|
for(i=0; i<4; i++) { |
|
k = find_optimal_param(2*sum[i], n); |
|
sum[i] = rice_encode_count(2*sum[i], n, k); |
|
} |
|
|
|
/* calculate score for each mode */ |
|
score[0] = sum[0] + sum[1]; |
|
score[1] = sum[0] + sum[3]; |
|
score[2] = sum[1] + sum[3]; |
|
score[3] = sum[2] + sum[3]; |
|
|
|
/* return mode with lowest score */ |
|
best = 0; |
|
for(i=1; i<4; i++) { |
|
if(score[i] < score[best]) { |
|
best = i; |
|
} |
|
} |
|
if(best == 0) { |
|
return FLAC_CHMODE_LEFT_RIGHT; |
|
} else if(best == 1) { |
|
return FLAC_CHMODE_LEFT_SIDE; |
|
} else if(best == 2) { |
|
return FLAC_CHMODE_RIGHT_SIDE; |
|
} else { |
|
return FLAC_CHMODE_MID_SIDE; |
|
} |
|
} |
|
|
|
/** |
|
* Perform stereo channel decorrelation |
|
*/ |
|
static void channel_decorrelation(FlacEncodeContext *ctx) |
|
{ |
|
FlacFrame *frame; |
|
int32_t *left, *right; |
|
int i, n; |
|
|
|
frame = &ctx->frame; |
|
n = frame->blocksize; |
|
left = frame->subframes[0].samples; |
|
right = frame->subframes[1].samples; |
|
|
|
if(ctx->channels != 2) { |
|
frame->ch_mode = FLAC_CHMODE_NOT_STEREO; |
|
return; |
|
} |
|
|
|
frame->ch_mode = estimate_stereo_mode(left, right, n); |
|
|
|
/* perform decorrelation and adjust bits-per-sample */ |
|
if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) { |
|
return; |
|
} |
|
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) { |
|
int32_t tmp; |
|
for(i=0; i<n; i++) { |
|
tmp = left[i]; |
|
left[i] = (tmp + right[i]) >> 1; |
|
right[i] = tmp - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { |
|
for(i=0; i<n; i++) { |
|
right[i] = left[i] - right[i]; |
|
} |
|
frame->subframes[1].obits++; |
|
} else { |
|
for(i=0; i<n; i++) { |
|
left[i] -= right[i]; |
|
} |
|
frame->subframes[0].obits++; |
|
} |
|
} |
|
|
|
static void put_sbits(PutBitContext *pb, int bits, int32_t val) |
|
{ |
|
assert(bits >= 0 && bits <= 31); |
|
|
|
put_bits(pb, bits, val & ((1<<bits)-1)); |
|
} |
|
|
|
static void write_utf8(PutBitContext *pb, uint32_t val) |
|
{ |
|
int bytes, shift; |
|
|
|
if(val < 0x80){ |
|
put_bits(pb, 8, val); |
|
return; |
|
} |
|
|
|
bytes= (av_log2(val)+4) / 5; |
|
shift = (bytes - 1) * 6; |
|
put_bits(pb, 8, (256 - (256>>bytes)) | (val >> shift)); |
|
while(shift >= 6){ |
|
shift -= 6; |
|
put_bits(pb, 8, 0x80 | ((val >> shift) & 0x3F)); |
|
} |
|
} |
|
|
|
static void output_frame_header(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
int crc; |
|
|
|
frame = &s->frame; |
|
|
|
put_bits(&s->pb, 16, 0xFFF8); |
|
put_bits(&s->pb, 4, frame->bs_code[0]); |
|
put_bits(&s->pb, 4, s->sr_code[0]); |
|
if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) { |
|
put_bits(&s->pb, 4, s->ch_code); |
|
} else { |
|
put_bits(&s->pb, 4, frame->ch_mode); |
|
} |
|
put_bits(&s->pb, 3, 4); /* bits-per-sample code */ |
|
put_bits(&s->pb, 1, 0); |
|
write_utf8(&s->pb, s->frame_count); |
|
if(frame->bs_code[0] == 6) { |
|
put_bits(&s->pb, 8, frame->bs_code[1]); |
|
} else if(frame->bs_code[0] == 7) { |
|
put_bits(&s->pb, 16, frame->bs_code[1]); |
|
} |
|
if(s->sr_code[0] == 12) { |
|
put_bits(&s->pb, 8, s->sr_code[1]); |
|
} else if(s->sr_code[0] > 12) { |
|
put_bits(&s->pb, 16, s->sr_code[1]); |
|
} |
|
flush_put_bits(&s->pb); |
|
crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3); |
|
put_bits(&s->pb, 8, crc); |
|
} |
|
|
|
static void output_subframe_constant(FlacEncodeContext *s, int ch) |
|
{ |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
sub = &s->frame.subframes[ch]; |
|
res = sub->residual[0]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
|
|
static void output_subframe_verbatim(FlacEncodeContext *s, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t res; |
|
|
|
frame = &s->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
for(i=0; i<frame->blocksize; i++) { |
|
res = sub->residual[i]; |
|
put_sbits(&s->pb, sub->obits, res); |
|
} |
|
} |
|
|
|
static void output_residual(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, j, p, n, parts; |
|
int k, porder, psize, res_cnt; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int32_t *res; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
res = sub->residual; |
|
n = frame->blocksize; |
|
|
|
/* rice-encoded block */ |
|
put_bits(&ctx->pb, 2, 0); |
|
|
|
/* partition order */ |
|
porder = sub->rc.porder; |
|
psize = n >> porder; |
|
parts = (1 << porder); |
|
put_bits(&ctx->pb, 4, porder); |
|
res_cnt = psize - sub->order; |
|
|
|
/* residual */ |
|
j = sub->order; |
|
for(p=0; p<parts; p++) { |
|
k = sub->rc.params[p]; |
|
put_bits(&ctx->pb, 4, k); |
|
if(p == 1) res_cnt = psize; |
|
for(i=0; i<res_cnt && j<n; i++, j++) { |
|
set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0); |
|
} |
|
} |
|
} |
|
|
|
static void output_subframe_fixed(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframe_lpc(FlacEncodeContext *ctx, int ch) |
|
{ |
|
int i, cbits; |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
|
|
frame = &ctx->frame; |
|
sub = &frame->subframes[ch]; |
|
|
|
/* warm-up samples */ |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, sub->obits, sub->residual[i]); |
|
} |
|
|
|
/* LPC coefficients */ |
|
cbits = ctx->options.lpc_coeff_precision; |
|
put_bits(&ctx->pb, 4, cbits-1); |
|
put_sbits(&ctx->pb, 5, sub->shift); |
|
for(i=0; i<sub->order; i++) { |
|
put_sbits(&ctx->pb, cbits, sub->coefs[i]); |
|
} |
|
|
|
/* residual */ |
|
output_residual(ctx, ch); |
|
} |
|
|
|
static void output_subframes(FlacEncodeContext *s) |
|
{ |
|
FlacFrame *frame; |
|
FlacSubframe *sub; |
|
int ch; |
|
|
|
frame = &s->frame; |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
sub = &frame->subframes[ch]; |
|
|
|
/* subframe header */ |
|
put_bits(&s->pb, 1, 0); |
|
put_bits(&s->pb, 6, sub->type_code); |
|
put_bits(&s->pb, 1, 0); /* no wasted bits */ |
|
|
|
/* subframe */ |
|
if(sub->type == FLAC_SUBFRAME_CONSTANT) { |
|
output_subframe_constant(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_VERBATIM) { |
|
output_subframe_verbatim(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_FIXED) { |
|
output_subframe_fixed(s, ch); |
|
} else if(sub->type == FLAC_SUBFRAME_LPC) { |
|
output_subframe_lpc(s, ch); |
|
} |
|
} |
|
} |
|
|
|
static void output_frame_footer(FlacEncodeContext *s) |
|
{ |
|
int crc; |
|
flush_put_bits(&s->pb); |
|
crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3)); |
|
put_bits(&s->pb, 16, crc); |
|
flush_put_bits(&s->pb); |
|
} |
|
|
|
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
|
int buf_size, void *data) |
|
{ |
|
int ch; |
|
FlacEncodeContext *s; |
|
int16_t *samples = data; |
|
int out_bytes; |
|
|
|
s = avctx->priv_data; |
|
|
|
s->blocksize = avctx->frame_size; |
|
init_frame(s); |
|
|
|
copy_samples(s, samples); |
|
|
|
channel_decorrelation(s); |
|
|
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual(s, ch); |
|
} |
|
init_put_bits(&s->pb, frame, buf_size); |
|
output_frame_header(s); |
|
output_subframes(s); |
|
output_frame_footer(s); |
|
out_bytes = put_bits_count(&s->pb) >> 3; |
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) { |
|
/* frame too large. use verbatim mode */ |
|
for(ch=0; ch<s->channels; ch++) { |
|
encode_residual_v(s, ch); |
|
} |
|
init_put_bits(&s->pb, frame, buf_size); |
|
output_frame_header(s); |
|
output_subframes(s); |
|
output_frame_footer(s); |
|
out_bytes = put_bits_count(&s->pb) >> 3; |
|
|
|
if(out_bytes > s->max_framesize || out_bytes >= buf_size) { |
|
/* still too large. must be an error. */ |
|
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
s->frame_count++; |
|
return out_bytes; |
|
} |
|
|
|
static int flac_encode_close(AVCodecContext *avctx) |
|
{ |
|
av_freep(&avctx->extradata); |
|
avctx->extradata_size = 0; |
|
av_freep(&avctx->coded_frame); |
|
return 0; |
|
} |
|
|
|
AVCodec flac_encoder = { |
|
"flac", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_FLAC, |
|
sizeof(FlacEncodeContext), |
|
flac_encode_init, |
|
flac_encode_frame, |
|
flac_encode_close, |
|
NULL, |
|
.capabilities = CODEC_CAP_SMALL_LAST_FRAME, |
|
};
|
|
|