You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

612 lines
17 KiB

;******************************************************************************
;* Core video DSP functions
;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
;*
;* This file is part of Libav.
;*
;* Libav is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* Libav is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with Libav; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "libavutil/x86/x86util.asm"
SECTION .text
; extern void ff_emu_edge_core(uint8_t *buf, const uint8_t *src, x86_reg linesize,
; x86_reg start_y, x86_reg end_y, x86_reg block_h,
; x86_reg start_x, x86_reg end_x, x86_reg block_w);
;
; The actual function itself is below. It basically wraps a very simple
; w = end_x - start_x
; if (w) {
; if (w > 22) {
; jump to the slow loop functions
; } else {
; jump to the fast loop functions
; }
; }
;
; ... and then the same for left/right extend also. See below for loop
; function implementations. Fast are fixed-width, slow is variable-width
%macro EMU_EDGE_FUNC 0
%if ARCH_X86_64
%define w_reg r7
cglobal emu_edge_core, 6, 9, 1
mov r8, r5 ; save block_h
%else
%define w_reg r6
cglobal emu_edge_core, 2, 7, 0
mov r4, r4m ; end_y
mov r5, r5m ; block_h
%endif
; start with vertical extend (top/bottom) and body pixel copy
mov w_reg, r7m
sub w_reg, r6m ; w = start_x - end_x
sub r5, r4
%if ARCH_X86_64
sub r4, r3
%else
sub r4, dword r3m
%endif
cmp w_reg, 22
jg .slow_v_extend_loop
%if ARCH_X86_32
mov r2, r2m ; linesize
%endif
sal w_reg, 7 ; w * 128
%ifdef PIC
lea rax, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)]
add w_reg, rax
%else
lea w_reg, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)+w_reg]
%endif
call w_reg ; fast top extend, body copy and bottom extend
.v_extend_end:
; horizontal extend (left/right)
mov w_reg, r6m ; start_x
sub r0, w_reg
%if ARCH_X86_64
mov r3, r0 ; backup of buf+block_h*linesize
mov r5, r8
%else
mov r0m, r0 ; backup of buf+block_h*linesize
mov r5, r5m
%endif
test w_reg, w_reg
jz .right_extend
cmp w_reg, 22
jg .slow_left_extend_loop
mov r1, w_reg
dec w_reg
; FIXME we can do a if size == 1 here if that makes any speed difference, test me
sar w_reg, 1
sal w_reg, 6
; r0=buf+block_h*linesize,r7(64)/r6(32)=start_x offset for funcs
; r6(rax)/r3(ebx)=val,r2=linesize,r1=start_x,r5=block_h
%ifdef PIC
lea rax, [.emuedge_extend_left_2]
add w_reg, rax
%else
lea w_reg, [.emuedge_extend_left_2+w_reg]
%endif
call w_reg
; now r3(64)/r0(32)=buf,r2=linesize,r8/r5=block_h,r6/r3=val, r7/r6=end_x, r1=block_w
.right_extend:
%if ARCH_X86_32
mov r0, r0m
mov r5, r5m
%endif
mov w_reg, r7m ; end_x
mov r1, r8m ; block_w
mov r4, r1
sub r1, w_reg
jz .h_extend_end ; if (end_x == block_w) goto h_extend_end
cmp r1, 22
jg .slow_right_extend_loop
dec r1
; FIXME we can do a if size == 1 here if that makes any speed difference, test me
sar r1, 1
sal r1, 6
%ifdef PIC
lea rax, [.emuedge_extend_right_2]
add r1, rax
%else
lea r1, [.emuedge_extend_right_2+r1]
%endif
call r1
.h_extend_end:
RET
%if ARCH_X86_64
%define vall al
%define valh ah
%define valw ax
%define valw2 r7w
%define valw3 r3w
%if WIN64
%define valw4 r7w
%else ; unix64
%define valw4 r3w
%endif
%define vald eax
%else
%define vall bl
%define valh bh
%define valw bx
%define valw2 r6w
%define valw3 valw2
%define valw4 valw3
%define vald ebx
%define stack_offset 0x14
%endif
%endmacro
; macro to read/write a horizontal number of pixels (%2) to/from registers
; on x86-64, - fills xmm0-15 for consecutive sets of 16 pixels
; - if (%2 & 15 == 8) fills the last 8 bytes into rax
; - else if (%2 & 8) fills 8 bytes into mm0
; - if (%2 & 7 == 4) fills the last 4 bytes into rax
; - else if (%2 & 4) fills 4 bytes into mm0-1
; - if (%2 & 3 == 3) fills 2 bytes into r7/r3, and 1 into eax
; (note that we're using r3 for body/bottom because it's a shorter
; opcode, and then the loop fits in 128 bytes)
; - else fills remaining bytes into rax
; on x86-32, - fills mm0-7 for consecutive sets of 8 pixels
; - if (%2 & 7 == 4) fills 4 bytes into ebx
; - else if (%2 & 4) fills 4 bytes into mm0-7
; - if (%2 & 3 == 3) fills 2 bytes into r6, and 1 into ebx
; - else fills remaining bytes into ebx
; writing data out is in the same way
%macro READ_NUM_BYTES 2
%assign %%src_off 0 ; offset in source buffer
%assign %%smidx 0 ; mmx register idx
%assign %%sxidx 0 ; xmm register idx
%if cpuflag(sse)
%rep %2/16
movups xmm %+ %%sxidx, [r1+%%src_off]
%assign %%src_off %%src_off+16
%assign %%sxidx %%sxidx+1
%endrep ; %2/16
%endif
%if ARCH_X86_64
%if (%2-%%src_off) == 8
mov rax, [r1+%%src_off]
%assign %%src_off %%src_off+8
%endif ; (%2-%%src_off) == 8
%endif ; x86-64
%rep (%2-%%src_off)/8
movq mm %+ %%smidx, [r1+%%src_off]
%assign %%src_off %%src_off+8
%assign %%smidx %%smidx+1
%endrep ; (%2-%%dst_off)/8
%if (%2-%%src_off) == 4
mov vald, [r1+%%src_off]
%elif (%2-%%src_off) & 4
movd mm %+ %%smidx, [r1+%%src_off]
%assign %%src_off %%src_off+4
%endif ; (%2-%%src_off) ==/& 4
%if (%2-%%src_off) == 1
mov vall, [r1+%%src_off]
%elif (%2-%%src_off) == 2
mov valw, [r1+%%src_off]
%elif (%2-%%src_off) == 3
%ifidn %1, top
mov valw2, [r1+%%src_off]
%elifidn %1, body
mov valw3, [r1+%%src_off]
%elifidn %1, bottom
mov valw4, [r1+%%src_off]
%endif ; %1 ==/!= top
mov vall, [r1+%%src_off+2]
%endif ; (%2-%%src_off) == 1/2/3
%endmacro ; READ_NUM_BYTES
%macro WRITE_NUM_BYTES 2
%assign %%dst_off 0 ; offset in destination buffer
%assign %%dmidx 0 ; mmx register idx
%assign %%dxidx 0 ; xmm register idx
%if cpuflag(sse)
%rep %2/16
movups [r0+%%dst_off], xmm %+ %%dxidx
%assign %%dst_off %%dst_off+16
%assign %%dxidx %%dxidx+1
%endrep ; %2/16
%endif
%if ARCH_X86_64
%if (%2-%%dst_off) == 8
mov [r0+%%dst_off], rax
%assign %%dst_off %%dst_off+8
%endif ; (%2-%%dst_off) == 8
%endif ; x86-64
%rep (%2-%%dst_off)/8
movq [r0+%%dst_off], mm %+ %%dmidx
%assign %%dst_off %%dst_off+8
%assign %%dmidx %%dmidx+1
%endrep ; (%2-%%dst_off)/8
%if (%2-%%dst_off) == 4
mov [r0+%%dst_off], vald
%elif (%2-%%dst_off) & 4
movd [r0+%%dst_off], mm %+ %%dmidx
%assign %%dst_off %%dst_off+4
%endif ; (%2-%%dst_off) ==/& 4
%if (%2-%%dst_off) == 1
mov [r0+%%dst_off], vall
%elif (%2-%%dst_off) == 2
mov [r0+%%dst_off], valw
%elif (%2-%%dst_off) == 3
%ifidn %1, top
mov [r0+%%dst_off], valw2
%elifidn %1, body
mov [r0+%%dst_off], valw3
%elifidn %1, bottom
mov [r0+%%dst_off], valw4
%endif ; %1 ==/!= top
mov [r0+%%dst_off+2], vall
%endif ; (%2-%%dst_off) == 1/2/3
%endmacro ; WRITE_NUM_BYTES
; vertical top/bottom extend and body copy fast loops
; these are function pointers to set-width line copy functions, i.e.
; they read a fixed number of pixels into set registers, and write
; those out into the destination buffer
; r0=buf,r1=src,r2=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h
; r6(eax/64)/r3(ebx/32)=val_reg
%macro VERTICAL_EXTEND 0
%assign %%n 1
%rep 22
ALIGN 128
.emuedge_v_extend_ %+ %%n:
; extend pixels above body
%if ARCH_X86_64
test r3 , r3 ; if (!start_y)
jz .emuedge_copy_body_ %+ %%n %+ _loop ; goto body
%else ; ARCH_X86_32
cmp dword r3m, 0
je .emuedge_copy_body_ %+ %%n %+ _loop
%endif ; ARCH_X86_64/32
READ_NUM_BYTES top, %%n ; read bytes
.emuedge_extend_top_ %+ %%n %+ _loop: ; do {
WRITE_NUM_BYTES top, %%n ; write bytes
add r0 , r2 ; dst += linesize
%if ARCH_X86_64
dec r3d
%else ; ARCH_X86_32
dec dword r3m
%endif ; ARCH_X86_64/32
jnz .emuedge_extend_top_ %+ %%n %+ _loop ; } while (--start_y)
; copy body pixels
.emuedge_copy_body_ %+ %%n %+ _loop: ; do {
READ_NUM_BYTES body, %%n ; read bytes
WRITE_NUM_BYTES body, %%n ; write bytes
add r0 , r2 ; dst += linesize
add r1 , r2 ; src += linesize
dec r4d
jnz .emuedge_copy_body_ %+ %%n %+ _loop ; } while (--end_y)
; copy bottom pixels
test r5 , r5 ; if (!block_h)
jz .emuedge_v_extend_end_ %+ %%n ; goto end
sub r1 , r2 ; src -= linesize
READ_NUM_BYTES bottom, %%n ; read bytes
.emuedge_extend_bottom_ %+ %%n %+ _loop: ; do {
WRITE_NUM_BYTES bottom, %%n ; write bytes
add r0 , r2 ; dst += linesize
dec r5d
jnz .emuedge_extend_bottom_ %+ %%n %+ _loop ; } while (--block_h)
.emuedge_v_extend_end_ %+ %%n:
%if ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+1
%endrep
%endmacro VERTICAL_EXTEND
; left/right (horizontal) fast extend functions
; these are essentially identical to the vertical extend ones above,
; just left/right separated because number of pixels to extend is
; obviously not the same on both sides.
; for reading, pixels are placed in eax (x86-64) or ebx (x86-64) in the
; lowest two bytes of the register (so val*0x0101), and are splatted
; into each byte of mm0 as well if n_pixels >= 8
%macro READ_V_PIXEL 2
mov vall, %2
mov valh, vall
%if %1 >= 8
movd mm0, vald
%if cpuflag(mmxext)
pshufw mm0, mm0, 0
%else ; mmx
punpcklwd mm0, mm0
punpckldq mm0, mm0
%endif ; sse
%endif ; %1 >= 8
%endmacro
%macro WRITE_V_PIXEL 2
%assign %%dst_off 0
%rep %1/8
movq [%2+%%dst_off], mm0
%assign %%dst_off %%dst_off+8
%endrep
%if %1 & 4
%if %1 >= 8
movd [%2+%%dst_off], mm0
%else ; %1 < 8
mov [%2+%%dst_off] , valw
mov [%2+%%dst_off+2], valw
%endif ; %1 >=/< 8
%assign %%dst_off %%dst_off+4
%endif ; %1 & 4
%if %1&2
mov [%2+%%dst_off], valw
%endif ; %1 & 2
%endmacro
; r0=buf+block_h*linesize, r1=start_x, r2=linesize, r5=block_h, r6/r3=val
%macro LEFT_EXTEND 0
%assign %%n 2
%rep 11
ALIGN 64
.emuedge_extend_left_ %+ %%n: ; do {
sub r0, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r0+r1] ; read pixels
WRITE_V_PIXEL %%n, r0 ; write pixels
dec r5
jnz .emuedge_extend_left_ %+ %%n ; } while (--block_h)
%if ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+2
%endrep
%endmacro ; LEFT_EXTEND
; r3/r0=buf+block_h*linesize, r2=linesize, r8/r5=block_h, r0/r6=end_x, r6/r3=val
%macro RIGHT_EXTEND 0
%assign %%n 2
%rep 11
ALIGN 64
.emuedge_extend_right_ %+ %%n: ; do {
%if ARCH_X86_64
sub r3, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r3+w_reg-1] ; read pixels
WRITE_V_PIXEL %%n, r3+r4-%%n ; write pixels
dec r8
%else ; ARCH_X86_32
sub r0, r2 ; dst -= linesize
READ_V_PIXEL %%n, [r0+w_reg-1] ; read pixels
WRITE_V_PIXEL %%n, r0+r4-%%n ; write pixels
dec r5
%endif ; ARCH_X86_64/32
jnz .emuedge_extend_right_ %+ %%n ; } while (--block_h)
%if ARCH_X86_64
ret
%else ; ARCH_X86_32
rep ret
%endif ; ARCH_X86_64/32
%assign %%n %%n+2
%endrep
%if ARCH_X86_32
%define stack_offset 0x10
%endif
%endmacro ; RIGHT_EXTEND
; below follow the "slow" copy/extend functions, these act on a non-fixed
; width specified in a register, and run a loop to copy the full amount
; of bytes. They are optimized for copying of large amounts of pixels per
; line, so they unconditionally splat data into mm registers to copy 8
; bytes per loop iteration. It could be considered to use xmm for x86-64
; also, but I haven't optimized this as much (i.e. FIXME)
%macro V_COPY_NPX 4-5
%if %0 == 4
test w_reg, %4
jz .%1_skip_%4_px
%else ; %0 == 5
.%1_%4_px_loop:
%endif
%3 %2, [r1+cnt_reg]
%3 [r0+cnt_reg], %2
add cnt_reg, %4
%if %0 == 5
sub w_reg, %4
test w_reg, %5
jnz .%1_%4_px_loop
%endif
.%1_skip_%4_px:
%endmacro
%macro V_COPY_ROW 2
%ifidn %1, bottom
sub r1, linesize
%endif
.%1_copy_loop:
xor cnt_reg, cnt_reg
%if notcpuflag(sse)
%define linesize r2m
V_COPY_NPX %1, mm0, movq, 8, 0xFFFFFFF8
%else ; sse
V_COPY_NPX %1, xmm0, movups, 16, 0xFFFFFFF0
%if ARCH_X86_64
%define linesize r2
V_COPY_NPX %1, rax , mov, 8
%else ; ARCH_X86_32
%define linesize r2m
V_COPY_NPX %1, mm0, movq, 8
%endif ; ARCH_X86_64/32
%endif ; sse
V_COPY_NPX %1, vald, mov, 4
V_COPY_NPX %1, valw, mov, 2
V_COPY_NPX %1, vall, mov, 1
mov w_reg, cnt_reg
%ifidn %1, body
add r1, linesize
%endif
add r0, linesize
dec %2
jnz .%1_copy_loop
%endmacro
%macro SLOW_V_EXTEND 0
.slow_v_extend_loop:
; r0=buf,r1=src,r2(64)/r2m(32)=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h
; r8(64)/r3(later-64)/r2(32)=cnt_reg,r6(64)/r3(32)=val_reg,r7(64)/r6(32)=w=end_x-start_x
%if ARCH_X86_64
push r8 ; save old value of block_h
test r3, r3
%define cnt_reg r8
jz .do_body_copy ; if (!start_y) goto do_body_copy
V_COPY_ROW top, r3
%else
cmp dword r3m, 0
%define cnt_reg r2
je .do_body_copy ; if (!start_y) goto do_body_copy
V_COPY_ROW top, dword r3m
%endif
.do_body_copy:
V_COPY_ROW body, r4
%if ARCH_X86_64
pop r8 ; restore old value of block_h
%define cnt_reg r3
%endif
test r5, r5
%if ARCH_X86_64
jz .v_extend_end
%else
jz .skip_bottom_extend
%endif
V_COPY_ROW bottom, r5
%if ARCH_X86_32
.skip_bottom_extend:
mov r2, r2m
%endif
jmp .v_extend_end
%endmacro
%macro SLOW_LEFT_EXTEND 0
.slow_left_extend_loop:
; r0=buf+block_h*linesize,r2=linesize,r6(64)/r3(32)=val,r5=block_h,r4=cntr,r7/r6=start_x
mov r4, 8
sub r0, linesize
READ_V_PIXEL 8, [r0+w_reg]
.left_extend_8px_loop:
movq [r0+r4-8], mm0
add r4, 8
cmp r4, w_reg
jle .left_extend_8px_loop
sub r4, 8
cmp r4, w_reg
jge .left_extend_loop_end
.left_extend_2px_loop:
mov [r0+r4], valw
add r4, 2
cmp r4, w_reg
jl .left_extend_2px_loop
.left_extend_loop_end:
dec r5
jnz .slow_left_extend_loop
%if ARCH_X86_32
mov r2, r2m
%endif
jmp .right_extend
%endmacro
%macro SLOW_RIGHT_EXTEND 0
.slow_right_extend_loop:
; r3(64)/r0(32)=buf+block_h*linesize,r2=linesize,r4=block_w,r8(64)/r5(32)=block_h,
; r7(64)/r6(32)=end_x,r6/r3=val,r1=cntr
%if ARCH_X86_64
%define buf_reg r3
%define bh_reg r8
%else
%define buf_reg r0
%define bh_reg r5
%endif
lea r1, [r4-8]
sub buf_reg, linesize
READ_V_PIXEL 8, [buf_reg+w_reg-1]
.right_extend_8px_loop:
movq [buf_reg+r1], mm0
sub r1, 8
cmp r1, w_reg
jge .right_extend_8px_loop
add r1, 8
cmp r1, w_reg
je .right_extend_loop_end
.right_extend_2px_loop:
sub r1, 2
mov [buf_reg+r1], valw
cmp r1, w_reg
jg .right_extend_2px_loop
.right_extend_loop_end:
dec bh_reg
jnz .slow_right_extend_loop
jmp .h_extend_end
%endmacro
%macro emu_edge 1
INIT_XMM %1
EMU_EDGE_FUNC
VERTICAL_EXTEND
LEFT_EXTEND
RIGHT_EXTEND
SLOW_V_EXTEND
SLOW_LEFT_EXTEND
SLOW_RIGHT_EXTEND
%endmacro
emu_edge sse
%if ARCH_X86_32
emu_edge mmx
%endif
%macro PREFETCH_FN 1
cglobal prefetch, 3, 3, 0, buf, stride, h
.loop:
%1 [bufq]
add bufq, strideq
dec hd
jg .loop
REP_RET
%endmacro
INIT_MMX mmxext
PREFETCH_FN prefetcht0
%if ARCH_X86_32
INIT_MMX 3dnow
PREFETCH_FN prefetch
%endif