mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
14 KiB
410 lines
14 KiB
/* |
|
* Atrac 1 compatible decoder |
|
* Copyright (c) 2009 Maxim Poliakovski |
|
* Copyright (c) 2009 Benjamin Larsson |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/atrac1.c |
|
* Atrac 1 compatible decoder. |
|
* This decoder handles raw ATRAC1 data. |
|
*/ |
|
|
|
/* Many thanks to Tim Craig for all the help! */ |
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
|
|
#include "atrac.h" |
|
#include "atrac1data.h" |
|
|
|
#define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit |
|
#define AT1_SU_SIZE 212 ///< number of bytes in a sound unit |
|
#define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit |
|
#define AT1_FRAME_SIZE AT1_SU_SIZE * 2 |
|
#define AT1_SU_MAX_BITS AT1_SU_SIZE * 8 |
|
#define AT1_MAX_CHANNELS 2 |
|
|
|
#define AT1_QMF_BANDS 3 |
|
#define IDX_LOW_BAND 0 |
|
#define IDX_MID_BAND 1 |
|
#define IDX_HIGH_BAND 2 |
|
|
|
/** |
|
* Sound unit struct, one unit is used per channel |
|
*/ |
|
typedef struct { |
|
int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band |
|
int num_bfus; ///< number of Block Floating Units |
|
int idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU |
|
int idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU |
|
float* spectrum[2]; |
|
DECLARE_ALIGNED_16(float,spec1[AT1_SU_SAMPLES]); ///< mdct buffer |
|
DECLARE_ALIGNED_16(float,spec2[AT1_SU_SAMPLES]); ///< mdct buffer |
|
DECLARE_ALIGNED_16(float,fst_qmf_delay[46]); ///< delay line for the 1st stacked QMF filter |
|
DECLARE_ALIGNED_16(float,snd_qmf_delay[46]); ///< delay line for the 2nd stacked QMF filter |
|
DECLARE_ALIGNED_16(float,last_qmf_delay[256+23]); ///< delay line for the last stacked QMF filter |
|
} AT1SUCtx; |
|
|
|
/** |
|
* The atrac1 context, holds all needed parameters for decoding |
|
*/ |
|
typedef struct { |
|
AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit |
|
DECLARE_ALIGNED_16(float,spec[AT1_SU_SAMPLES]); ///< the mdct spectrum buffer |
|
DECLARE_ALIGNED_16(float,short_buf[64]); ///< buffer for the short mode |
|
DECLARE_ALIGNED_16(float, low[256]); |
|
DECLARE_ALIGNED_16(float, mid[256]); |
|
DECLARE_ALIGNED_16(float,high[512]); |
|
float* bands[3]; |
|
float out_samples[AT1_MAX_CHANNELS][AT1_SU_SAMPLES]; |
|
MDCTContext mdct_ctx[3]; |
|
int channels; |
|
DSPContext dsp; |
|
} AT1Ctx; |
|
|
|
static float *short_window; |
|
static float *mid_window; |
|
DECLARE_ALIGNED_16(static float, long_window[256]); |
|
static float *window_per_band[3]; |
|
|
|
/** size of the transform in samples in the long mode for each QMF band */ |
|
static const uint16_t samples_per_band[3] = {128, 128, 256}; |
|
static const uint8_t mdct_long_nbits[3] = {7, 7, 8}; |
|
|
|
|
|
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits, |
|
int rev_spec) |
|
{ |
|
MDCTContext* mdct_context; |
|
int transf_size = 1 << nbits; |
|
|
|
mdct_context = &q->mdct_ctx[nbits - 5 - (nbits>6)]; |
|
|
|
if (rev_spec) { |
|
int i; |
|
for (i=0 ; i<transf_size/2 ; i++) |
|
FFSWAP(float, spec[i], spec[transf_size - 1 - i]); |
|
} |
|
ff_imdct_half(mdct_context, out, spec); |
|
} |
|
|
|
|
|
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q) |
|
{ |
|
int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size; |
|
unsigned int start_pos, ref_pos=0, pos = 0; |
|
|
|
for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) { |
|
band_samples = samples_per_band[band_num]; |
|
log2_block_count = su->log2_block_count[band_num]; |
|
|
|
/* number of mdct blocks in the current QMF band: 1 - for long mode */ |
|
/* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/ |
|
num_blocks = 1 << log2_block_count; |
|
|
|
/* mdct block size in samples: 128 (long mode, low & mid bands), */ |
|
/* 256 (long mode, high band) and 32 (short mode, all bands) */ |
|
block_size = band_samples >> log2_block_count; |
|
|
|
/* calc transform size in bits according to the block_size_mode */ |
|
nbits = mdct_long_nbits[band_num] - log2_block_count; |
|
|
|
if (nbits!=5 && nbits!=7 && nbits!=8) |
|
return -1; |
|
|
|
if (num_blocks == 1) { |
|
at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos], nbits, band_num); |
|
pos += block_size; // move to the next mdct block in the spectrum |
|
} else { |
|
/* calc start position for the 1st short block: 96(128) or 112(256) */ |
|
start_pos = (band_samples * (num_blocks - 1)) >> (log2_block_count + 1); |
|
memset(&su->spectrum[0][ref_pos], 0, sizeof(float) * (band_samples * 2)); |
|
|
|
for (; num_blocks!=0 ; num_blocks--) { |
|
/* use hardcoded nbits for the short mode */ |
|
at1_imdct(q, &q->spec[pos], q->short_buf, 5, band_num); |
|
|
|
/* overlap and window between short blocks */ |
|
q->dsp.vector_fmul_window(&su->spectrum[0][ref_pos+start_pos], |
|
&su->spectrum[0][ref_pos+start_pos], |
|
q->short_buf,short_window, 0, 16); |
|
start_pos += 32; // use hardcoded block_size |
|
pos += 32; |
|
} |
|
} |
|
|
|
/* overlap and window with the previous frame and output the result */ |
|
q->dsp.vector_fmul_window(q->bands[band_num], &su->spectrum[1][ref_pos+band_samples/2], |
|
&su->spectrum[0][ref_pos], window_per_band[band_num], 0, band_samples/2); |
|
|
|
ref_pos += band_samples; |
|
} |
|
|
|
/* Swap buffers so the mdct overlap works */ |
|
FFSWAP(float*, su->spectrum[0], su->spectrum[1]); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Parse the block size mode byte |
|
*/ |
|
|
|
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS]) |
|
{ |
|
int log2_block_count_tmp, i; |
|
|
|
for(i=0 ; i<2 ; i++) { |
|
/* low and mid band */ |
|
log2_block_count_tmp = get_bits(gb, 2); |
|
if (log2_block_count_tmp & 1) |
|
return -1; |
|
log2_block_cnt[i] = 2 - log2_block_count_tmp; |
|
} |
|
|
|
/* high band */ |
|
log2_block_count_tmp = get_bits(gb, 2); |
|
if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3) |
|
return -1; |
|
log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp; |
|
|
|
skip_bits(gb, 2); |
|
return 0; |
|
} |
|
|
|
|
|
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su, |
|
float spec[AT1_SU_SAMPLES]) |
|
{ |
|
int bits_used, band_num, bfu_num, i; |
|
|
|
/* parse the info byte (2nd byte) telling how much BFUs were coded */ |
|
su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)]; |
|
|
|
/* calc number of consumed bits: |
|
num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits) |
|
+ info_byte_copy(8bits) + log2_block_count_copy(8bits) */ |
|
bits_used = su->num_bfus * 10 + 32 + |
|
bfu_amount_tab2[get_bits(gb, 2)] + |
|
(bfu_amount_tab3[get_bits(gb, 3)] << 1); |
|
|
|
/* get word length index (idwl) for each BFU */ |
|
for (i=0 ; i<su->num_bfus ; i++) |
|
su->idwls[i] = get_bits(gb, 4); |
|
|
|
/* get scalefactor index (idsf) for each BFU */ |
|
for (i=0 ; i<su->num_bfus ; i++) |
|
su->idsfs[i] = get_bits(gb, 6); |
|
|
|
/* zero idwl/idsf for empty BFUs */ |
|
for (i = su->num_bfus; i < AT1_MAX_BFU; i++) |
|
su->idwls[i] = su->idsfs[i] = 0; |
|
|
|
/* read in the spectral data and reconstruct MDCT spectrum of this channel */ |
|
for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) { |
|
for (bfu_num=bfu_bands_t[band_num] ; bfu_num<bfu_bands_t[band_num+1] ; bfu_num++) { |
|
int pos; |
|
|
|
int num_specs = specs_per_bfu[bfu_num]; |
|
int word_len = !!su->idwls[bfu_num] + su->idwls[bfu_num]; |
|
float scale_factor = sf_table[su->idsfs[bfu_num]]; |
|
bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */ |
|
|
|
/* check for bitstream overflow */ |
|
if (bits_used > AT1_SU_MAX_BITS) |
|
return -1; |
|
|
|
/* get the position of the 1st spec according to the block size mode */ |
|
pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num]; |
|
|
|
if (word_len) { |
|
float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1); |
|
|
|
for (i=0 ; i<num_specs ; i++) { |
|
/* read in a quantized spec and convert it to |
|
* signed int and then inverse quantization |
|
*/ |
|
spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant; |
|
} |
|
} else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */ |
|
memset(&spec[pos], 0, num_specs*sizeof(float)); |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut) |
|
{ |
|
float temp[256]; |
|
float iqmf_temp[512 + 46]; |
|
|
|
/* combine low and middle bands */ |
|
atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp); |
|
|
|
/* delay the signal of the high band by 23 samples */ |
|
memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float)*23); |
|
memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float)*256); |
|
|
|
/* combine (low + middle) and high bands */ |
|
atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp); |
|
} |
|
|
|
|
|
static int atrac1_decode_frame(AVCodecContext *avctx, void *data, |
|
int *data_size, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
AT1Ctx *q = avctx->priv_data; |
|
int ch, ret, i; |
|
GetBitContext gb; |
|
float* samples = data; |
|
|
|
|
|
if (buf_size < 212 * q->channels) { |
|
av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n"); |
|
return -1; |
|
} |
|
|
|
for (ch=0 ; ch<q->channels ; ch++) { |
|
AT1SUCtx* su = &q->SUs[ch]; |
|
|
|
init_get_bits(&gb, &buf[212*ch], 212*8); |
|
|
|
/* parse block_size_mode, 1st byte */ |
|
ret = at1_parse_bsm(&gb, su->log2_block_count); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = at1_unpack_dequant(&gb, su, q->spec); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = at1_imdct_block(su, q); |
|
if (ret < 0) |
|
return ret; |
|
at1_subband_synthesis(q, su, q->out_samples[ch]); |
|
} |
|
|
|
/* round, convert to 16bit and interleave */ |
|
if (q->channels == 1) { |
|
/* mono */ |
|
q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1<<15), |
|
32700.0 / (1<<15), AT1_SU_SAMPLES); |
|
} else { |
|
/* stereo */ |
|
for (i = 0; i < AT1_SU_SAMPLES; i++) { |
|
samples[i*2] = av_clipf(q->out_samples[0][i], -32700.0 / (1<<15), |
|
32700.0 / (1<<15)); |
|
samples[i*2+1] = av_clipf(q->out_samples[1][i], -32700.0 / (1<<15), |
|
32700.0 / (1<<15)); |
|
} |
|
} |
|
|
|
*data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples); |
|
return avctx->block_align; |
|
} |
|
|
|
|
|
static av_cold void init_mdct_windows(void) |
|
{ |
|
int i; |
|
|
|
/** The mid and long windows uses the same sine window splitted |
|
* in the middle and wrapped into zero/one regions as follows: |
|
* |
|
* region of "ones" |
|
* ------------- |
|
* / |
|
* / 1st half |
|
* / of the sine |
|
* / window |
|
* ---------/ |
|
* zero region |
|
* |
|
* The mid and short windows are subsets of the long window. |
|
*/ |
|
|
|
/* Build "zero" region */ |
|
memset(long_window, 0, sizeof(long_window)); |
|
/* Build sine window region */ |
|
short_window = &long_window[112]; |
|
ff_sine_window_init(short_window,32); |
|
/* Build "ones" region */ |
|
for (i = 0; i < 112; i++) |
|
long_window[144 + i] = 1.0f; |
|
/* Save the mid window subset start */ |
|
mid_window = &long_window[64]; |
|
|
|
/* Prepare the window table */ |
|
window_per_band[0] = mid_window; |
|
window_per_band[1] = mid_window; |
|
window_per_band[2] = long_window; |
|
} |
|
|
|
static av_cold int atrac1_decode_init(AVCodecContext *avctx) |
|
{ |
|
AT1Ctx *q = avctx->priv_data; |
|
|
|
avctx->sample_fmt = SAMPLE_FMT_FLT; |
|
|
|
q->channels = avctx->channels; |
|
|
|
/* Init the mdct transforms */ |
|
ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1<<15)); |
|
ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1<<15)); |
|
ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1<<15)); |
|
init_mdct_windows(); |
|
|
|
atrac_generate_tables(); |
|
|
|
dsputil_init(&q->dsp, avctx); |
|
|
|
q->bands[0] = q->low; |
|
q->bands[1] = q->mid; |
|
q->bands[2] = q->high; |
|
|
|
/* Prepare the mdct overlap buffers */ |
|
q->SUs[0].spectrum[0] = q->SUs[0].spec1; |
|
q->SUs[0].spectrum[1] = q->SUs[0].spec2; |
|
q->SUs[1].spectrum[0] = q->SUs[1].spec1; |
|
q->SUs[1].spectrum[1] = q->SUs[1].spec2; |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec atrac1_decoder = { |
|
.name = "atrac1", |
|
.type = CODEC_TYPE_AUDIO, |
|
.id = CODEC_ID_ATRAC1, |
|
.priv_data_size = sizeof(AT1Ctx), |
|
.init = atrac1_decode_init, |
|
.close = NULL, |
|
.decode = atrac1_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"), |
|
};
|
|
|