You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1658 lines
58 KiB

/*
* Copyright (c) 2003 The FFmpeg Project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* How to use this decoder:
* SVQ3 data is transported within Apple Quicktime files. Quicktime files
* have stsd atoms to describe media trak properties. A stsd atom for a
* video trak contains 1 or more ImageDescription atoms. These atoms begin
* with the 4-byte length of the atom followed by the codec fourcc. Some
* decoders need information in this atom to operate correctly. Such
* is the case with SVQ3. In order to get the best use out of this decoder,
* the calling app must make the SVQ3 ImageDescription atom available
* via the AVCodecContext's extradata[_size] field:
*
* AVCodecContext.extradata = pointer to ImageDescription, first characters
* are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
* AVCodecContext.extradata_size = size of ImageDescription atom memory
* buffer (which will be the same as the ImageDescription atom size field
* from the QT file, minus 4 bytes since the length is missing)
*
* You will know you have these parameters passed correctly when the decoder
* correctly decodes this file:
* http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
*/
#include <inttypes.h>
#include "libavutil/attributes.h"
#include "internal.h"
#include "avcodec.h"
#include "mpegutils.h"
#include "h264dec.h"
#include "h264data.h"
#include "golomb.h"
#include "hpeldsp.h"
#include "mathops.h"
#include "rectangle.h"
#include "tpeldsp.h"
#if CONFIG_ZLIB
#include <zlib.h>
#endif
#include "svq1.h"
/**
* @file
* svq3 decoder.
*/
typedef struct SVQ3Frame {
AVFrame *f;
AVBufferRef *motion_val_buf[2];
int16_t (*motion_val[2])[2];
AVBufferRef *mb_type_buf;
uint32_t *mb_type;
AVBufferRef *ref_index_buf[2];
int8_t *ref_index[2];
} SVQ3Frame;
typedef struct SVQ3Context {
AVCodecContext *avctx;
H264DSPContext h264dsp;
H264PredContext hpc;
HpelDSPContext hdsp;
TpelDSPContext tdsp;
VideoDSPContext vdsp;
SVQ3Frame *cur_pic;
SVQ3Frame *next_pic;
SVQ3Frame *last_pic;
GetBitContext gb;
GetBitContext gb_slice;
uint8_t *slice_buf;
int slice_size;
int halfpel_flag;
int thirdpel_flag;
int has_watermark;
uint32_t watermark_key;
uint8_t *buf;
int buf_size;
int adaptive_quant;
int next_p_frame_damaged;
int h_edge_pos;
int v_edge_pos;
int last_frame_output;
int slice_num;
int qscale;
int cbp;
int frame_num;
int frame_num_offset;
int prev_frame_num_offset;
int prev_frame_num;
enum AVPictureType pict_type;
enum AVPictureType slice_type;
int low_delay;
int mb_x, mb_y;
int mb_xy;
int mb_width, mb_height;
int mb_stride, mb_num;
int b_stride;
uint32_t *mb2br_xy;
int chroma_pred_mode;
int intra16x16_pred_mode;
int8_t intra4x4_pred_mode_cache[5 * 8];
int8_t (*intra4x4_pred_mode);
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
uint8_t *edge_emu_buffer;
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
uint32_t dequant4_coeff[QP_MAX_NUM + 1][16];
int block_offset[2 * (16 * 3)];
} SVQ3Context;
#define FULLPEL_MODE 1
#define HALFPEL_MODE 2
#define THIRDPEL_MODE 3
#define PREDICT_MODE 4
/* dual scan (from some older H.264 draft)
* o-->o-->o o
* | /|
* o o o / o
* | / | |/ |
* o o o o
* /
* o-->o-->o-->o
*/
static const uint8_t svq3_scan[16] = {
0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
};
static const uint8_t luma_dc_zigzag_scan[16] = {
0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
};
static const uint8_t svq3_pred_0[25][2] = {
{ 0, 0 },
{ 1, 0 }, { 0, 1 },
{ 0, 2 }, { 1, 1 }, { 2, 0 },
{ 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
{ 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
{ 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
{ 2, 4 }, { 3, 3 }, { 4, 2 },
{ 4, 3 }, { 3, 4 },
{ 4, 4 }
};
static const int8_t svq3_pred_1[6][6][5] = {
{ { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
{ 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
{ 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
{ { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
{ { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
{ 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
{ 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
};
static const struct {
uint8_t run;
uint8_t level;
} svq3_dct_tables[2][16] = {
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
{ 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
{ 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
};
static const uint32_t svq3_dequant_coeff[32] = {
3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
};
static int svq3_decode_end(AVCodecContext *avctx);
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
{
const unsigned qmul = svq3_dequant_coeff[qp];
#define stride 16
int i;
int temp[16];
static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
for (i = 0; i < 4; i++) {
const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
temp[4 * i + 0] = z0 + z3;
temp[4 * i + 1] = z1 + z2;
temp[4 * i + 2] = z1 - z2;
temp[4 * i + 3] = z0 - z3;
}
for (i = 0; i < 4; i++) {
const int offset = x_offset[i];
const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
output[stride * 0 + offset] = (int)((z0 + z3) * qmul + 0x80000) >> 20;
output[stride * 2 + offset] = (int)((z1 + z2) * qmul + 0x80000) >> 20;
output[stride * 8 + offset] = (int)((z1 - z2) * qmul + 0x80000) >> 20;
output[stride * 10 + offset] = (int)((z0 - z3) * qmul + 0x80000) >> 20;
}
}
#undef stride
static void svq3_add_idct_c(uint8_t *dst, int16_t *block,
int stride, int qp, int dc)
{
const int qmul = svq3_dequant_coeff[qp];
int i;
if (dc) {
dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
: qmul * (block[0] >> 3) / 2);
block[0] = 0;
}
for (i = 0; i < 4; i++) {
const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
block[0 + 4 * i] = z0 + z3;
block[1 + 4 * i] = z1 + z2;
block[2 + 4 * i] = z1 - z2;
block[3 + 4 * i] = z0 - z3;
}
for (i = 0; i < 4; i++) {
const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
const int rr = (dc + 0x80000);
dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
}
memset(block, 0, 16 * sizeof(int16_t));
}
static inline int svq3_decode_block(GetBitContext *gb, int16_t *block,
int index, const int type)
{
static const uint8_t *const scan_patterns[4] = {
luma_dc_zigzag_scan, ff_zigzag_scan, svq3_scan, ff_h264_chroma_dc_scan
};
int run, level, sign, limit;
unsigned vlc;
const int intra = 3 * type >> 2;
const uint8_t *const scan = scan_patterns[type];
for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
for (; (vlc = get_interleaved_ue_golomb(gb)) != 0; index++) {
if ((int32_t)vlc < 0)
return -1;
sign = (vlc & 1) ? 0 : -1;
vlc = vlc + 1 >> 1;
if (type == 3) {
if (vlc < 3) {
run = 0;
level = vlc;
} else if (vlc < 4) {
run = 1;
level = 1;
} else {
run = vlc & 0x3;
level = (vlc + 9 >> 2) - run;
}
} else {
if (vlc < 16U) {
run = svq3_dct_tables[intra][vlc].run;
level = svq3_dct_tables[intra][vlc].level;
} else if (intra) {
run = vlc & 0x7;
level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
} else {
run = vlc & 0xF;
level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
}
}
if ((index += run) >= limit)
return -1;
block[scan[index]] = (level ^ sign) - sign;
}
if (type != 2) {
break;
}
}
return 0;
}
static av_always_inline int
svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C,
int i, int list, int part_width)
{
const int topright_ref = s->ref_cache[list][i - 8 + part_width];
if (topright_ref != PART_NOT_AVAILABLE) {
*C = s->mv_cache[list][i - 8 + part_width];
return topright_ref;
} else {
*C = s->mv_cache[list][i - 8 - 1];
return s->ref_cache[list][i - 8 - 1];
}
}
/**
* Get the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n,
int part_width, int list,
int ref, int *const mx, int *const my)
{
const int index8 = scan8[n];
const int top_ref = s->ref_cache[list][index8 - 8];
const int left_ref = s->ref_cache[list][index8 - 1];
const int16_t *const A = s->mv_cache[list][index8 - 1];
const int16_t *const B = s->mv_cache[list][index8 - 8];
const int16_t *C;
int diagonal_ref, match_count;
/* mv_cache
* B . . A T T T T
* U . . L . . , .
* U . . L . . . .
* U . . L . . , .
* . . . L . . . .
*/
diagonal_ref = svq3_fetch_diagonal_mv(s, &C, index8, list, part_width);
match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
if (match_count > 1) { //most common
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
} else if (match_count == 1) {
if (left_ref == ref) {
*mx = A[0];
*my = A[1];
} else if (top_ref == ref) {
*mx = B[0];
*my = B[1];
} else {
*mx = C[0];
*my = C[1];
}
} else {
if (top_ref == PART_NOT_AVAILABLE &&
diagonal_ref == PART_NOT_AVAILABLE &&
left_ref != PART_NOT_AVAILABLE) {
*mx = A[0];
*my = A[1];
} else {
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
}
}
}
static inline void svq3_mc_dir_part(SVQ3Context *s,
int x, int y, int width, int height,
int mx, int my, int dxy,
int thirdpel, int dir, int avg)
{
const SVQ3Frame *pic = (dir == 0) ? s->last_pic : s->next_pic;
uint8_t *src, *dest;
int i, emu = 0;
int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
int linesize = s->cur_pic->f->linesize[0];
int uvlinesize = s->cur_pic->f->linesize[1];
mx += x;
my += y;
if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
my < 0 || my >= s->v_edge_pos - height - 1) {
emu = 1;
mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
my = av_clip(my, -16, s->v_edge_pos - height + 15);
}
/* form component predictions */
dest = s->cur_pic->f->data[0] + x + y * linesize;
src = pic->f->data[0] + mx + my * linesize;
if (emu) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
linesize, linesize,
width + 1, height + 1,
mx, my, s->h_edge_pos, s->v_edge_pos);
src = s->edge_emu_buffer;
}
if (thirdpel)
(avg ? s->tdsp.avg_tpel_pixels_tab
: s->tdsp.put_tpel_pixels_tab)[dxy](dest, src, linesize,
width, height);
else
(avg ? s->hdsp.avg_pixels_tab
: s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, linesize,
height);
if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
mx = mx + (mx < (int) x) >> 1;
my = my + (my < (int) y) >> 1;
width = width >> 1;
height = height >> 1;
blocksize++;
for (i = 1; i < 3; i++) {
dest = s->cur_pic->f->data[i] + (x >> 1) + (y >> 1) * uvlinesize;
src = pic->f->data[i] + mx + my * uvlinesize;
if (emu) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src,
uvlinesize, uvlinesize,
width + 1, height + 1,
mx, my, (s->h_edge_pos >> 1),
s->v_edge_pos >> 1);
src = s->edge_emu_buffer;
}
if (thirdpel)
(avg ? s->tdsp.avg_tpel_pixels_tab
: s->tdsp.put_tpel_pixels_tab)[dxy](dest, src,
uvlinesize,
width, height);
else
(avg ? s->hdsp.avg_pixels_tab
: s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src,
uvlinesize,
height);
}
}
}
static inline int svq3_mc_dir(SVQ3Context *s, int size, int mode,
int dir, int avg)
{
int i, j, k, mx, my, dx, dy, x, y;
const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
const int part_height = 16 >> ((unsigned)(size + 1) / 3);
const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
for (i = 0; i < 16; i += part_height)
for (j = 0; j < 16; j += part_width) {
const int b_xy = (4 * s->mb_x + (j >> 2)) +
(4 * s->mb_y + (i >> 2)) * s->b_stride;
int dxy;
x = 16 * s->mb_x + j;
y = 16 * s->mb_y + i;
k = (j >> 2 & 1) + (i >> 1 & 2) +
(j >> 1 & 4) + (i & 8);
if (mode != PREDICT_MODE) {
svq3_pred_motion(s, k, part_width >> 2, dir, 1, &mx, &my);
} else {
mx = s->next_pic->motion_val[0][b_xy][0] << 1;
my = s->next_pic->motion_val[0][b_xy][1] << 1;
if (dir == 0) {
mx = mx * s->frame_num_offset /
s->prev_frame_num_offset + 1 >> 1;
my = my * s->frame_num_offset /
s->prev_frame_num_offset + 1 >> 1;
} else {
mx = mx * (s->frame_num_offset - s->prev_frame_num_offset) /
s->prev_frame_num_offset + 1 >> 1;
my = my * (s->frame_num_offset - s->prev_frame_num_offset) /
s->prev_frame_num_offset + 1 >> 1;
}
}
/* clip motion vector prediction to frame border */
mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
/* get (optional) motion vector differential */
if (mode == PREDICT_MODE) {
dx = dy = 0;
} else {
dy = get_interleaved_se_golomb(&s->gb_slice);
dx = get_interleaved_se_golomb(&s->gb_slice);
if (dx != (int16_t)dx || dy != (int16_t)dy) {
av_log(s->avctx, AV_LOG_ERROR, "invalid MV vlc\n");
return -1;
}
}
/* compute motion vector */
if (mode == THIRDPEL_MODE) {
int fx, fy;
mx = (mx + 1 >> 1) + dx;
my = (my + 1 >> 1) + dy;
fx = (unsigned)(mx + 0x30000) / 3 - 0x10000;
fy = (unsigned)(my + 0x30000) / 3 - 0x10000;
dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
svq3_mc_dir_part(s, x, y, part_width, part_height,
fx, fy, dxy, 1, dir, avg);
mx += mx;
my += my;
} else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
dxy = (mx & 1) + 2 * (my & 1);
svq3_mc_dir_part(s, x, y, part_width, part_height,
mx >> 1, my >> 1, dxy, 0, dir, avg);
mx *= 3;
my *= 3;
} else {
mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
svq3_mc_dir_part(s, x, y, part_width, part_height,
mx, my, 0, 0, dir, avg);
mx *= 6;
my *= 6;
}
/* update mv_cache */
if (mode != PREDICT_MODE) {
int32_t mv = pack16to32(mx, my);
if (part_height == 8 && i < 8) {
AV_WN32A(s->mv_cache[dir][scan8[k] + 1 * 8], mv);
if (part_width == 8 && j < 8)
AV_WN32A(s->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
}
if (part_width == 8 && j < 8)
AV_WN32A(s->mv_cache[dir][scan8[k] + 1], mv);
if (part_width == 4 || part_height == 4)
AV_WN32A(s->mv_cache[dir][scan8[k]], mv);
}
/* write back motion vectors */
fill_rectangle(s->cur_pic->motion_val[dir][b_xy],
part_width >> 2, part_height >> 2, s->b_stride,
pack16to32(mx, my), 4);
}
return 0;
}
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s,
int mb_type, const int *block_offset,
int linesize, uint8_t *dest_y)
{
int i;
if (!IS_INTRA4x4(mb_type)) {
for (i = 0; i < 16; i++)
if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
uint8_t *const ptr = dest_y + block_offset[i];
svq3_add_idct_c(ptr, s->mb + i * 16, linesize,
s->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s,
int mb_type,
const int *block_offset,
int linesize,
uint8_t *dest_y)
{
int i;
int qscale = s->qscale;
if (IS_INTRA4x4(mb_type)) {
for (i = 0; i < 16; i++) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = s->intra4x4_pred_mode_cache[scan8[i]];
uint8_t *topright;
int nnz, tr;
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
const int topright_avail = (s->topright_samples_available << i) & 0x8000;
av_assert2(s->mb_y || linesize <= block_offset[i]);
if (!topright_avail) {
tr = ptr[3 - linesize] * 0x01010101u;
topright = (uint8_t *)&tr;
} else
topright = ptr + 4 - linesize;
} else
topright = NULL;
s->hpc.pred4x4[dir](ptr, topright, linesize);
nnz = s->non_zero_count_cache[scan8[i]];
if (nnz) {
svq3_add_idct_c(ptr, s->mb + i * 16, linesize, qscale, 0);
}
}
} else {
s->hpc.pred16x16[s->intra16x16_pred_mode](dest_y, linesize);
svq3_luma_dc_dequant_idct_c(s->mb, s->mb_luma_dc[0], qscale);
}
}
static void hl_decode_mb(SVQ3Context *s)
{
const int mb_x = s->mb_x;
const int mb_y = s->mb_y;
const int mb_xy = s->mb_xy;
const int mb_type = s->cur_pic->mb_type[mb_xy];
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize;
int i, j;
const int *block_offset = &s->block_offset[0];
const int block_h = 16 >> 1;
linesize = s->cur_pic->f->linesize[0];
uvlinesize = s->cur_pic->f->linesize[1];
dest_y = s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
dest_cb = s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
dest_cr = s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
s->vdsp.prefetch(dest_y + (s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
s->vdsp.prefetch(dest_cb + (s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
if (IS_INTRA(mb_type)) {
s->hpc.pred8x8[s->chroma_pred_mode](dest_cb, uvlinesize);
s->hpc.pred8x8[s->chroma_pred_mode](dest_cr, uvlinesize);
hl_decode_mb_predict_luma(s, mb_type, block_offset, linesize, dest_y);
}
hl_decode_mb_idct_luma(s, mb_type, block_offset, linesize, dest_y);
if (s->cbp & 0x30) {
uint8_t *dest[2] = { dest_cb, dest_cr };
s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 1,
s->dequant4_coeff[4][0]);
s->h264dsp.h264_chroma_dc_dequant_idct(s->mb + 16 * 16 * 2,
s->dequant4_coeff[4][0]);
for (j = 1; j < 3; j++) {
for (i = j * 16; i < j * 16 + 4; i++)
if (s->non_zero_count_cache[scan8[i]] || s->mb[i * 16]) {
uint8_t *const ptr = dest[j - 1] + block_offset[i];
svq3_add_idct_c(ptr, s->mb + i * 16,
uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
}
}
}
}
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
{
int i, j, k, m, dir, mode;
int cbp = 0;
uint32_t vlc;
int8_t *top, *left;
const int mb_xy = s->mb_xy;
const int b_xy = 4 * s->mb_x + 4 * s->mb_y * s->b_stride;
s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
s->topright_samples_available = 0xFFFF;
if (mb_type == 0) { /* SKIP */
if (s->pict_type == AV_PICTURE_TYPE_P ||
s->next_pic->mb_type[mb_xy] == -1) {
svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
0, 0, 0, 0, 0, 0);
if (s->pict_type == AV_PICTURE_TYPE_B)
svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
0, 0, 0, 0, 1, 1);
mb_type = MB_TYPE_SKIP;
} else {
mb_type = FFMIN(s->next_pic->mb_type[mb_xy], 6);
if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 0, 0) < 0)
return -1;
if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 1, 1) < 0)
return -1;
mb_type = MB_TYPE_16x16;
}
} else if (mb_type < 8) { /* INTER */
if (s->thirdpel_flag && s->halfpel_flag == !get_bits1(&s->gb_slice))
mode = THIRDPEL_MODE;
else if (s->halfpel_flag &&
s->thirdpel_flag == !get_bits1(&s->gb_slice))
mode = HALFPEL_MODE;
else
mode = FULLPEL_MODE;
/* fill caches */
/* note ref_cache should contain here:
* ????????
* ???11111
* N??11111
* N??11111
* N??11111
*/
for (m = 0; m < 2; m++) {
if (s->mb_x > 0 && s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6] != -1) {
for (i = 0; i < 4; i++)
AV_COPY32(s->mv_cache[m][scan8[0] - 1 + i * 8],
s->cur_pic->motion_val[m][b_xy - 1 + i * s->b_stride]);
} else {
for (i = 0; i < 4; i++)
AV_ZERO32(s->mv_cache[m][scan8[0] - 1 + i * 8]);
}
if (s->mb_y > 0) {
memcpy(s->mv_cache[m][scan8[0] - 1 * 8],
s->cur_pic->motion_val[m][b_xy - s->b_stride],
4 * 2 * sizeof(int16_t));
memset(&s->ref_cache[m][scan8[0] - 1 * 8],
(s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
if (s->mb_x < s->mb_width - 1) {
AV_COPY32(s->mv_cache[m][scan8[0] + 4 - 1 * 8],
s->cur_pic->motion_val[m][b_xy - s->b_stride + 4]);
s->ref_cache[m][scan8[0] + 4 - 1 * 8] =
(s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
} else
s->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
if (s->mb_x > 0) {
AV_COPY32(s->mv_cache[m][scan8[0] - 1 - 1 * 8],
s->cur_pic->motion_val[m][b_xy - s->b_stride - 1]);
s->ref_cache[m][scan8[0] - 1 - 1 * 8] =
(s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
} else
s->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
} else
memset(&s->ref_cache[m][scan8[0] - 1 * 8 - 1],
PART_NOT_AVAILABLE, 8);
if (s->pict_type != AV_PICTURE_TYPE_B)
break;
}
/* decode motion vector(s) and form prediction(s) */
if (s->pict_type == AV_PICTURE_TYPE_P) {
if (svq3_mc_dir(s, mb_type - 1, mode, 0, 0) < 0)
return -1;
} else { /* AV_PICTURE_TYPE_B */
if (mb_type != 2) {
if (svq3_mc_dir(s, 0, mode, 0, 0) < 0)
return -1;
} else {
for (i = 0; i < 4; i++)
memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
if (mb_type != 1) {
if (svq3_mc_dir(s, 0, mode, 1, mb_type == 3) < 0)
return -1;
} else {
for (i = 0; i < 4; i++)
memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
}
mb_type = MB_TYPE_16x16;
} else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
int8_t *i4x4 = s->intra4x4_pred_mode + s->mb2br_xy[s->mb_xy];
int8_t *i4x4_cache = s->intra4x4_pred_mode_cache;
memset(s->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
if (mb_type == 8) {
if (s->mb_x > 0) {
for (i = 0; i < 4; i++)
s->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - 1] + 6 - i];
if (s->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
s->left_samples_available = 0x5F5F;
}
if (s->mb_y > 0) {
s->intra4x4_pred_mode_cache[4 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 0];
s->intra4x4_pred_mode_cache[5 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 1];
s->intra4x4_pred_mode_cache[6 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 2];
s->intra4x4_pred_mode_cache[7 + 8 * 0] = s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride] + 3];
if (s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
s->top_samples_available = 0x33FF;
}
/* decode prediction codes for luma blocks */
for (i = 0; i < 16; i += 2) {
vlc = get_interleaved_ue_golomb(&s->gb_slice);
if (vlc >= 25U) {
av_log(s->avctx, AV_LOG_ERROR,
"luma prediction:%"PRIu32"\n", vlc);
return -1;
}
left = &s->intra4x4_pred_mode_cache[scan8[i] - 1];
top = &s->intra4x4_pred_mode_cache[scan8[i] - 8];
left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
if (left[1] == -1 || left[2] == -1) {
av_log(s->avctx, AV_LOG_ERROR, "weird prediction\n");
return -1;
}
}
} else { /* mb_type == 33, DC_128_PRED block type */
for (i = 0; i < 4; i++)
memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
}
AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
i4x4[4] = i4x4_cache[7 + 8 * 3];
i4x4[5] = i4x4_cache[7 + 8 * 2];
i4x4[6] = i4x4_cache[7 + 8 * 1];
if (mb_type == 8) {
ff_h264_check_intra4x4_pred_mode(s->intra4x4_pred_mode_cache,
s->avctx, s->top_samples_available,
s->left_samples_available);
s->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
s->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
} else {
for (i = 0; i < 4; i++)
memset(&s->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
s->top_samples_available = 0x33FF;
s->left_samples_available = 0x5F5F;
}
mb_type = MB_TYPE_INTRA4x4;
} else { /* INTRA16x16 */
dir = ff_h264_i_mb_type_info[mb_type - 8].pred_mode;
dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
if ((s->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
s->left_samples_available, dir, 0)) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "ff_h264_check_intra_pred_mode < 0\n");
return s->intra16x16_pred_mode;
}
cbp = ff_h264_i_mb_type_info[mb_type - 8].cbp;
mb_type = MB_TYPE_INTRA16x16;
}
if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
for (i = 0; i < 4; i++)
memset(s->cur_pic->motion_val[0][b_xy + i * s->b_stride],
0, 4 * 2 * sizeof(int16_t));
if (s->pict_type == AV_PICTURE_TYPE_B) {
for (i = 0; i < 4; i++)
memset(s->cur_pic->motion_val[1][b_xy + i * s->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
}
if (!IS_INTRA4x4(mb_type)) {
memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy], DC_PRED, 8);
}
if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
memset(s->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
}
if (!IS_INTRA16x16(mb_type) &&
(!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
if ((vlc = get_interleaved_ue_golomb(&s->gb_slice)) >= 48U){
av_log(s->avctx, AV_LOG_ERROR, "cbp_vlc=%"PRIu32"\n", vlc);
return -1;
}
cbp = IS_INTRA(mb_type) ? ff_h264_golomb_to_intra4x4_cbp[vlc]
: ff_h264_golomb_to_inter_cbp[vlc];
}
if (IS_INTRA16x16(mb_type) ||
(s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
s->qscale += get_interleaved_se_golomb(&s->gb_slice);
if (s->qscale > 31u) {
av_log(s->avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
return -1;
}
}
if (IS_INTRA16x16(mb_type)) {
AV_ZERO128(s->mb_luma_dc[0] + 0);
AV_ZERO128(s->mb_luma_dc[0] + 8);
if (svq3_decode_block(&s->gb_slice, s->mb_luma_dc[0], 0, 1)) {
av_log(s->avctx, AV_LOG_ERROR,
"error while decoding intra luma dc\n");
return -1;
}
}
if (cbp) {
const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
for (i = 0; i < 4; i++)
if ((cbp & (1 << i))) {
for (j = 0; j < 4; j++) {
k = index ? (1 * (j & 1) + 2 * (i & 1) +
2 * (j & 2) + 4 * (i & 2))
: (4 * i + j);
s->non_zero_count_cache[scan8[k]] = 1;
if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], index, type)) {
av_log(s->avctx, AV_LOG_ERROR,
"error while decoding block\n");
return -1;
}
}
}
if ((cbp & 0x30)) {
for (i = 1; i < 3; ++i)
if (svq3_decode_block(&s->gb_slice, &s->mb[16 * 16 * i], 0, 3)) {
av_log(s->avctx, AV_LOG_ERROR,
"error while decoding chroma dc block\n");
return -1;
}
if ((cbp & 0x20)) {
for (i = 1; i < 3; i++) {
for (j = 0; j < 4; j++) {
k = 16 * i + j;
s->non_zero_count_cache[scan8[k]] = 1;
if (svq3_decode_block(&s->gb_slice, &s->mb[16 * k], 1, 1)) {
av_log(s->avctx, AV_LOG_ERROR,
"error while decoding chroma ac block\n");
return -1;
}
}
}
}
}
}
s->cbp = cbp;
s->cur_pic->mb_type[mb_xy] = mb_type;
if (IS_INTRA(mb_type))
s->chroma_pred_mode = ff_h264_check_intra_pred_mode(s->avctx, s->top_samples_available,
s->left_samples_available, DC_PRED8x8, 1);
return 0;
}
static int svq3_decode_slice_header(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
const int mb_xy = s->mb_xy;
int i, header;
unsigned slice_id;
header = get_bits(&s->gb, 8);
if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
/* TODO: what? */
av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
return -1;
} else {
int slice_bits, slice_bytes, slice_length;
int length = header >> 5 & 3;
slice_length = show_bits(&s->gb, 8 * length);
slice_bits = slice_length * 8;
slice_bytes = slice_length + length - 1;
if (8LL*slice_bytes > get_bits_left(&s->gb)) {
av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
return -1;
}
skip_bits(&s->gb, 8);
av_fast_malloc(&s->slice_buf, &s->slice_size, slice_bytes + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->slice_buf)
return AVERROR(ENOMEM);
memcpy(s->slice_buf, s->gb.buffer + s->gb.index / 8, slice_bytes);
init_get_bits(&s->gb_slice, s->slice_buf, slice_bits);
if (s->watermark_key) {
uint32_t header = AV_RL32(&s->gb_slice.buffer[1]);
AV_WL32(&s->gb_slice.buffer[1], header ^ s->watermark_key);
}
if (length > 0) {
memmove(s->slice_buf, &s->slice_buf[slice_length], length - 1);
}
skip_bits_long(&s->gb, slice_bytes * 8);
}
if ((slice_id = get_interleaved_ue_golomb(&s->gb_slice)) >= 3) {
av_log(s->avctx, AV_LOG_ERROR, "illegal slice type %u \n", slice_id);
return -1;
}
if (get_bits1(&s->gb_slice)) {
avpriv_report_missing_feature(s->avctx, "Media key encryption");
return AVERROR_PATCHWELCOME;
}
s->slice_type = ff_h264_golomb_to_pict_type[slice_id];
if ((header & 0x9F) == 2) {
i = (s->mb_num < 64) ? 5 : av_log2(s->mb_num - 1);
get_bits(&s->gb_slice, i);
}
s->slice_num = get_bits(&s->gb_slice, 8);
s->qscale = get_bits(&s->gb_slice, 5);
s->adaptive_quant = get_bits1(&s->gb_slice);
/* unknown fields */
skip_bits1(&s->gb_slice);
if (s->has_watermark)
skip_bits1(&s->gb_slice);
skip_bits1(&s->gb_slice);
skip_bits(&s->gb_slice, 2);
if (skip_1stop_8data_bits(&s->gb_slice) < 0)
return AVERROR_INVALIDDATA;
/* reset intra predictors and invalidate motion vector references */
if (s->mb_x > 0) {
memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - 1] + 3,
-1, 4 * sizeof(int8_t));
memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_x],
-1, 8 * sizeof(int8_t) * s->mb_x);
}
if (s->mb_y > 0) {
memset(s->intra4x4_pred_mode + s->mb2br_xy[mb_xy - s->mb_stride],
-1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
if (s->mb_x > 0)
s->intra4x4_pred_mode[s->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
}
return 0;
}
static void init_dequant4_coeff_table(SVQ3Context *s)
{
int q, x;
const int max_qp = 51;
for (q = 0; q < max_qp + 1; q++) {
int shift = ff_h264_quant_div6[q] + 2;
int idx = ff_h264_quant_rem6[q];
for (x = 0; x < 16; x++)
s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
((uint32_t)ff_h264_dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * 16) << shift;
}
}
static av_cold int svq3_decode_init(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
int m, x, y;
unsigned char *extradata;
unsigned char *extradata_end;
unsigned int size;
int marker_found = 0;
int ret;
s->cur_pic = av_mallocz(sizeof(*s->cur_pic));
s->last_pic = av_mallocz(sizeof(*s->last_pic));
s->next_pic = av_mallocz(sizeof(*s->next_pic));
if (!s->next_pic || !s->last_pic || !s->cur_pic) {
ret = AVERROR(ENOMEM);
goto fail;
}
s->cur_pic->f = av_frame_alloc();
s->last_pic->f = av_frame_alloc();
s->next_pic->f = av_frame_alloc();
if (!s->cur_pic->f || !s->last_pic->f || !s->next_pic->f)
return AVERROR(ENOMEM);
ff_h264dsp_init(&s->h264dsp, 8, 1);
ff_h264_pred_init(&s->hpc, AV_CODEC_ID_SVQ3, 8, 1);
ff_videodsp_init(&s->vdsp, 8);
avctx->bits_per_raw_sample = 8;
ff_hpeldsp_init(&s->hdsp, avctx->flags);
ff_tpeldsp_init(&s->tdsp);
avctx->pix_fmt = AV_PIX_FMT_YUVJ420P;
avctx->color_range = AVCOL_RANGE_JPEG;
s->avctx = avctx;
s->halfpel_flag = 1;
s->thirdpel_flag = 1;
s->has_watermark = 0;
/* prowl for the "SEQH" marker in the extradata */
extradata = (unsigned char *)avctx->extradata;
extradata_end = avctx->extradata + avctx->extradata_size;
if (extradata) {
for (m = 0; m + 8 < avctx->extradata_size; m++) {
if (!memcmp(extradata, "SEQH", 4)) {
marker_found = 1;
break;
}
extradata++;
}
}
/* if a match was found, parse the extra data */
if (marker_found) {
GetBitContext gb;
int frame_size_code;
int unk0, unk1, unk2, unk3, unk4;
size = AV_RB32(&extradata[4]);
if (size > extradata_end - extradata - 8) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
init_get_bits(&gb, extradata + 8, size * 8);
/* 'frame size code' and optional 'width, height' */
frame_size_code = get_bits(&gb, 3);
switch (frame_size_code) {
case 0:
avctx->width = 160;
avctx->height = 120;
break;
case 1:
avctx->width = 128;
avctx->height = 96;
break;
case 2:
avctx->width = 176;
avctx->height = 144;
break;
case 3:
avctx->width = 352;
avctx->height = 288;
break;
case 4:
avctx->width = 704;
avctx->height = 576;
break;
case 5:
avctx->width = 240;
avctx->height = 180;
break;
case 6:
avctx->width = 320;
avctx->height = 240;
break;
case 7:
avctx->width = get_bits(&gb, 12);
avctx->height = get_bits(&gb, 12);
break;
}
s->halfpel_flag = get_bits1(&gb);
s->thirdpel_flag = get_bits1(&gb);
/* unknown fields */
unk0 = get_bits1(&gb);
unk1 = get_bits1(&gb);
unk2 = get_bits1(&gb);
unk3 = get_bits1(&gb);
s->low_delay = get_bits1(&gb);
/* unknown field */
unk4 = get_bits1(&gb);
av_log(avctx, AV_LOG_DEBUG, "Unknown fields %d %d %d %d %d\n",
unk0, unk1, unk2, unk3, unk4);
if (skip_1stop_8data_bits(&gb) < 0) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
s->has_watermark = get_bits1(&gb);
avctx->has_b_frames = !s->low_delay;
if (s->has_watermark) {
#if CONFIG_ZLIB
unsigned watermark_width = get_interleaved_ue_golomb(&gb);
unsigned watermark_height = get_interleaved_ue_golomb(&gb);
int u1 = get_interleaved_ue_golomb(&gb);
int u2 = get_bits(&gb, 8);
int u3 = get_bits(&gb, 2);
int u4 = get_interleaved_ue_golomb(&gb);
unsigned long buf_len = watermark_width *
watermark_height * 4;
int offset = get_bits_count(&gb) + 7 >> 3;
uint8_t *buf;
if (watermark_height <= 0 ||
(uint64_t)watermark_width * 4 > UINT_MAX / watermark_height) {
ret = -1;
goto fail;
}
buf = av_malloc(buf_len);
if (!buf) {
ret = AVERROR(ENOMEM);
goto fail;
}
av_log(avctx, AV_LOG_DEBUG, "watermark size: %ux%u\n",
watermark_width, watermark_height);
av_log(avctx, AV_LOG_DEBUG,
"u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
u1, u2, u3, u4, offset);
if (uncompress(buf, &buf_len, extradata + 8 + offset,
size - offset) != Z_OK) {
av_log(avctx, AV_LOG_ERROR,
"could not uncompress watermark logo\n");
av_free(buf);
ret = -1;
goto fail;
}
s->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
s->watermark_key = s->watermark_key << 16 | s->watermark_key;
av_log(avctx, AV_LOG_DEBUG,
"watermark key %#"PRIx32"\n", s->watermark_key);
av_free(buf);
#else
av_log(avctx, AV_LOG_ERROR,
"this svq3 file contains watermark which need zlib support compiled in\n");
ret = -1;
goto fail;
#endif
}
}
s->mb_width = (avctx->width + 15) / 16;
s->mb_height = (avctx->height + 15) / 16;
s->mb_stride = s->mb_width + 1;
s->mb_num = s->mb_width * s->mb_height;
s->b_stride = 4 * s->mb_width;
s->h_edge_pos = s->mb_width * 16;
s->v_edge_pos = s->mb_height * 16;
s->intra4x4_pred_mode = av_mallocz(s->mb_stride * 2 * 8);
if (!s->intra4x4_pred_mode)
return AVERROR(ENOMEM);
s->mb2br_xy = av_mallocz(s->mb_stride * (s->mb_height + 1) *
sizeof(*s->mb2br_xy));
if (!s->mb2br_xy)
return AVERROR(ENOMEM);
for (y = 0; y < s->mb_height; y++)
for (x = 0; x < s->mb_width; x++) {
const int mb_xy = x + y * s->mb_stride;
s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 * s->mb_stride));
}
init_dequant4_coeff_table(s);
return 0;
fail:
svq3_decode_end(avctx);
return ret;
}
static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
{
int i;
for (i = 0; i < 2; i++) {
av_buffer_unref(&pic->motion_val_buf[i]);
av_buffer_unref(&pic->ref_index_buf[i]);
}
av_buffer_unref(&pic->mb_type_buf);
av_frame_unref(pic->f);
}
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
{
SVQ3Context *s = avctx->priv_data;
const int big_mb_num = s->mb_stride * (s->mb_height + 1) + 1;
const int mb_array_size = s->mb_stride * s->mb_height;
const int b4_stride = s->mb_width * 4 + 1;
const int b4_array_size = b4_stride * s->mb_height * 4;
int ret;
if (!pic->motion_val_buf[0]) {
int i;
pic->mb_type_buf = av_buffer_allocz((big_mb_num + s->mb_stride) * sizeof(uint32_t));
if (!pic->mb_type_buf)
return AVERROR(ENOMEM);
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * s->mb_stride + 1;
for (i = 0; i < 2; i++) {
pic->motion_val_buf[i] = av_buffer_allocz(2 * (b4_array_size + 4) * sizeof(int16_t));
pic->ref_index_buf[i] = av_buffer_allocz(4 * mb_array_size);
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) {
ret = AVERROR(ENOMEM);
goto fail;
}
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
pic->ref_index[i] = pic->ref_index_buf[i]->data;
}
}
ret = ff_get_buffer(avctx, pic->f,
(s->pict_type != AV_PICTURE_TYPE_B) ?
AV_GET_BUFFER_FLAG_REF : 0);
if (ret < 0)
goto fail;
if (!s->edge_emu_buffer) {
s->edge_emu_buffer = av_mallocz_array(pic->f->linesize[0], 17);
if (!s->edge_emu_buffer)
return AVERROR(ENOMEM);
}
return 0;
fail:
free_picture(avctx, pic);
return ret;
}
static int svq3_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
SVQ3Context *s = avctx->priv_data;
int buf_size = avpkt->size;
int left;
uint8_t *buf;
int ret, m, i;
/* special case for last picture */
if (buf_size == 0) {
if (s->next_pic->f->data[0] && !s->low_delay && !s->last_frame_output) {
ret = av_frame_ref(data, s->next_pic->f);
if (ret < 0)
return ret;
s->last_frame_output = 1;
*got_frame = 1;
}
return 0;
}
s->mb_x = s->mb_y = s->mb_xy = 0;
if (s->watermark_key) {
av_fast_padded_malloc(&s->buf, &s->buf_size, buf_size);
if (!s->buf)
return AVERROR(ENOMEM);
memcpy(s->buf, avpkt->data, buf_size);
buf = s->buf;
} else {
buf = avpkt->data;
}
ret = init_get_bits(&s->gb, buf, 8 * buf_size);
if (ret < 0)
return ret;
if (svq3_decode_slice_header(avctx))
return -1;
s->pict_type = s->slice_type;
if (s->pict_type != AV_PICTURE_TYPE_B)
FFSWAP(SVQ3Frame*, s->next_pic, s->last_pic);
av_frame_unref(s->cur_pic->f);
/* for skipping the frame */
s->cur_pic->f->pict_type = s->pict_type;
s->cur_pic->f->key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
ret = get_buffer(avctx, s->cur_pic);
if (ret < 0)
return ret;
for (i = 0; i < 16; i++) {
s->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
s->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
s->block_offset[16 + i] =
s->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
s->block_offset[48 + 16 + i] =
s->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * s->cur_pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
}
if (s->pict_type != AV_PICTURE_TYPE_I) {
if (!s->last_pic->f->data[0]) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
av_frame_unref(s->last_pic->f);
ret = get_buffer(avctx, s->last_pic);
if (ret < 0)
return ret;
memset(s->last_pic->f->data[0], 0, avctx->height * s->last_pic->f->linesize[0]);
memset(s->last_pic->f->data[1], 0x80, (avctx->height / 2) *
s->last_pic->f->linesize[1]);
memset(s->last_pic->f->data[2], 0x80, (avctx->height / 2) *
s->last_pic->f->linesize[2]);
}
if (s->pict_type == AV_PICTURE_TYPE_B && !s->next_pic->f->data[0]) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
av_frame_unref(s->next_pic->f);
ret = get_buffer(avctx, s->next_pic);
if (ret < 0)
return ret;
memset(s->next_pic->f->data[0], 0, avctx->height * s->next_pic->f->linesize[0]);
memset(s->next_pic->f->data[1], 0x80, (avctx->height / 2) *
s->next_pic->f->linesize[1]);
memset(s->next_pic->f->data[2], 0x80, (avctx->height / 2) *
s->next_pic->f->linesize[2]);
}
}
if (avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_DEBUG,
"%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
av_get_picture_type_char(s->pict_type),
s->halfpel_flag, s->thirdpel_flag,
s->adaptive_quant, s->qscale, s->slice_num);
if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
avctx->skip_frame >= AVDISCARD_ALL)
return 0;
if (s->next_p_frame_damaged) {
if (s->pict_type == AV_PICTURE_TYPE_B)
return 0;
else
s->next_p_frame_damaged = 0;
}
if (s->pict_type == AV_PICTURE_TYPE_B) {
s->frame_num_offset = s->slice_num - s->prev_frame_num;
if (s->frame_num_offset < 0)
s->frame_num_offset += 256;
if (s->frame_num_offset == 0 ||
s->frame_num_offset >= s->prev_frame_num_offset) {
av_log(s->avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
return -1;
}
} else {
s->prev_frame_num = s->frame_num;
s->frame_num = s->slice_num;
s->prev_frame_num_offset = s->frame_num - s->prev_frame_num;
if (s->prev_frame_num_offset < 0)
s->prev_frame_num_offset += 256;
}
for (m = 0; m < 2; m++) {
int i;
for (i = 0; i < 4; i++) {
int j;
for (j = -1; j < 4; j++)
s->ref_cache[m][scan8[0] + 8 * i + j] = 1;
if (i < 3)
s->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
}
}
for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
unsigned mb_type;
s->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
if ((get_bits_left(&s->gb_slice)) <= 7) {
if (((get_bits_count(&s->gb_slice) & 7) == 0 ||
show_bits(&s->gb_slice, get_bits_left(&s->gb_slice) & 7) == 0)) {
if (svq3_decode_slice_header(avctx))
return -1;
}
if (s->slice_type != s->pict_type) {
avpriv_request_sample(avctx, "non constant slice type");
}
/* TODO: support s->mb_skip_run */
}
mb_type = get_interleaved_ue_golomb(&s->gb_slice);
if (s->pict_type == AV_PICTURE_TYPE_I)
mb_type += 8;
else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
mb_type += 4;
if (mb_type > 33 || svq3_decode_mb(s, mb_type)) {
av_log(s->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if (mb_type != 0 || s->cbp)
hl_decode_mb(s);
if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
s->cur_pic->mb_type[s->mb_x + s->mb_y * s->mb_stride] =
(s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
}
ff_draw_horiz_band(avctx, s->cur_pic->f,
s->last_pic->f->data[0] ? s->last_pic->f : NULL,
16 * s->mb_y, 16, PICT_FRAME, 0,
s->low_delay);
}
left = buf_size*8 - get_bits_count(&s->gb_slice);
if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) {
av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left);
//av_hex_dump(stderr, buf+buf_size-8, 8);
}
if (left < 0) {
av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left);
return -1;
}
if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
ret = av_frame_ref(data, s->cur_pic->f);
else if (s->last_pic->f->data[0])
ret = av_frame_ref(data, s->last_pic->f);
if (ret < 0)
return ret;
/* Do not output the last pic after seeking. */
if (s->last_pic->f->data[0] || s->low_delay)
*got_frame = 1;
if (s->pict_type != AV_PICTURE_TYPE_B) {
FFSWAP(SVQ3Frame*, s->cur_pic, s->next_pic);
} else {
av_frame_unref(s->cur_pic->f);
}
return buf_size;
}
static av_cold int svq3_decode_end(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
free_picture(avctx, s->cur_pic);
free_picture(avctx, s->next_pic);
free_picture(avctx, s->last_pic);
av_frame_free(&s->cur_pic->f);
av_frame_free(&s->next_pic->f);
av_frame_free(&s->last_pic->f);
av_freep(&s->cur_pic);
av_freep(&s->next_pic);
av_freep(&s->last_pic);
av_freep(&s->slice_buf);
av_freep(&s->intra4x4_pred_mode);
av_freep(&s->edge_emu_buffer);
av_freep(&s->mb2br_xy);
av_freep(&s->buf);
s->buf_size = 0;
return 0;
}
AVCodec ff_svq3_decoder = {
.name = "svq3",
.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_SVQ3,
.priv_data_size = sizeof(SVQ3Context),
.init = svq3_decode_init,
.close = svq3_decode_end,
.decode = svq3_decode_frame,
.capabilities = AV_CODEC_CAP_DRAW_HORIZ_BAND |
AV_CODEC_CAP_DR1 |
AV_CODEC_CAP_DELAY,
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_NONE},
};