mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2447 lines
85 KiB
2447 lines
85 KiB
/* |
|
* Copyright (C) 2003-2004 the ffmpeg project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/vp3.c |
|
* On2 VP3 Video Decoder |
|
* |
|
* VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) |
|
* For more information about the VP3 coding process, visit: |
|
* http://wiki.multimedia.cx/index.php?title=On2_VP3 |
|
* |
|
* Theora decoder by Alex Beregszaszi |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "get_bits.h" |
|
|
|
#include "vp3data.h" |
|
#include "xiph.h" |
|
|
|
#define FRAGMENT_PIXELS 8 |
|
|
|
static av_cold int vp3_decode_end(AVCodecContext *avctx); |
|
|
|
typedef struct Coeff { |
|
struct Coeff *next; |
|
DCTELEM coeff; |
|
uint8_t index; |
|
} Coeff; |
|
|
|
//FIXME split things out into their own arrays |
|
typedef struct Vp3Fragment { |
|
Coeff *next_coeff; |
|
/* address of first pixel taking into account which plane the fragment |
|
* lives on as well as the plane stride */ |
|
int first_pixel; |
|
/* this is the macroblock that the fragment belongs to */ |
|
uint16_t macroblock; |
|
uint8_t coding_method; |
|
int8_t motion_x; |
|
int8_t motion_y; |
|
uint8_t qpi; |
|
} Vp3Fragment; |
|
|
|
#define SB_NOT_CODED 0 |
|
#define SB_PARTIALLY_CODED 1 |
|
#define SB_FULLY_CODED 2 |
|
|
|
#define MODE_INTER_NO_MV 0 |
|
#define MODE_INTRA 1 |
|
#define MODE_INTER_PLUS_MV 2 |
|
#define MODE_INTER_LAST_MV 3 |
|
#define MODE_INTER_PRIOR_LAST 4 |
|
#define MODE_USING_GOLDEN 5 |
|
#define MODE_GOLDEN_MV 6 |
|
#define MODE_INTER_FOURMV 7 |
|
#define CODING_MODE_COUNT 8 |
|
|
|
/* special internal mode */ |
|
#define MODE_COPY 8 |
|
|
|
/* There are 6 preset schemes, plus a free-form scheme */ |
|
static const int ModeAlphabet[6][CODING_MODE_COUNT] = |
|
{ |
|
/* scheme 1: Last motion vector dominates */ |
|
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
|
MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, |
|
MODE_INTRA, MODE_USING_GOLDEN, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
/* scheme 2 */ |
|
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
|
MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, |
|
MODE_INTRA, MODE_USING_GOLDEN, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
/* scheme 3 */ |
|
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
|
MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, |
|
MODE_INTRA, MODE_USING_GOLDEN, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
/* scheme 4 */ |
|
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
|
MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, |
|
MODE_INTRA, MODE_USING_GOLDEN, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
/* scheme 5: No motion vector dominates */ |
|
{ MODE_INTER_NO_MV, MODE_INTER_LAST_MV, |
|
MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, |
|
MODE_INTRA, MODE_USING_GOLDEN, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
/* scheme 6 */ |
|
{ MODE_INTER_NO_MV, MODE_USING_GOLDEN, |
|
MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
|
MODE_INTER_PLUS_MV, MODE_INTRA, |
|
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
|
|
|
}; |
|
|
|
#define MIN_DEQUANT_VAL 2 |
|
|
|
typedef struct Vp3DecodeContext { |
|
AVCodecContext *avctx; |
|
int theora, theora_tables; |
|
int version; |
|
int width, height; |
|
AVFrame golden_frame; |
|
AVFrame last_frame; |
|
AVFrame current_frame; |
|
int keyframe; |
|
DSPContext dsp; |
|
int flipped_image; |
|
|
|
int qps[3]; |
|
int nqps; |
|
int last_qps[3]; |
|
|
|
int superblock_count; |
|
int y_superblock_width; |
|
int y_superblock_height; |
|
int c_superblock_width; |
|
int c_superblock_height; |
|
int u_superblock_start; |
|
int v_superblock_start; |
|
unsigned char *superblock_coding; |
|
|
|
int macroblock_count; |
|
int macroblock_width; |
|
int macroblock_height; |
|
|
|
int fragment_count; |
|
int fragment_width; |
|
int fragment_height; |
|
|
|
Vp3Fragment *all_fragments; |
|
uint8_t *coeff_counts; |
|
Coeff *coeffs; |
|
Coeff *next_coeff; |
|
int fragment_start[3]; |
|
|
|
ScanTable scantable; |
|
|
|
/* tables */ |
|
uint16_t coded_dc_scale_factor[64]; |
|
uint32_t coded_ac_scale_factor[64]; |
|
uint8_t base_matrix[384][64]; |
|
uint8_t qr_count[2][3]; |
|
uint8_t qr_size [2][3][64]; |
|
uint16_t qr_base[2][3][64]; |
|
|
|
/* this is a list of indexes into the all_fragments array indicating |
|
* which of the fragments are coded */ |
|
int *coded_fragment_list; |
|
int coded_fragment_list_index; |
|
int pixel_addresses_initialized; |
|
|
|
/* track which fragments have already been decoded; called 'fast' |
|
* because this data structure avoids having to iterate through every |
|
* fragment in coded_fragment_list; once a fragment has been fully |
|
* decoded, it is removed from this list */ |
|
int *fast_fragment_list; |
|
int fragment_list_y_head; |
|
int fragment_list_c_head; |
|
|
|
VLC dc_vlc[16]; |
|
VLC ac_vlc_1[16]; |
|
VLC ac_vlc_2[16]; |
|
VLC ac_vlc_3[16]; |
|
VLC ac_vlc_4[16]; |
|
|
|
VLC superblock_run_length_vlc; |
|
VLC fragment_run_length_vlc; |
|
VLC mode_code_vlc; |
|
VLC motion_vector_vlc; |
|
|
|
/* these arrays need to be on 16-byte boundaries since SSE2 operations |
|
* index into them */ |
|
DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]); //<qmat[qpi][is_inter][plane] |
|
|
|
/* This table contains superblock_count * 16 entries. Each set of 16 |
|
* numbers corresponds to the fragment indexes 0..15 of the superblock. |
|
* An entry will be -1 to indicate that no entry corresponds to that |
|
* index. */ |
|
int *superblock_fragments; |
|
|
|
/* This table contains superblock_count * 4 entries. Each set of 4 |
|
* numbers corresponds to the macroblock indexes 0..3 of the superblock. |
|
* An entry will be -1 to indicate that no entry corresponds to that |
|
* index. */ |
|
int *superblock_macroblocks; |
|
|
|
/* This table contains macroblock_count * 6 entries. Each set of 6 |
|
* numbers corresponds to the fragment indexes 0..5 which comprise |
|
* the macroblock (4 Y fragments and 2 C fragments). */ |
|
int *macroblock_fragments; |
|
/* This is an array that indicates how a particular macroblock |
|
* is coded. */ |
|
unsigned char *macroblock_coding; |
|
|
|
int first_coded_y_fragment; |
|
int first_coded_c_fragment; |
|
int last_coded_y_fragment; |
|
int last_coded_c_fragment; |
|
|
|
uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc |
|
int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16 |
|
|
|
/* Huffman decode */ |
|
int hti; |
|
unsigned int hbits; |
|
int entries; |
|
int huff_code_size; |
|
uint16_t huffman_table[80][32][2]; |
|
|
|
uint8_t filter_limit_values[64]; |
|
DECLARE_ALIGNED_8(int, bounding_values_array[256+2]); |
|
} Vp3DecodeContext; |
|
|
|
/************************************************************************ |
|
* VP3 specific functions |
|
************************************************************************/ |
|
|
|
/* |
|
* This function sets up all of the various blocks mappings: |
|
* superblocks <-> fragments, macroblocks <-> fragments, |
|
* superblocks <-> macroblocks |
|
* |
|
* Returns 0 is successful; returns 1 if *anything* went wrong. |
|
*/ |
|
static int init_block_mapping(Vp3DecodeContext *s) |
|
{ |
|
int i, j; |
|
signed int hilbert_walk_mb[4]; |
|
|
|
int current_fragment = 0; |
|
int current_width = 0; |
|
int current_height = 0; |
|
int right_edge = 0; |
|
int bottom_edge = 0; |
|
int superblock_row_inc = 0; |
|
int mapping_index = 0; |
|
|
|
int current_macroblock; |
|
int c_fragment; |
|
|
|
static const signed char travel_width[16] = { |
|
1, 1, 0, -1, |
|
0, 0, 1, 0, |
|
1, 0, 1, 0, |
|
0, -1, 0, 1 |
|
}; |
|
|
|
static const signed char travel_height[16] = { |
|
0, 0, 1, 0, |
|
1, 1, 0, -1, |
|
0, 1, 0, -1, |
|
-1, 0, -1, 0 |
|
}; |
|
|
|
static const signed char travel_width_mb[4] = { |
|
1, 0, 1, 0 |
|
}; |
|
|
|
static const signed char travel_height_mb[4] = { |
|
0, 1, 0, -1 |
|
}; |
|
|
|
hilbert_walk_mb[0] = 1; |
|
hilbert_walk_mb[1] = s->macroblock_width; |
|
hilbert_walk_mb[2] = 1; |
|
hilbert_walk_mb[3] = -s->macroblock_width; |
|
|
|
/* iterate through each superblock (all planes) and map the fragments */ |
|
for (i = 0; i < s->superblock_count; i++) { |
|
/* time to re-assign the limits? */ |
|
if (i == 0) { |
|
|
|
/* start of Y superblocks */ |
|
right_edge = s->fragment_width; |
|
bottom_edge = s->fragment_height; |
|
current_width = -1; |
|
current_height = 0; |
|
superblock_row_inc = 3 * s->fragment_width - |
|
(s->y_superblock_width * 4 - s->fragment_width); |
|
|
|
/* the first operation for this variable is to advance by 1 */ |
|
current_fragment = -1; |
|
|
|
} else if (i == s->u_superblock_start) { |
|
|
|
/* start of U superblocks */ |
|
right_edge = s->fragment_width / 2; |
|
bottom_edge = s->fragment_height / 2; |
|
current_width = -1; |
|
current_height = 0; |
|
superblock_row_inc = 3 * (s->fragment_width / 2) - |
|
(s->c_superblock_width * 4 - s->fragment_width / 2); |
|
|
|
/* the first operation for this variable is to advance by 1 */ |
|
current_fragment = s->fragment_start[1] - 1; |
|
|
|
} else if (i == s->v_superblock_start) { |
|
|
|
/* start of V superblocks */ |
|
right_edge = s->fragment_width / 2; |
|
bottom_edge = s->fragment_height / 2; |
|
current_width = -1; |
|
current_height = 0; |
|
superblock_row_inc = 3 * (s->fragment_width / 2) - |
|
(s->c_superblock_width * 4 - s->fragment_width / 2); |
|
|
|
/* the first operation for this variable is to advance by 1 */ |
|
current_fragment = s->fragment_start[2] - 1; |
|
|
|
} |
|
|
|
if (current_width >= right_edge - 1) { |
|
/* reset width and move to next superblock row */ |
|
current_width = -1; |
|
current_height += 4; |
|
|
|
/* fragment is now at the start of a new superblock row */ |
|
current_fragment += superblock_row_inc; |
|
} |
|
|
|
/* iterate through all 16 fragments in a superblock */ |
|
for (j = 0; j < 16; j++) { |
|
current_fragment += travel_width[j] + right_edge * travel_height[j]; |
|
current_width += travel_width[j]; |
|
current_height += travel_height[j]; |
|
|
|
/* check if the fragment is in bounds */ |
|
if ((current_width < right_edge) && |
|
(current_height < bottom_edge)) { |
|
s->superblock_fragments[mapping_index] = current_fragment; |
|
} else { |
|
s->superblock_fragments[mapping_index] = -1; |
|
} |
|
|
|
mapping_index++; |
|
} |
|
} |
|
|
|
/* initialize the superblock <-> macroblock mapping; iterate through |
|
* all of the Y plane superblocks to build this mapping */ |
|
right_edge = s->macroblock_width; |
|
bottom_edge = s->macroblock_height; |
|
current_width = -1; |
|
current_height = 0; |
|
superblock_row_inc = s->macroblock_width - |
|
(s->y_superblock_width * 2 - s->macroblock_width); |
|
mapping_index = 0; |
|
current_macroblock = -1; |
|
for (i = 0; i < s->u_superblock_start; i++) { |
|
|
|
if (current_width >= right_edge - 1) { |
|
/* reset width and move to next superblock row */ |
|
current_width = -1; |
|
current_height += 2; |
|
|
|
/* macroblock is now at the start of a new superblock row */ |
|
current_macroblock += superblock_row_inc; |
|
} |
|
|
|
/* iterate through each potential macroblock in the superblock */ |
|
for (j = 0; j < 4; j++) { |
|
current_macroblock += hilbert_walk_mb[j]; |
|
current_width += travel_width_mb[j]; |
|
current_height += travel_height_mb[j]; |
|
|
|
/* check if the macroblock is in bounds */ |
|
if ((current_width < right_edge) && |
|
(current_height < bottom_edge)) { |
|
s->superblock_macroblocks[mapping_index] = current_macroblock; |
|
} else { |
|
s->superblock_macroblocks[mapping_index] = -1; |
|
} |
|
|
|
mapping_index++; |
|
} |
|
} |
|
|
|
/* initialize the macroblock <-> fragment mapping */ |
|
current_fragment = 0; |
|
current_macroblock = 0; |
|
mapping_index = 0; |
|
for (i = 0; i < s->fragment_height; i += 2) { |
|
|
|
for (j = 0; j < s->fragment_width; j += 2) { |
|
|
|
s->all_fragments[current_fragment].macroblock = current_macroblock; |
|
s->macroblock_fragments[mapping_index++] = current_fragment; |
|
|
|
if (j + 1 < s->fragment_width) { |
|
s->all_fragments[current_fragment + 1].macroblock = current_macroblock; |
|
s->macroblock_fragments[mapping_index++] = current_fragment + 1; |
|
} else |
|
s->macroblock_fragments[mapping_index++] = -1; |
|
|
|
if (i + 1 < s->fragment_height) { |
|
s->all_fragments[current_fragment + s->fragment_width].macroblock = |
|
current_macroblock; |
|
s->macroblock_fragments[mapping_index++] = |
|
current_fragment + s->fragment_width; |
|
} else |
|
s->macroblock_fragments[mapping_index++] = -1; |
|
|
|
if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) { |
|
s->all_fragments[current_fragment + s->fragment_width + 1].macroblock = |
|
current_macroblock; |
|
s->macroblock_fragments[mapping_index++] = |
|
current_fragment + s->fragment_width + 1; |
|
} else |
|
s->macroblock_fragments[mapping_index++] = -1; |
|
|
|
/* C planes */ |
|
c_fragment = s->fragment_start[1] + |
|
(i * s->fragment_width / 4) + (j / 2); |
|
s->all_fragments[c_fragment].macroblock = s->macroblock_count; |
|
s->macroblock_fragments[mapping_index++] = c_fragment; |
|
|
|
c_fragment = s->fragment_start[2] + |
|
(i * s->fragment_width / 4) + (j / 2); |
|
s->all_fragments[c_fragment].macroblock = s->macroblock_count; |
|
s->macroblock_fragments[mapping_index++] = c_fragment; |
|
|
|
if (j + 2 <= s->fragment_width) |
|
current_fragment += 2; |
|
else |
|
current_fragment++; |
|
current_macroblock++; |
|
} |
|
|
|
current_fragment += s->fragment_width; |
|
} |
|
|
|
return 0; /* successful path out */ |
|
} |
|
|
|
/* |
|
* This function wipes out all of the fragment data. |
|
*/ |
|
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int i; |
|
|
|
/* zero out all of the fragment information */ |
|
s->coded_fragment_list_index = 0; |
|
for (i = 0; i < s->fragment_count; i++) { |
|
s->coeff_counts[i] = 0; |
|
s->all_fragments[i].motion_x = 127; |
|
s->all_fragments[i].motion_y = 127; |
|
s->all_fragments[i].next_coeff= NULL; |
|
s->all_fragments[i].qpi = 0; |
|
s->coeffs[i].index= |
|
s->coeffs[i].coeff=0; |
|
s->coeffs[i].next= NULL; |
|
} |
|
} |
|
|
|
/* |
|
* This function sets up the dequantization tables used for a particular |
|
* frame. |
|
*/ |
|
static void init_dequantizer(Vp3DecodeContext *s, int qpi) |
|
{ |
|
int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; |
|
int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]]; |
|
int i, plane, inter, qri, bmi, bmj, qistart; |
|
|
|
for(inter=0; inter<2; inter++){ |
|
for(plane=0; plane<3; plane++){ |
|
int sum=0; |
|
for(qri=0; qri<s->qr_count[inter][plane]; qri++){ |
|
sum+= s->qr_size[inter][plane][qri]; |
|
if(s->qps[qpi] <= sum) |
|
break; |
|
} |
|
qistart= sum - s->qr_size[inter][plane][qri]; |
|
bmi= s->qr_base[inter][plane][qri ]; |
|
bmj= s->qr_base[inter][plane][qri+1]; |
|
for(i=0; i<64; i++){ |
|
int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i] |
|
- 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i] |
|
+ s->qr_size[inter][plane][qri]) |
|
/ (2*s->qr_size[inter][plane][qri]); |
|
|
|
int qmin= 8<<(inter + !i); |
|
int qscale= i ? ac_scale_factor : dc_scale_factor; |
|
|
|
s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); |
|
} |
|
// all DC coefficients use the same quant so as not to interfere with DC prediction |
|
s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; |
|
} |
|
} |
|
|
|
memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune |
|
} |
|
|
|
/* |
|
* This function initializes the loop filter boundary limits if the frame's |
|
* quality index is different from the previous frame's. |
|
* |
|
* The filter_limit_values may not be larger than 127. |
|
*/ |
|
static void init_loop_filter(Vp3DecodeContext *s) |
|
{ |
|
int *bounding_values= s->bounding_values_array+127; |
|
int filter_limit; |
|
int x; |
|
int value; |
|
|
|
filter_limit = s->filter_limit_values[s->qps[0]]; |
|
|
|
/* set up the bounding values */ |
|
memset(s->bounding_values_array, 0, 256 * sizeof(int)); |
|
for (x = 0; x < filter_limit; x++) { |
|
bounding_values[-x] = -x; |
|
bounding_values[x] = x; |
|
} |
|
for (x = value = filter_limit; x < 128 && value; x++, value--) { |
|
bounding_values[ x] = value; |
|
bounding_values[-x] = -value; |
|
} |
|
if (value) |
|
bounding_values[128] = value; |
|
bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202; |
|
} |
|
|
|
/* |
|
* This function unpacks all of the superblock/macroblock/fragment coding |
|
* information from the bitstream. |
|
*/ |
|
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int bit = 0; |
|
int current_superblock = 0; |
|
int current_run = 0; |
|
int decode_fully_flags = 0; |
|
int decode_partial_blocks = 0; |
|
int first_c_fragment_seen; |
|
|
|
int i, j; |
|
int current_fragment; |
|
|
|
if (s->keyframe) { |
|
memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); |
|
|
|
} else { |
|
|
|
/* unpack the list of partially-coded superblocks */ |
|
bit = get_bits1(gb); |
|
/* toggle the bit because as soon as the first run length is |
|
* fetched the bit will be toggled again */ |
|
bit ^= 1; |
|
while (current_superblock < s->superblock_count) { |
|
if (current_run-- == 0) { |
|
bit ^= 1; |
|
current_run = get_vlc2(gb, |
|
s->superblock_run_length_vlc.table, 6, 2); |
|
if (current_run == 33) |
|
current_run += get_bits(gb, 12); |
|
|
|
/* if any of the superblocks are not partially coded, flag |
|
* a boolean to decode the list of fully-coded superblocks */ |
|
if (bit == 0) { |
|
decode_fully_flags = 1; |
|
} else { |
|
|
|
/* make a note of the fact that there are partially coded |
|
* superblocks */ |
|
decode_partial_blocks = 1; |
|
} |
|
} |
|
s->superblock_coding[current_superblock++] = bit; |
|
} |
|
|
|
/* unpack the list of fully coded superblocks if any of the blocks were |
|
* not marked as partially coded in the previous step */ |
|
if (decode_fully_flags) { |
|
|
|
current_superblock = 0; |
|
current_run = 0; |
|
bit = get_bits1(gb); |
|
/* toggle the bit because as soon as the first run length is |
|
* fetched the bit will be toggled again */ |
|
bit ^= 1; |
|
while (current_superblock < s->superblock_count) { |
|
|
|
/* skip any superblocks already marked as partially coded */ |
|
if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { |
|
|
|
if (current_run-- == 0) { |
|
bit ^= 1; |
|
current_run = get_vlc2(gb, |
|
s->superblock_run_length_vlc.table, 6, 2); |
|
if (current_run == 33) |
|
current_run += get_bits(gb, 12); |
|
} |
|
s->superblock_coding[current_superblock] = 2*bit; |
|
} |
|
current_superblock++; |
|
} |
|
} |
|
|
|
/* if there were partial blocks, initialize bitstream for |
|
* unpacking fragment codings */ |
|
if (decode_partial_blocks) { |
|
|
|
current_run = 0; |
|
bit = get_bits1(gb); |
|
/* toggle the bit because as soon as the first run length is |
|
* fetched the bit will be toggled again */ |
|
bit ^= 1; |
|
} |
|
} |
|
|
|
/* figure out which fragments are coded; iterate through each |
|
* superblock (all planes) */ |
|
s->coded_fragment_list_index = 0; |
|
s->next_coeff= s->coeffs + s->fragment_count; |
|
s->first_coded_y_fragment = s->first_coded_c_fragment = 0; |
|
s->last_coded_y_fragment = s->last_coded_c_fragment = -1; |
|
first_c_fragment_seen = 0; |
|
memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); |
|
for (i = 0; i < s->superblock_count; i++) { |
|
|
|
/* iterate through all 16 fragments in a superblock */ |
|
for (j = 0; j < 16; j++) { |
|
|
|
/* if the fragment is in bounds, check its coding status */ |
|
current_fragment = s->superblock_fragments[i * 16 + j]; |
|
if (current_fragment >= s->fragment_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n", |
|
current_fragment, s->fragment_count); |
|
return 1; |
|
} |
|
if (current_fragment != -1) { |
|
if (s->superblock_coding[i] == SB_NOT_CODED) { |
|
|
|
/* copy all the fragments from the prior frame */ |
|
s->all_fragments[current_fragment].coding_method = |
|
MODE_COPY; |
|
|
|
} else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { |
|
|
|
/* fragment may or may not be coded; this is the case |
|
* that cares about the fragment coding runs */ |
|
if (current_run-- == 0) { |
|
bit ^= 1; |
|
current_run = get_vlc2(gb, |
|
s->fragment_run_length_vlc.table, 5, 2); |
|
} |
|
|
|
if (bit) { |
|
/* default mode; actual mode will be decoded in |
|
* the next phase */ |
|
s->all_fragments[current_fragment].coding_method = |
|
MODE_INTER_NO_MV; |
|
s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; |
|
s->coded_fragment_list[s->coded_fragment_list_index] = |
|
current_fragment; |
|
if ((current_fragment >= s->fragment_start[1]) && |
|
(s->last_coded_y_fragment == -1) && |
|
(!first_c_fragment_seen)) { |
|
s->first_coded_c_fragment = s->coded_fragment_list_index; |
|
s->last_coded_y_fragment = s->first_coded_c_fragment - 1; |
|
first_c_fragment_seen = 1; |
|
} |
|
s->coded_fragment_list_index++; |
|
s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; |
|
} else { |
|
/* not coded; copy this fragment from the prior frame */ |
|
s->all_fragments[current_fragment].coding_method = |
|
MODE_COPY; |
|
} |
|
|
|
} else { |
|
|
|
/* fragments are fully coded in this superblock; actual |
|
* coding will be determined in next step */ |
|
s->all_fragments[current_fragment].coding_method = |
|
MODE_INTER_NO_MV; |
|
s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; |
|
s->coded_fragment_list[s->coded_fragment_list_index] = |
|
current_fragment; |
|
if ((current_fragment >= s->fragment_start[1]) && |
|
(s->last_coded_y_fragment == -1) && |
|
(!first_c_fragment_seen)) { |
|
s->first_coded_c_fragment = s->coded_fragment_list_index; |
|
s->last_coded_y_fragment = s->first_coded_c_fragment - 1; |
|
first_c_fragment_seen = 1; |
|
} |
|
s->coded_fragment_list_index++; |
|
s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!first_c_fragment_seen) |
|
/* only Y fragments coded in this frame */ |
|
s->last_coded_y_fragment = s->coded_fragment_list_index - 1; |
|
else |
|
/* end the list of coded C fragments */ |
|
s->last_coded_c_fragment = s->coded_fragment_list_index - 1; |
|
|
|
for (i = 0; i < s->fragment_count - 1; i++) { |
|
s->fast_fragment_list[i] = i + 1; |
|
} |
|
s->fast_fragment_list[s->fragment_count - 1] = -1; |
|
|
|
if (s->last_coded_y_fragment == -1) |
|
s->fragment_list_y_head = -1; |
|
else { |
|
s->fragment_list_y_head = s->first_coded_y_fragment; |
|
s->fast_fragment_list[s->last_coded_y_fragment] = -1; |
|
} |
|
|
|
if (s->last_coded_c_fragment == -1) |
|
s->fragment_list_c_head = -1; |
|
else { |
|
s->fragment_list_c_head = s->first_coded_c_fragment; |
|
s->fast_fragment_list[s->last_coded_c_fragment] = -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This function unpacks all the coding mode data for individual macroblocks |
|
* from the bitstream. |
|
*/ |
|
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int i, j, k; |
|
int scheme; |
|
int current_macroblock; |
|
int current_fragment; |
|
int coding_mode; |
|
int custom_mode_alphabet[CODING_MODE_COUNT]; |
|
|
|
if (s->keyframe) { |
|
for (i = 0; i < s->fragment_count; i++) |
|
s->all_fragments[i].coding_method = MODE_INTRA; |
|
|
|
} else { |
|
|
|
/* fetch the mode coding scheme for this frame */ |
|
scheme = get_bits(gb, 3); |
|
|
|
/* is it a custom coding scheme? */ |
|
if (scheme == 0) { |
|
for (i = 0; i < 8; i++) |
|
custom_mode_alphabet[i] = MODE_INTER_NO_MV; |
|
for (i = 0; i < 8; i++) |
|
custom_mode_alphabet[get_bits(gb, 3)] = i; |
|
} |
|
|
|
/* iterate through all of the macroblocks that contain 1 or more |
|
* coded fragments */ |
|
for (i = 0; i < s->u_superblock_start; i++) { |
|
|
|
for (j = 0; j < 4; j++) { |
|
current_macroblock = s->superblock_macroblocks[i * 4 + j]; |
|
if ((current_macroblock == -1) || |
|
(s->macroblock_coding[current_macroblock] == MODE_COPY)) |
|
continue; |
|
if (current_macroblock >= s->macroblock_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n", |
|
current_macroblock, s->macroblock_count); |
|
return 1; |
|
} |
|
|
|
/* mode 7 means get 3 bits for each coding mode */ |
|
if (scheme == 7) |
|
coding_mode = get_bits(gb, 3); |
|
else if(scheme == 0) |
|
coding_mode = custom_mode_alphabet |
|
[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; |
|
else |
|
coding_mode = ModeAlphabet[scheme-1] |
|
[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; |
|
|
|
s->macroblock_coding[current_macroblock] = coding_mode; |
|
for (k = 0; k < 6; k++) { |
|
current_fragment = |
|
s->macroblock_fragments[current_macroblock * 6 + k]; |
|
if (current_fragment == -1) |
|
continue; |
|
if (current_fragment >= s->fragment_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n", |
|
current_fragment, s->fragment_count); |
|
return 1; |
|
} |
|
if (s->all_fragments[current_fragment].coding_method != |
|
MODE_COPY) |
|
s->all_fragments[current_fragment].coding_method = |
|
coding_mode; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This function unpacks all the motion vectors for the individual |
|
* macroblocks from the bitstream. |
|
*/ |
|
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int i, j, k, l; |
|
int coding_mode; |
|
int motion_x[6]; |
|
int motion_y[6]; |
|
int last_motion_x = 0; |
|
int last_motion_y = 0; |
|
int prior_last_motion_x = 0; |
|
int prior_last_motion_y = 0; |
|
int current_macroblock; |
|
int current_fragment; |
|
|
|
if (s->keyframe) |
|
return 0; |
|
|
|
memset(motion_x, 0, 6 * sizeof(int)); |
|
memset(motion_y, 0, 6 * sizeof(int)); |
|
|
|
/* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ |
|
coding_mode = get_bits1(gb); |
|
|
|
/* iterate through all of the macroblocks that contain 1 or more |
|
* coded fragments */ |
|
for (i = 0; i < s->u_superblock_start; i++) { |
|
|
|
for (j = 0; j < 4; j++) { |
|
current_macroblock = s->superblock_macroblocks[i * 4 + j]; |
|
if ((current_macroblock == -1) || |
|
(s->macroblock_coding[current_macroblock] == MODE_COPY)) |
|
continue; |
|
if (current_macroblock >= s->macroblock_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n", |
|
current_macroblock, s->macroblock_count); |
|
return 1; |
|
} |
|
|
|
current_fragment = s->macroblock_fragments[current_macroblock * 6]; |
|
if (current_fragment >= s->fragment_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n", |
|
current_fragment, s->fragment_count); |
|
return 1; |
|
} |
|
switch (s->macroblock_coding[current_macroblock]) { |
|
|
|
case MODE_INTER_PLUS_MV: |
|
case MODE_GOLDEN_MV: |
|
/* all 6 fragments use the same motion vector */ |
|
if (coding_mode == 0) { |
|
motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
|
motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
|
} else { |
|
motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
|
motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
|
} |
|
|
|
for (k = 1; k < 6; k++) { |
|
motion_x[k] = motion_x[0]; |
|
motion_y[k] = motion_y[0]; |
|
} |
|
|
|
/* vector maintenance, only on MODE_INTER_PLUS_MV */ |
|
if (s->macroblock_coding[current_macroblock] == |
|
MODE_INTER_PLUS_MV) { |
|
prior_last_motion_x = last_motion_x; |
|
prior_last_motion_y = last_motion_y; |
|
last_motion_x = motion_x[0]; |
|
last_motion_y = motion_y[0]; |
|
} |
|
break; |
|
|
|
case MODE_INTER_FOURMV: |
|
/* vector maintenance */ |
|
prior_last_motion_x = last_motion_x; |
|
prior_last_motion_y = last_motion_y; |
|
|
|
/* fetch 4 vectors from the bitstream, one for each |
|
* Y fragment, then average for the C fragment vectors */ |
|
motion_x[4] = motion_y[4] = 0; |
|
for (k = 0; k < 4; k++) { |
|
for (l = 0; l < s->coded_fragment_list_index; l++) |
|
if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k]) |
|
break; |
|
if (l < s->coded_fragment_list_index) { |
|
if (coding_mode == 0) { |
|
motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
|
motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
|
} else { |
|
motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
|
motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
|
} |
|
last_motion_x = motion_x[k]; |
|
last_motion_y = motion_y[k]; |
|
} else { |
|
motion_x[k] = 0; |
|
motion_y[k] = 0; |
|
} |
|
motion_x[4] += motion_x[k]; |
|
motion_y[4] += motion_y[k]; |
|
} |
|
|
|
motion_x[5]= |
|
motion_x[4]= RSHIFT(motion_x[4], 2); |
|
motion_y[5]= |
|
motion_y[4]= RSHIFT(motion_y[4], 2); |
|
break; |
|
|
|
case MODE_INTER_LAST_MV: |
|
/* all 6 fragments use the last motion vector */ |
|
motion_x[0] = last_motion_x; |
|
motion_y[0] = last_motion_y; |
|
for (k = 1; k < 6; k++) { |
|
motion_x[k] = motion_x[0]; |
|
motion_y[k] = motion_y[0]; |
|
} |
|
|
|
/* no vector maintenance (last vector remains the |
|
* last vector) */ |
|
break; |
|
|
|
case MODE_INTER_PRIOR_LAST: |
|
/* all 6 fragments use the motion vector prior to the |
|
* last motion vector */ |
|
motion_x[0] = prior_last_motion_x; |
|
motion_y[0] = prior_last_motion_y; |
|
for (k = 1; k < 6; k++) { |
|
motion_x[k] = motion_x[0]; |
|
motion_y[k] = motion_y[0]; |
|
} |
|
|
|
/* vector maintenance */ |
|
prior_last_motion_x = last_motion_x; |
|
prior_last_motion_y = last_motion_y; |
|
last_motion_x = motion_x[0]; |
|
last_motion_y = motion_y[0]; |
|
break; |
|
|
|
default: |
|
/* covers intra, inter without MV, golden without MV */ |
|
memset(motion_x, 0, 6 * sizeof(int)); |
|
memset(motion_y, 0, 6 * sizeof(int)); |
|
|
|
/* no vector maintenance */ |
|
break; |
|
} |
|
|
|
/* assign the motion vectors to the correct fragments */ |
|
for (k = 0; k < 6; k++) { |
|
current_fragment = |
|
s->macroblock_fragments[current_macroblock * 6 + k]; |
|
if (current_fragment == -1) |
|
continue; |
|
if (current_fragment >= s->fragment_count) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n", |
|
current_fragment, s->fragment_count); |
|
return 1; |
|
} |
|
s->all_fragments[current_fragment].motion_x = motion_x[k]; |
|
s->all_fragments[current_fragment].motion_y = motion_y[k]; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; |
|
int num_blocks = s->coded_fragment_list_index; |
|
|
|
for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) { |
|
i = blocks_decoded = num_blocks_at_qpi = 0; |
|
|
|
bit = get_bits1(gb); |
|
|
|
do { |
|
run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; |
|
if (run_length == 34) |
|
run_length += get_bits(gb, 12); |
|
blocks_decoded += run_length; |
|
|
|
if (!bit) |
|
num_blocks_at_qpi += run_length; |
|
|
|
for (j = 0; j < run_length; i++) { |
|
if (i >= s->coded_fragment_list_index) |
|
return -1; |
|
|
|
if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) { |
|
s->all_fragments[s->coded_fragment_list[i]].qpi += bit; |
|
j++; |
|
} |
|
} |
|
|
|
if (run_length == 4129) |
|
bit = get_bits1(gb); |
|
else |
|
bit ^= 1; |
|
} while (blocks_decoded < num_blocks); |
|
|
|
num_blocks -= num_blocks_at_qpi; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This function is called by unpack_dct_coeffs() to extract the VLCs from |
|
* the bitstream. The VLCs encode tokens which are used to unpack DCT |
|
* data. This function unpacks all the VLCs for either the Y plane or both |
|
* C planes, and is called for DC coefficients or different AC coefficient |
|
* levels (since different coefficient types require different VLC tables. |
|
* |
|
* This function returns a residual eob run. E.g, if a particular token gave |
|
* instructions to EOB the next 5 fragments and there were only 2 fragments |
|
* left in the current fragment range, 3 would be returned so that it could |
|
* be passed into the next call to this same function. |
|
*/ |
|
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, |
|
VLC *table, int coeff_index, |
|
int y_plane, |
|
int eob_run) |
|
{ |
|
int i; |
|
int token; |
|
int zero_run = 0; |
|
DCTELEM coeff = 0; |
|
Vp3Fragment *fragment; |
|
int bits_to_get; |
|
int next_fragment; |
|
int previous_fragment; |
|
int fragment_num; |
|
int *list_head; |
|
|
|
/* local references to structure members to avoid repeated deferences */ |
|
uint8_t *perm= s->scantable.permutated; |
|
int *coded_fragment_list = s->coded_fragment_list; |
|
Vp3Fragment *all_fragments = s->all_fragments; |
|
uint8_t *coeff_counts = s->coeff_counts; |
|
VLC_TYPE (*vlc_table)[2] = table->table; |
|
int *fast_fragment_list = s->fast_fragment_list; |
|
|
|
if (y_plane) { |
|
next_fragment = s->fragment_list_y_head; |
|
list_head = &s->fragment_list_y_head; |
|
} else { |
|
next_fragment = s->fragment_list_c_head; |
|
list_head = &s->fragment_list_c_head; |
|
} |
|
|
|
i = next_fragment; |
|
previous_fragment = -1; /* this indicates that the previous fragment is actually the list head */ |
|
while (i != -1) { |
|
fragment_num = coded_fragment_list[i]; |
|
|
|
if (coeff_counts[fragment_num] > coeff_index) { |
|
previous_fragment = i; |
|
i = fast_fragment_list[i]; |
|
continue; |
|
} |
|
fragment = &all_fragments[fragment_num]; |
|
|
|
if (!eob_run) { |
|
/* decode a VLC into a token */ |
|
token = get_vlc2(gb, vlc_table, 5, 3); |
|
/* use the token to get a zero run, a coefficient, and an eob run */ |
|
if (token <= 6) { |
|
eob_run = eob_run_base[token]; |
|
if (eob_run_get_bits[token]) |
|
eob_run += get_bits(gb, eob_run_get_bits[token]); |
|
coeff = zero_run = 0; |
|
} else { |
|
bits_to_get = coeff_get_bits[token]; |
|
if (bits_to_get) |
|
bits_to_get = get_bits(gb, bits_to_get); |
|
coeff = coeff_tables[token][bits_to_get]; |
|
|
|
zero_run = zero_run_base[token]; |
|
if (zero_run_get_bits[token]) |
|
zero_run += get_bits(gb, zero_run_get_bits[token]); |
|
} |
|
} |
|
|
|
if (!eob_run) { |
|
coeff_counts[fragment_num] += zero_run; |
|
if (coeff_counts[fragment_num] < 64){ |
|
fragment->next_coeff->coeff= coeff; |
|
fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already? |
|
fragment->next_coeff->next= s->next_coeff; |
|
s->next_coeff->next=NULL; |
|
fragment->next_coeff= s->next_coeff++; |
|
} |
|
/* previous fragment is now this fragment */ |
|
previous_fragment = i; |
|
} else { |
|
coeff_counts[fragment_num] |= 128; |
|
eob_run--; |
|
/* remove this fragment from the list */ |
|
if (previous_fragment != -1) |
|
fast_fragment_list[previous_fragment] = fast_fragment_list[i]; |
|
else |
|
*list_head = fast_fragment_list[i]; |
|
/* previous fragment remains unchanged */ |
|
} |
|
|
|
i = fast_fragment_list[i]; |
|
} |
|
|
|
return eob_run; |
|
} |
|
|
|
static void reverse_dc_prediction(Vp3DecodeContext *s, |
|
int first_fragment, |
|
int fragment_width, |
|
int fragment_height); |
|
/* |
|
* This function unpacks all of the DCT coefficient data from the |
|
* bitstream. |
|
*/ |
|
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) |
|
{ |
|
int i; |
|
int dc_y_table; |
|
int dc_c_table; |
|
int ac_y_table; |
|
int ac_c_table; |
|
int residual_eob_run = 0; |
|
VLC *y_tables[64]; |
|
VLC *c_tables[64]; |
|
|
|
/* fetch the DC table indexes */ |
|
dc_y_table = get_bits(gb, 4); |
|
dc_c_table = get_bits(gb, 4); |
|
|
|
/* unpack the Y plane DC coefficients */ |
|
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, |
|
1, residual_eob_run); |
|
|
|
/* reverse prediction of the Y-plane DC coefficients */ |
|
reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height); |
|
|
|
/* unpack the C plane DC coefficients */ |
|
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, |
|
0, residual_eob_run); |
|
|
|
/* reverse prediction of the C-plane DC coefficients */ |
|
if (!(s->avctx->flags & CODEC_FLAG_GRAY)) |
|
{ |
|
reverse_dc_prediction(s, s->fragment_start[1], |
|
s->fragment_width / 2, s->fragment_height / 2); |
|
reverse_dc_prediction(s, s->fragment_start[2], |
|
s->fragment_width / 2, s->fragment_height / 2); |
|
} |
|
|
|
/* fetch the AC table indexes */ |
|
ac_y_table = get_bits(gb, 4); |
|
ac_c_table = get_bits(gb, 4); |
|
|
|
/* build tables of AC VLC tables */ |
|
for (i = 1; i <= 5; i++) { |
|
y_tables[i] = &s->ac_vlc_1[ac_y_table]; |
|
c_tables[i] = &s->ac_vlc_1[ac_c_table]; |
|
} |
|
for (i = 6; i <= 14; i++) { |
|
y_tables[i] = &s->ac_vlc_2[ac_y_table]; |
|
c_tables[i] = &s->ac_vlc_2[ac_c_table]; |
|
} |
|
for (i = 15; i <= 27; i++) { |
|
y_tables[i] = &s->ac_vlc_3[ac_y_table]; |
|
c_tables[i] = &s->ac_vlc_3[ac_c_table]; |
|
} |
|
for (i = 28; i <= 63; i++) { |
|
y_tables[i] = &s->ac_vlc_4[ac_y_table]; |
|
c_tables[i] = &s->ac_vlc_4[ac_c_table]; |
|
} |
|
|
|
/* decode all AC coefficents */ |
|
for (i = 1; i <= 63; i++) { |
|
if (s->fragment_list_y_head != -1) |
|
residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, |
|
1, residual_eob_run); |
|
|
|
if (s->fragment_list_c_head != -1) |
|
residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, |
|
0, residual_eob_run); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This function reverses the DC prediction for each coded fragment in |
|
* the frame. Much of this function is adapted directly from the original |
|
* VP3 source code. |
|
*/ |
|
#define COMPATIBLE_FRAME(x) \ |
|
(compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) |
|
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this |
|
|
|
static void reverse_dc_prediction(Vp3DecodeContext *s, |
|
int first_fragment, |
|
int fragment_width, |
|
int fragment_height) |
|
{ |
|
|
|
#define PUL 8 |
|
#define PU 4 |
|
#define PUR 2 |
|
#define PL 1 |
|
|
|
int x, y; |
|
int i = first_fragment; |
|
|
|
int predicted_dc; |
|
|
|
/* DC values for the left, up-left, up, and up-right fragments */ |
|
int vl, vul, vu, vur; |
|
|
|
/* indexes for the left, up-left, up, and up-right fragments */ |
|
int l, ul, u, ur; |
|
|
|
/* |
|
* The 6 fields mean: |
|
* 0: up-left multiplier |
|
* 1: up multiplier |
|
* 2: up-right multiplier |
|
* 3: left multiplier |
|
*/ |
|
static const int predictor_transform[16][4] = { |
|
{ 0, 0, 0, 0}, |
|
{ 0, 0, 0,128}, // PL |
|
{ 0, 0,128, 0}, // PUR |
|
{ 0, 0, 53, 75}, // PUR|PL |
|
{ 0,128, 0, 0}, // PU |
|
{ 0, 64, 0, 64}, // PU|PL |
|
{ 0,128, 0, 0}, // PU|PUR |
|
{ 0, 0, 53, 75}, // PU|PUR|PL |
|
{128, 0, 0, 0}, // PUL |
|
{ 0, 0, 0,128}, // PUL|PL |
|
{ 64, 0, 64, 0}, // PUL|PUR |
|
{ 0, 0, 53, 75}, // PUL|PUR|PL |
|
{ 0,128, 0, 0}, // PUL|PU |
|
{-104,116, 0,116}, // PUL|PU|PL |
|
{ 24, 80, 24, 0}, // PUL|PU|PUR |
|
{-104,116, 0,116} // PUL|PU|PUR|PL |
|
}; |
|
|
|
/* This table shows which types of blocks can use other blocks for |
|
* prediction. For example, INTRA is the only mode in this table to |
|
* have a frame number of 0. That means INTRA blocks can only predict |
|
* from other INTRA blocks. There are 2 golden frame coding types; |
|
* blocks encoding in these modes can only predict from other blocks |
|
* that were encoded with these 1 of these 2 modes. */ |
|
static const unsigned char compatible_frame[9] = { |
|
1, /* MODE_INTER_NO_MV */ |
|
0, /* MODE_INTRA */ |
|
1, /* MODE_INTER_PLUS_MV */ |
|
1, /* MODE_INTER_LAST_MV */ |
|
1, /* MODE_INTER_PRIOR_MV */ |
|
2, /* MODE_USING_GOLDEN */ |
|
2, /* MODE_GOLDEN_MV */ |
|
1, /* MODE_INTER_FOUR_MV */ |
|
3 /* MODE_COPY */ |
|
}; |
|
int current_frame_type; |
|
|
|
/* there is a last DC predictor for each of the 3 frame types */ |
|
short last_dc[3]; |
|
|
|
int transform = 0; |
|
|
|
vul = vu = vur = vl = 0; |
|
last_dc[0] = last_dc[1] = last_dc[2] = 0; |
|
|
|
/* for each fragment row... */ |
|
for (y = 0; y < fragment_height; y++) { |
|
|
|
/* for each fragment in a row... */ |
|
for (x = 0; x < fragment_width; x++, i++) { |
|
|
|
/* reverse prediction if this block was coded */ |
|
if (s->all_fragments[i].coding_method != MODE_COPY) { |
|
|
|
current_frame_type = |
|
compatible_frame[s->all_fragments[i].coding_method]; |
|
|
|
transform= 0; |
|
if(x){ |
|
l= i-1; |
|
vl = DC_COEFF(l); |
|
if(COMPATIBLE_FRAME(l)) |
|
transform |= PL; |
|
} |
|
if(y){ |
|
u= i-fragment_width; |
|
vu = DC_COEFF(u); |
|
if(COMPATIBLE_FRAME(u)) |
|
transform |= PU; |
|
if(x){ |
|
ul= i-fragment_width-1; |
|
vul = DC_COEFF(ul); |
|
if(COMPATIBLE_FRAME(ul)) |
|
transform |= PUL; |
|
} |
|
if(x + 1 < fragment_width){ |
|
ur= i-fragment_width+1; |
|
vur = DC_COEFF(ur); |
|
if(COMPATIBLE_FRAME(ur)) |
|
transform |= PUR; |
|
} |
|
} |
|
|
|
if (transform == 0) { |
|
|
|
/* if there were no fragments to predict from, use last |
|
* DC saved */ |
|
predicted_dc = last_dc[current_frame_type]; |
|
} else { |
|
|
|
/* apply the appropriate predictor transform */ |
|
predicted_dc = |
|
(predictor_transform[transform][0] * vul) + |
|
(predictor_transform[transform][1] * vu) + |
|
(predictor_transform[transform][2] * vur) + |
|
(predictor_transform[transform][3] * vl); |
|
|
|
predicted_dc /= 128; |
|
|
|
/* check for outranging on the [ul u l] and |
|
* [ul u ur l] predictors */ |
|
if ((transform == 15) || (transform == 13)) { |
|
if (FFABS(predicted_dc - vu) > 128) |
|
predicted_dc = vu; |
|
else if (FFABS(predicted_dc - vl) > 128) |
|
predicted_dc = vl; |
|
else if (FFABS(predicted_dc - vul) > 128) |
|
predicted_dc = vul; |
|
} |
|
} |
|
|
|
/* at long last, apply the predictor */ |
|
if(s->coeffs[i].index){ |
|
*s->next_coeff= s->coeffs[i]; |
|
s->coeffs[i].index=0; |
|
s->coeffs[i].coeff=0; |
|
s->coeffs[i].next= s->next_coeff++; |
|
} |
|
s->coeffs[i].coeff += predicted_dc; |
|
/* save the DC */ |
|
last_dc[current_frame_type] = DC_COEFF(i); |
|
if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){ |
|
s->coeff_counts[i]= 129; |
|
// s->all_fragments[i].next_coeff= s->next_coeff; |
|
s->coeffs[i].next= s->next_coeff; |
|
(s->next_coeff++)->next=NULL; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Perform the final rendering for a particular slice of data. |
|
* The slice number ranges from 0..(macroblock_height - 1). |
|
*/ |
|
static void render_slice(Vp3DecodeContext *s, int slice) |
|
{ |
|
int x; |
|
int16_t *dequantizer; |
|
DECLARE_ALIGNED_16(DCTELEM, block[64]); |
|
int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; |
|
int motion_halfpel_index; |
|
uint8_t *motion_source; |
|
int plane; |
|
int current_macroblock_entry = slice * s->macroblock_width * 6; |
|
|
|
if (slice >= s->macroblock_height) |
|
return; |
|
|
|
for (plane = 0; plane < 3; plane++) { |
|
uint8_t *output_plane = s->current_frame.data [plane]; |
|
uint8_t * last_plane = s-> last_frame.data [plane]; |
|
uint8_t *golden_plane = s-> golden_frame.data [plane]; |
|
int stride = s->current_frame.linesize[plane]; |
|
int plane_width = s->width >> !!plane; |
|
int plane_height = s->height >> !!plane; |
|
int y = slice * FRAGMENT_PIXELS << !plane ; |
|
int slice_height = y + (FRAGMENT_PIXELS << !plane); |
|
int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane]; |
|
|
|
if (!s->flipped_image) stride = -stride; |
|
|
|
|
|
if(FFABS(stride) > 2048) |
|
return; //various tables are fixed size |
|
|
|
/* for each fragment row in the slice (both of them)... */ |
|
for (; y < slice_height; y += 8) { |
|
|
|
/* for each fragment in a row... */ |
|
for (x = 0; x < plane_width; x += 8, i++) { |
|
|
|
if ((i < 0) || (i >= s->fragment_count)) { |
|
av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i); |
|
return; |
|
} |
|
|
|
/* transform if this block was coded */ |
|
if ((s->all_fragments[i].coding_method != MODE_COPY) && |
|
!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) { |
|
|
|
if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || |
|
(s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) |
|
motion_source= golden_plane; |
|
else |
|
motion_source= last_plane; |
|
|
|
motion_source += s->all_fragments[i].first_pixel; |
|
motion_halfpel_index = 0; |
|
|
|
/* sort out the motion vector if this fragment is coded |
|
* using a motion vector method */ |
|
if ((s->all_fragments[i].coding_method > MODE_INTRA) && |
|
(s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { |
|
int src_x, src_y; |
|
motion_x = s->all_fragments[i].motion_x; |
|
motion_y = s->all_fragments[i].motion_y; |
|
if(plane){ |
|
motion_x= (motion_x>>1) | (motion_x&1); |
|
motion_y= (motion_y>>1) | (motion_y&1); |
|
} |
|
|
|
src_x= (motion_x>>1) + x; |
|
src_y= (motion_y>>1) + y; |
|
if ((motion_x == 127) || (motion_y == 127)) |
|
av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y); |
|
|
|
motion_halfpel_index = motion_x & 0x01; |
|
motion_source += (motion_x >> 1); |
|
|
|
motion_halfpel_index |= (motion_y & 0x01) << 1; |
|
motion_source += ((motion_y >> 1) * stride); |
|
|
|
if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ |
|
uint8_t *temp= s->edge_emu_buffer; |
|
if(stride<0) temp -= 9*stride; |
|
else temp += 9*stride; |
|
|
|
ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); |
|
motion_source= temp; |
|
} |
|
} |
|
|
|
|
|
/* first, take care of copying a block from either the |
|
* previous or the golden frame */ |
|
if (s->all_fragments[i].coding_method != MODE_INTRA) { |
|
/* Note, it is possible to implement all MC cases with |
|
put_no_rnd_pixels_l2 which would look more like the |
|
VP3 source but this would be slower as |
|
put_no_rnd_pixels_tab is better optimzed */ |
|
if(motion_halfpel_index != 3){ |
|
s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( |
|
output_plane + s->all_fragments[i].first_pixel, |
|
motion_source, stride, 8); |
|
}else{ |
|
int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 |
|
s->dsp.put_no_rnd_pixels_l2[1]( |
|
output_plane + s->all_fragments[i].first_pixel, |
|
motion_source - d, |
|
motion_source + stride + 1 + d, |
|
stride, 8); |
|
} |
|
dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane]; |
|
}else{ |
|
dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane]; |
|
} |
|
|
|
/* dequantize the DCT coefficients */ |
|
if(s->avctx->idct_algo==FF_IDCT_VP3){ |
|
Coeff *coeff= s->coeffs + i; |
|
s->dsp.clear_block(block); |
|
while(coeff->next){ |
|
block[coeff->index]= coeff->coeff * dequantizer[coeff->index]; |
|
coeff= coeff->next; |
|
} |
|
}else{ |
|
Coeff *coeff= s->coeffs + i; |
|
s->dsp.clear_block(block); |
|
while(coeff->next){ |
|
block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2; |
|
coeff= coeff->next; |
|
} |
|
} |
|
|
|
/* invert DCT and place (or add) in final output */ |
|
|
|
if (s->all_fragments[i].coding_method == MODE_INTRA) { |
|
if(s->avctx->idct_algo!=FF_IDCT_VP3) |
|
block[0] += 128<<3; |
|
s->dsp.idct_put( |
|
output_plane + s->all_fragments[i].first_pixel, |
|
stride, |
|
block); |
|
} else { |
|
s->dsp.idct_add( |
|
output_plane + s->all_fragments[i].first_pixel, |
|
stride, |
|
block); |
|
} |
|
} else { |
|
|
|
/* copy directly from the previous frame */ |
|
s->dsp.put_pixels_tab[1][0]( |
|
output_plane + s->all_fragments[i].first_pixel, |
|
last_plane + s->all_fragments[i].first_pixel, |
|
stride, 8); |
|
|
|
} |
|
#if 0 |
|
/* perform the left edge filter if: |
|
* - the fragment is not on the left column |
|
* - the fragment is coded in this frame |
|
* - the fragment is not coded in this frame but the left |
|
* fragment is coded in this frame (this is done instead |
|
* of a right edge filter when rendering the left fragment |
|
* since this fragment is not available yet) */ |
|
if ((x > 0) && |
|
((s->all_fragments[i].coding_method != MODE_COPY) || |
|
((s->all_fragments[i].coding_method == MODE_COPY) && |
|
(s->all_fragments[i - 1].coding_method != MODE_COPY)) )) { |
|
horizontal_filter( |
|
output_plane + s->all_fragments[i].first_pixel + 7*stride, |
|
-stride, s->bounding_values_array + 127); |
|
} |
|
|
|
/* perform the top edge filter if: |
|
* - the fragment is not on the top row |
|
* - the fragment is coded in this frame |
|
* - the fragment is not coded in this frame but the above |
|
* fragment is coded in this frame (this is done instead |
|
* of a bottom edge filter when rendering the above |
|
* fragment since this fragment is not available yet) */ |
|
if ((y > 0) && |
|
((s->all_fragments[i].coding_method != MODE_COPY) || |
|
((s->all_fragments[i].coding_method == MODE_COPY) && |
|
(s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) { |
|
vertical_filter( |
|
output_plane + s->all_fragments[i].first_pixel - stride, |
|
-stride, s->bounding_values_array + 127); |
|
} |
|
#endif |
|
} |
|
} |
|
} |
|
|
|
/* this looks like a good place for slice dispatch... */ |
|
/* algorithm: |
|
* if (slice == s->macroblock_height - 1) |
|
* dispatch (both last slice & 2nd-to-last slice); |
|
* else if (slice > 0) |
|
* dispatch (slice - 1); |
|
*/ |
|
|
|
emms_c(); |
|
} |
|
|
|
static void apply_loop_filter(Vp3DecodeContext *s) |
|
{ |
|
int plane; |
|
int x, y; |
|
int *bounding_values= s->bounding_values_array+127; |
|
|
|
#if 0 |
|
int bounding_values_array[256]; |
|
int filter_limit; |
|
|
|
/* find the right loop limit value */ |
|
for (x = 63; x >= 0; x--) { |
|
if (vp31_ac_scale_factor[x] >= s->quality_index) |
|
break; |
|
} |
|
filter_limit = vp31_filter_limit_values[s->quality_index]; |
|
|
|
/* set up the bounding values */ |
|
memset(bounding_values_array, 0, 256 * sizeof(int)); |
|
for (x = 0; x < filter_limit; x++) { |
|
bounding_values[-x - filter_limit] = -filter_limit + x; |
|
bounding_values[-x] = -x; |
|
bounding_values[x] = x; |
|
bounding_values[x + filter_limit] = filter_limit - x; |
|
} |
|
#endif |
|
|
|
for (plane = 0; plane < 3; plane++) { |
|
int width = s->fragment_width >> !!plane; |
|
int height = s->fragment_height >> !!plane; |
|
int fragment = s->fragment_start [plane]; |
|
int stride = s->current_frame.linesize[plane]; |
|
uint8_t *plane_data = s->current_frame.data [plane]; |
|
if (!s->flipped_image) stride = -stride; |
|
|
|
for (y = 0; y < height; y++) { |
|
|
|
for (x = 0; x < width; x++) { |
|
/* This code basically just deblocks on the edges of coded blocks. |
|
* However, it has to be much more complicated because of the |
|
* braindamaged deblock ordering used in VP3/Theora. Order matters |
|
* because some pixels get filtered twice. */ |
|
if( s->all_fragments[fragment].coding_method != MODE_COPY ) |
|
{ |
|
/* do not perform left edge filter for left columns frags */ |
|
if (x > 0) { |
|
s->dsp.vp3_h_loop_filter( |
|
plane_data + s->all_fragments[fragment].first_pixel, |
|
stride, bounding_values); |
|
} |
|
|
|
/* do not perform top edge filter for top row fragments */ |
|
if (y > 0) { |
|
s->dsp.vp3_v_loop_filter( |
|
plane_data + s->all_fragments[fragment].first_pixel, |
|
stride, bounding_values); |
|
} |
|
|
|
/* do not perform right edge filter for right column |
|
* fragments or if right fragment neighbor is also coded |
|
* in this frame (it will be filtered in next iteration) */ |
|
if ((x < width - 1) && |
|
(s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { |
|
s->dsp.vp3_h_loop_filter( |
|
plane_data + s->all_fragments[fragment + 1].first_pixel, |
|
stride, bounding_values); |
|
} |
|
|
|
/* do not perform bottom edge filter for bottom row |
|
* fragments or if bottom fragment neighbor is also coded |
|
* in this frame (it will be filtered in the next row) */ |
|
if ((y < height - 1) && |
|
(s->all_fragments[fragment + width].coding_method == MODE_COPY)) { |
|
s->dsp.vp3_v_loop_filter( |
|
plane_data + s->all_fragments[fragment + width].first_pixel, |
|
stride, bounding_values); |
|
} |
|
} |
|
|
|
fragment++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* This function computes the first pixel addresses for each fragment. |
|
* This function needs to be invoked after the first frame is allocated |
|
* so that it has access to the plane strides. |
|
*/ |
|
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) |
|
{ |
|
#define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift |
|
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0 |
|
|
|
int i, x, y; |
|
const int y_inc = s->flipped_image ? 1 : -1; |
|
|
|
/* figure out the first pixel addresses for each of the fragments */ |
|
/* Y plane */ |
|
i = 0; |
|
for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) { |
|
for (x = 0; x < s->fragment_width; x++) { |
|
s->all_fragments[i++].first_pixel = |
|
s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS - |
|
s->golden_frame.linesize[0] + |
|
x * FRAGMENT_PIXELS; |
|
} |
|
} |
|
|
|
/* U plane */ |
|
i = s->fragment_start[1]; |
|
for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) { |
|
for (x = 0; x < s->fragment_width / 2; x++) { |
|
s->all_fragments[i++].first_pixel = |
|
s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS - |
|
s->golden_frame.linesize[1] + |
|
x * FRAGMENT_PIXELS; |
|
} |
|
} |
|
|
|
/* V plane */ |
|
i = s->fragment_start[2]; |
|
for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) { |
|
for (x = 0; x < s->fragment_width / 2; x++) { |
|
s->all_fragments[i++].first_pixel = |
|
s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS - |
|
s->golden_frame.linesize[2] + |
|
x * FRAGMENT_PIXELS; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* This is the ffmpeg/libavcodec API init function. |
|
*/ |
|
static av_cold int vp3_decode_init(AVCodecContext *avctx) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
int i, inter, plane; |
|
int c_width; |
|
int c_height; |
|
int y_superblock_count; |
|
int c_superblock_count; |
|
|
|
if (avctx->codec_tag == MKTAG('V','P','3','0')) |
|
s->version = 0; |
|
else |
|
s->version = 1; |
|
|
|
s->avctx = avctx; |
|
s->width = FFALIGN(avctx->width, 16); |
|
s->height = FFALIGN(avctx->height, 16); |
|
avctx->pix_fmt = PIX_FMT_YUV420P; |
|
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; |
|
if(avctx->idct_algo==FF_IDCT_AUTO) |
|
avctx->idct_algo=FF_IDCT_VP3; |
|
dsputil_init(&s->dsp, avctx); |
|
|
|
ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct); |
|
|
|
/* initialize to an impossible value which will force a recalculation |
|
* in the first frame decode */ |
|
for (i = 0; i < 3; i++) |
|
s->qps[i] = -1; |
|
|
|
s->y_superblock_width = (s->width + 31) / 32; |
|
s->y_superblock_height = (s->height + 31) / 32; |
|
y_superblock_count = s->y_superblock_width * s->y_superblock_height; |
|
|
|
/* work out the dimensions for the C planes */ |
|
c_width = s->width / 2; |
|
c_height = s->height / 2; |
|
s->c_superblock_width = (c_width + 31) / 32; |
|
s->c_superblock_height = (c_height + 31) / 32; |
|
c_superblock_count = s->c_superblock_width * s->c_superblock_height; |
|
|
|
s->superblock_count = y_superblock_count + (c_superblock_count * 2); |
|
s->u_superblock_start = y_superblock_count; |
|
s->v_superblock_start = s->u_superblock_start + c_superblock_count; |
|
s->superblock_coding = av_malloc(s->superblock_count); |
|
|
|
s->macroblock_width = (s->width + 15) / 16; |
|
s->macroblock_height = (s->height + 15) / 16; |
|
s->macroblock_count = s->macroblock_width * s->macroblock_height; |
|
|
|
s->fragment_width = s->width / FRAGMENT_PIXELS; |
|
s->fragment_height = s->height / FRAGMENT_PIXELS; |
|
|
|
/* fragment count covers all 8x8 blocks for all 3 planes */ |
|
s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; |
|
s->fragment_start[1] = s->fragment_width * s->fragment_height; |
|
s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4; |
|
|
|
s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); |
|
s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts)); |
|
s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65); |
|
s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); |
|
s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int)); |
|
s->pixel_addresses_initialized = 0; |
|
if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts || |
|
!s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) { |
|
vp3_decode_end(avctx); |
|
return -1; |
|
} |
|
|
|
if (!s->theora_tables) |
|
{ |
|
for (i = 0; i < 64; i++) { |
|
s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; |
|
s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; |
|
s->base_matrix[0][i] = vp31_intra_y_dequant[i]; |
|
s->base_matrix[1][i] = vp31_intra_c_dequant[i]; |
|
s->base_matrix[2][i] = vp31_inter_dequant[i]; |
|
s->filter_limit_values[i] = vp31_filter_limit_values[i]; |
|
} |
|
|
|
for(inter=0; inter<2; inter++){ |
|
for(plane=0; plane<3; plane++){ |
|
s->qr_count[inter][plane]= 1; |
|
s->qr_size [inter][plane][0]= 63; |
|
s->qr_base [inter][plane][0]= |
|
s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; |
|
} |
|
} |
|
|
|
/* init VLC tables */ |
|
for (i = 0; i < 16; i++) { |
|
|
|
/* DC histograms */ |
|
init_vlc(&s->dc_vlc[i], 5, 32, |
|
&dc_bias[i][0][1], 4, 2, |
|
&dc_bias[i][0][0], 4, 2, 0); |
|
|
|
/* group 1 AC histograms */ |
|
init_vlc(&s->ac_vlc_1[i], 5, 32, |
|
&ac_bias_0[i][0][1], 4, 2, |
|
&ac_bias_0[i][0][0], 4, 2, 0); |
|
|
|
/* group 2 AC histograms */ |
|
init_vlc(&s->ac_vlc_2[i], 5, 32, |
|
&ac_bias_1[i][0][1], 4, 2, |
|
&ac_bias_1[i][0][0], 4, 2, 0); |
|
|
|
/* group 3 AC histograms */ |
|
init_vlc(&s->ac_vlc_3[i], 5, 32, |
|
&ac_bias_2[i][0][1], 4, 2, |
|
&ac_bias_2[i][0][0], 4, 2, 0); |
|
|
|
/* group 4 AC histograms */ |
|
init_vlc(&s->ac_vlc_4[i], 5, 32, |
|
&ac_bias_3[i][0][1], 4, 2, |
|
&ac_bias_3[i][0][0], 4, 2, 0); |
|
} |
|
} else { |
|
for (i = 0; i < 16; i++) { |
|
|
|
/* DC histograms */ |
|
if (init_vlc(&s->dc_vlc[i], 5, 32, |
|
&s->huffman_table[i][0][1], 4, 2, |
|
&s->huffman_table[i][0][0], 4, 2, 0) < 0) |
|
goto vlc_fail; |
|
|
|
/* group 1 AC histograms */ |
|
if (init_vlc(&s->ac_vlc_1[i], 5, 32, |
|
&s->huffman_table[i+16][0][1], 4, 2, |
|
&s->huffman_table[i+16][0][0], 4, 2, 0) < 0) |
|
goto vlc_fail; |
|
|
|
/* group 2 AC histograms */ |
|
if (init_vlc(&s->ac_vlc_2[i], 5, 32, |
|
&s->huffman_table[i+16*2][0][1], 4, 2, |
|
&s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0) |
|
goto vlc_fail; |
|
|
|
/* group 3 AC histograms */ |
|
if (init_vlc(&s->ac_vlc_3[i], 5, 32, |
|
&s->huffman_table[i+16*3][0][1], 4, 2, |
|
&s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0) |
|
goto vlc_fail; |
|
|
|
/* group 4 AC histograms */ |
|
if (init_vlc(&s->ac_vlc_4[i], 5, 32, |
|
&s->huffman_table[i+16*4][0][1], 4, 2, |
|
&s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0) |
|
goto vlc_fail; |
|
} |
|
} |
|
|
|
init_vlc(&s->superblock_run_length_vlc, 6, 34, |
|
&superblock_run_length_vlc_table[0][1], 4, 2, |
|
&superblock_run_length_vlc_table[0][0], 4, 2, 0); |
|
|
|
init_vlc(&s->fragment_run_length_vlc, 5, 30, |
|
&fragment_run_length_vlc_table[0][1], 4, 2, |
|
&fragment_run_length_vlc_table[0][0], 4, 2, 0); |
|
|
|
init_vlc(&s->mode_code_vlc, 3, 8, |
|
&mode_code_vlc_table[0][1], 2, 1, |
|
&mode_code_vlc_table[0][0], 2, 1, 0); |
|
|
|
init_vlc(&s->motion_vector_vlc, 6, 63, |
|
&motion_vector_vlc_table[0][1], 2, 1, |
|
&motion_vector_vlc_table[0][0], 2, 1, 0); |
|
|
|
/* work out the block mapping tables */ |
|
s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); |
|
s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); |
|
s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); |
|
s->macroblock_coding = av_malloc(s->macroblock_count + 1); |
|
if (!s->superblock_fragments || !s->superblock_macroblocks || |
|
!s->macroblock_fragments || !s->macroblock_coding) { |
|
vp3_decode_end(avctx); |
|
return -1; |
|
} |
|
init_block_mapping(s); |
|
|
|
for (i = 0; i < 3; i++) { |
|
s->current_frame.data[i] = NULL; |
|
s->last_frame.data[i] = NULL; |
|
s->golden_frame.data[i] = NULL; |
|
} |
|
|
|
return 0; |
|
|
|
vlc_fail: |
|
av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n"); |
|
return -1; |
|
} |
|
|
|
/* |
|
* This is the ffmpeg/libavcodec API frame decode function. |
|
*/ |
|
static int vp3_decode_frame(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
GetBitContext gb; |
|
static int counter = 0; |
|
int i; |
|
|
|
init_get_bits(&gb, buf, buf_size * 8); |
|
|
|
if (s->theora && get_bits1(&gb)) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); |
|
return -1; |
|
} |
|
|
|
s->keyframe = !get_bits1(&gb); |
|
if (!s->theora) |
|
skip_bits(&gb, 1); |
|
for (i = 0; i < 3; i++) |
|
s->last_qps[i] = s->qps[i]; |
|
|
|
s->nqps=0; |
|
do{ |
|
s->qps[s->nqps++]= get_bits(&gb, 6); |
|
} while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb)); |
|
for (i = s->nqps; i < 3; i++) |
|
s->qps[i] = -1; |
|
|
|
if (s->avctx->debug & FF_DEBUG_PICT_INFO) |
|
av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", |
|
s->keyframe?"key":"", counter, s->qps[0]); |
|
counter++; |
|
|
|
if (s->qps[0] != s->last_qps[0]) |
|
init_loop_filter(s); |
|
|
|
for (i = 0; i < s->nqps; i++) |
|
// reinit all dequantizers if the first one changed, because |
|
// the DC of the first quantizer must be used for all matrices |
|
if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) |
|
init_dequantizer(s, i); |
|
|
|
if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) |
|
return buf_size; |
|
|
|
if (s->keyframe) { |
|
if (!s->theora) |
|
{ |
|
skip_bits(&gb, 4); /* width code */ |
|
skip_bits(&gb, 4); /* height code */ |
|
if (s->version) |
|
{ |
|
s->version = get_bits(&gb, 5); |
|
if (counter == 1) |
|
av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); |
|
} |
|
} |
|
if (s->version || s->theora) |
|
{ |
|
if (get_bits1(&gb)) |
|
av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); |
|
skip_bits(&gb, 2); /* reserved? */ |
|
} |
|
|
|
if (s->last_frame.data[0] == s->golden_frame.data[0]) { |
|
if (s->golden_frame.data[0]) |
|
avctx->release_buffer(avctx, &s->golden_frame); |
|
s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */ |
|
} else { |
|
if (s->golden_frame.data[0]) |
|
avctx->release_buffer(avctx, &s->golden_frame); |
|
if (s->last_frame.data[0]) |
|
avctx->release_buffer(avctx, &s->last_frame); |
|
} |
|
|
|
s->golden_frame.reference = 3; |
|
if(avctx->get_buffer(avctx, &s->golden_frame) < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); |
|
return -1; |
|
} |
|
|
|
/* golden frame is also the current frame */ |
|
s->current_frame= s->golden_frame; |
|
|
|
/* time to figure out pixel addresses? */ |
|
if (!s->pixel_addresses_initialized) |
|
{ |
|
vp3_calculate_pixel_addresses(s); |
|
s->pixel_addresses_initialized = 1; |
|
} |
|
} else { |
|
/* allocate a new current frame */ |
|
s->current_frame.reference = 3; |
|
if (!s->pixel_addresses_initialized) { |
|
av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n"); |
|
return -1; |
|
} |
|
if(avctx->get_buffer(avctx, &s->current_frame) < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame |
|
s->current_frame.qstride= 0; |
|
|
|
init_frame(s, &gb); |
|
|
|
if (unpack_superblocks(s, &gb)){ |
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); |
|
return -1; |
|
} |
|
if (unpack_modes(s, &gb)){ |
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); |
|
return -1; |
|
} |
|
if (unpack_vectors(s, &gb)){ |
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); |
|
return -1; |
|
} |
|
if (unpack_block_qpis(s, &gb)){ |
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); |
|
return -1; |
|
} |
|
if (unpack_dct_coeffs(s, &gb)){ |
|
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); |
|
return -1; |
|
} |
|
|
|
for (i = 0; i < s->macroblock_height; i++) |
|
render_slice(s, i); |
|
|
|
apply_loop_filter(s); |
|
|
|
*data_size=sizeof(AVFrame); |
|
*(AVFrame*)data= s->current_frame; |
|
|
|
/* release the last frame, if it is allocated and if it is not the |
|
* golden frame */ |
|
if ((s->last_frame.data[0]) && |
|
(s->last_frame.data[0] != s->golden_frame.data[0])) |
|
avctx->release_buffer(avctx, &s->last_frame); |
|
|
|
/* shuffle frames (last = current) */ |
|
s->last_frame= s->current_frame; |
|
s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */ |
|
|
|
return buf_size; |
|
} |
|
|
|
/* |
|
* This is the ffmpeg/libavcodec API module cleanup function. |
|
*/ |
|
static av_cold int vp3_decode_end(AVCodecContext *avctx) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
int i; |
|
|
|
av_free(s->superblock_coding); |
|
av_free(s->all_fragments); |
|
av_free(s->coeff_counts); |
|
av_free(s->coeffs); |
|
av_free(s->coded_fragment_list); |
|
av_free(s->fast_fragment_list); |
|
av_free(s->superblock_fragments); |
|
av_free(s->superblock_macroblocks); |
|
av_free(s->macroblock_fragments); |
|
av_free(s->macroblock_coding); |
|
|
|
for (i = 0; i < 16; i++) { |
|
free_vlc(&s->dc_vlc[i]); |
|
free_vlc(&s->ac_vlc_1[i]); |
|
free_vlc(&s->ac_vlc_2[i]); |
|
free_vlc(&s->ac_vlc_3[i]); |
|
free_vlc(&s->ac_vlc_4[i]); |
|
} |
|
|
|
free_vlc(&s->superblock_run_length_vlc); |
|
free_vlc(&s->fragment_run_length_vlc); |
|
free_vlc(&s->mode_code_vlc); |
|
free_vlc(&s->motion_vector_vlc); |
|
|
|
/* release all frames */ |
|
if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0]) |
|
avctx->release_buffer(avctx, &s->golden_frame); |
|
if (s->last_frame.data[0]) |
|
avctx->release_buffer(avctx, &s->last_frame); |
|
/* no need to release the current_frame since it will always be pointing |
|
* to the same frame as either the golden or last frame */ |
|
|
|
return 0; |
|
} |
|
|
|
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
|
|
if (get_bits1(gb)) { |
|
int token; |
|
if (s->entries >= 32) { /* overflow */ |
|
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); |
|
return -1; |
|
} |
|
token = get_bits(gb, 5); |
|
//av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size); |
|
s->huffman_table[s->hti][token][0] = s->hbits; |
|
s->huffman_table[s->hti][token][1] = s->huff_code_size; |
|
s->entries++; |
|
} |
|
else { |
|
if (s->huff_code_size >= 32) {/* overflow */ |
|
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); |
|
return -1; |
|
} |
|
s->huff_code_size++; |
|
s->hbits <<= 1; |
|
if (read_huffman_tree(avctx, gb)) |
|
return -1; |
|
s->hbits |= 1; |
|
if (read_huffman_tree(avctx, gb)) |
|
return -1; |
|
s->hbits >>= 1; |
|
s->huff_code_size--; |
|
} |
|
return 0; |
|
} |
|
|
|
#if CONFIG_THEORA_DECODER |
|
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
int visible_width, visible_height; |
|
|
|
s->theora = get_bits_long(gb, 24); |
|
av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); |
|
|
|
/* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ |
|
/* but previous versions have the image flipped relative to vp3 */ |
|
if (s->theora < 0x030200) |
|
{ |
|
s->flipped_image = 1; |
|
av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n"); |
|
} |
|
|
|
visible_width = s->width = get_bits(gb, 16) << 4; |
|
visible_height = s->height = get_bits(gb, 16) << 4; |
|
|
|
if(avcodec_check_dimensions(avctx, s->width, s->height)){ |
|
av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height); |
|
s->width= s->height= 0; |
|
return -1; |
|
} |
|
|
|
if (s->theora >= 0x030400) |
|
{ |
|
skip_bits(gb, 32); /* total number of superblocks in a frame */ |
|
// fixme, the next field is 36bits long |
|
skip_bits(gb, 32); /* total number of blocks in a frame */ |
|
skip_bits(gb, 4); /* total number of blocks in a frame */ |
|
skip_bits(gb, 32); /* total number of macroblocks in a frame */ |
|
} |
|
|
|
if (s->theora >= 0x030200) { |
|
visible_width = get_bits_long(gb, 24); |
|
visible_height = get_bits_long(gb, 24); |
|
|
|
skip_bits(gb, 8); /* offset x */ |
|
skip_bits(gb, 8); /* offset y */ |
|
} |
|
|
|
skip_bits(gb, 32); /* fps numerator */ |
|
skip_bits(gb, 32); /* fps denumerator */ |
|
skip_bits(gb, 24); /* aspect numerator */ |
|
skip_bits(gb, 24); /* aspect denumerator */ |
|
|
|
if (s->theora < 0x030200) |
|
skip_bits(gb, 5); /* keyframe frequency force */ |
|
skip_bits(gb, 8); /* colorspace */ |
|
if (s->theora >= 0x030400) |
|
skip_bits(gb, 2); /* pixel format: 420,res,422,444 */ |
|
skip_bits(gb, 24); /* bitrate */ |
|
|
|
skip_bits(gb, 6); /* quality hint */ |
|
|
|
if (s->theora >= 0x030200) |
|
{ |
|
skip_bits(gb, 5); /* keyframe frequency force */ |
|
|
|
if (s->theora < 0x030400) |
|
skip_bits(gb, 5); /* spare bits */ |
|
} |
|
|
|
// align_get_bits(gb); |
|
|
|
if ( visible_width <= s->width && visible_width > s->width-16 |
|
&& visible_height <= s->height && visible_height > s->height-16) |
|
avcodec_set_dimensions(avctx, visible_width, visible_height); |
|
else |
|
avcodec_set_dimensions(avctx, s->width, s->height); |
|
|
|
return 0; |
|
} |
|
|
|
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
int i, n, matrices, inter, plane; |
|
|
|
if (s->theora >= 0x030200) { |
|
n = get_bits(gb, 3); |
|
/* loop filter limit values table */ |
|
for (i = 0; i < 64; i++) { |
|
s->filter_limit_values[i] = get_bits(gb, n); |
|
if (s->filter_limit_values[i] > 127) { |
|
av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]); |
|
s->filter_limit_values[i] = 127; |
|
} |
|
} |
|
} |
|
|
|
if (s->theora >= 0x030200) |
|
n = get_bits(gb, 4) + 1; |
|
else |
|
n = 16; |
|
/* quality threshold table */ |
|
for (i = 0; i < 64; i++) |
|
s->coded_ac_scale_factor[i] = get_bits(gb, n); |
|
|
|
if (s->theora >= 0x030200) |
|
n = get_bits(gb, 4) + 1; |
|
else |
|
n = 16; |
|
/* dc scale factor table */ |
|
for (i = 0; i < 64; i++) |
|
s->coded_dc_scale_factor[i] = get_bits(gb, n); |
|
|
|
if (s->theora >= 0x030200) |
|
matrices = get_bits(gb, 9) + 1; |
|
else |
|
matrices = 3; |
|
|
|
if(matrices > 384){ |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); |
|
return -1; |
|
} |
|
|
|
for(n=0; n<matrices; n++){ |
|
for (i = 0; i < 64; i++) |
|
s->base_matrix[n][i]= get_bits(gb, 8); |
|
} |
|
|
|
for (inter = 0; inter <= 1; inter++) { |
|
for (plane = 0; plane <= 2; plane++) { |
|
int newqr= 1; |
|
if (inter || plane > 0) |
|
newqr = get_bits1(gb); |
|
if (!newqr) { |
|
int qtj, plj; |
|
if(inter && get_bits1(gb)){ |
|
qtj = 0; |
|
plj = plane; |
|
}else{ |
|
qtj= (3*inter + plane - 1) / 3; |
|
plj= (plane + 2) % 3; |
|
} |
|
s->qr_count[inter][plane]= s->qr_count[qtj][plj]; |
|
memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); |
|
memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); |
|
} else { |
|
int qri= 0; |
|
int qi = 0; |
|
|
|
for(;;){ |
|
i= get_bits(gb, av_log2(matrices-1)+1); |
|
if(i>= matrices){ |
|
av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); |
|
return -1; |
|
} |
|
s->qr_base[inter][plane][qri]= i; |
|
if(qi >= 63) |
|
break; |
|
i = get_bits(gb, av_log2(63-qi)+1) + 1; |
|
s->qr_size[inter][plane][qri++]= i; |
|
qi += i; |
|
} |
|
|
|
if (qi > 63) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); |
|
return -1; |
|
} |
|
s->qr_count[inter][plane]= qri; |
|
} |
|
} |
|
} |
|
|
|
/* Huffman tables */ |
|
for (s->hti = 0; s->hti < 80; s->hti++) { |
|
s->entries = 0; |
|
s->huff_code_size = 1; |
|
if (!get_bits1(gb)) { |
|
s->hbits = 0; |
|
if(read_huffman_tree(avctx, gb)) |
|
return -1; |
|
s->hbits = 1; |
|
if(read_huffman_tree(avctx, gb)) |
|
return -1; |
|
} |
|
} |
|
|
|
s->theora_tables = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int theora_decode_init(AVCodecContext *avctx) |
|
{ |
|
Vp3DecodeContext *s = avctx->priv_data; |
|
GetBitContext gb; |
|
int ptype; |
|
uint8_t *header_start[3]; |
|
int header_len[3]; |
|
int i; |
|
|
|
s->theora = 1; |
|
|
|
if (!avctx->extradata_size) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); |
|
return -1; |
|
} |
|
|
|
if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size, |
|
42, header_start, header_len) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); |
|
return -1; |
|
} |
|
|
|
for(i=0;i<3;i++) { |
|
init_get_bits(&gb, header_start[i], header_len[i] * 8); |
|
|
|
ptype = get_bits(&gb, 8); |
|
|
|
if (!(ptype & 0x80)) |
|
{ |
|
av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); |
|
// return -1; |
|
} |
|
|
|
// FIXME: Check for this as well. |
|
skip_bits_long(&gb, 6*8); /* "theora" */ |
|
|
|
switch(ptype) |
|
{ |
|
case 0x80: |
|
theora_decode_header(avctx, &gb); |
|
break; |
|
case 0x81: |
|
// FIXME: is this needed? it breaks sometimes |
|
// theora_decode_comments(avctx, gb); |
|
break; |
|
case 0x82: |
|
if (theora_decode_tables(avctx, &gb)) |
|
return -1; |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); |
|
break; |
|
} |
|
if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb)) |
|
av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); |
|
if (s->theora < 0x030200) |
|
break; |
|
} |
|
|
|
return vp3_decode_init(avctx); |
|
} |
|
|
|
AVCodec theora_decoder = { |
|
"theora", |
|
CODEC_TYPE_VIDEO, |
|
CODEC_ID_THEORA, |
|
sizeof(Vp3DecodeContext), |
|
theora_decode_init, |
|
NULL, |
|
vp3_decode_end, |
|
vp3_decode_frame, |
|
CODEC_CAP_DR1, |
|
NULL, |
|
.long_name = NULL_IF_CONFIG_SMALL("Theora"), |
|
}; |
|
#endif |
|
|
|
AVCodec vp3_decoder = { |
|
"vp3", |
|
CODEC_TYPE_VIDEO, |
|
CODEC_ID_VP3, |
|
sizeof(Vp3DecodeContext), |
|
vp3_decode_init, |
|
NULL, |
|
vp3_decode_end, |
|
vp3_decode_frame, |
|
CODEC_CAP_DR1, |
|
NULL, |
|
.long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), |
|
};
|
|
|